首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent images taken with the Hubble Space Telescope ( HST ) of the interacting disc galaxies NGC 4038/4039 (the Antennae) reveal clusters of many dozens and possibly hundreds of young compact massive star clusters within projected regions spanning about 100 to 500 pc. It is shown here that a large fraction of the individual star clusters merge within a few tens to a hundred Myr. Bound stellar systems with radii of a few hundred parsecs, masses ≲ 109 M⊙ and relaxation times of 1011 − 1012 yr may form from these. These spheroidal dwarf galaxies contain old stars from the pre-merger galaxy and much younger stars formed in the massive star clusters, and possibly from later gas accretion events. The possibility that star formation in the outer regions of gas-rich tidal tails may also lead to superclusters is raised. The mass-to-light ratio of these objects is small, because they contain an insignificant amount of dark matter. After many hundred Myr such systems may resemble dwarf spheroidal satellite galaxies with large apparent mass-to-light ratios, if tidal shaping is important.  相似文献   

3.
We use an N -body/hydrodynamic simulation to forecast the future encounter between the Milky Way and the Andromeda galaxies, given present observational constraints on their relative distance, relative velocity, and masses. Allowing for a comparable amount of diffuse mass to fill the volume of the Local Group, we find that the two galaxies are likely to collide in a few billion years – within the Sun's lifetime. During the interaction, there is a chance that the Sun will be pulled away from its present orbital radius and reside in an extended tidal tail. The likelihood for this outcome increases as the merger progresses, and there is a remote possibility that our Sun will be more tightly bound to Andromeda than to the Milky Way before the final merger. Eventually, after the merger has completed, the Sun is most likely to be scattered to the outer halo and reside at much larger radii (>30 kpc). The density profiles of the stars, gas and dark matter in the merger product resemble those of elliptical galaxies. Our Local Group model therefore provides a prototype progenitor of late-forming elliptical galaxies.  相似文献   

4.
5.
This paper argues that the Milky Way galaxy is probably the largest member of the Local Group. The evidence comes from estimates of the total mass of the Andromeda galaxy (M31) derived from the three-dimensional positions and radial velocities of its satellite galaxies, as well as the projected positions and radial velocities of its distant globular clusters and planetary nebulae. The available data set comprises 10 satellite galaxies, 17 distant globular clusters and nine halo planetary nebulae with radial velocities. We find that the halo of Andromeda has a mass of together with a scalelength of 90 kpc and a predominantly isotropic velocity distribution. For comparison, our earlier estimate for the Milky Way halo is Although the error bars are admittedly large, this suggests that the total mass of M31 is probably less than that of the Milky Way . We verify the robustness of our results to changes in the modelling assumptions and to errors caused by the small size and incompleteness of the data set.
Our surprising claim can be checked in several ways in the near future. The numbers of satellite galaxies, planetary nebulae and globular clusters with radial velocities can be increased by ground-based spectroscopy, while the proper motions of the companion galaxies and the unresolved cores of the globular clusters can be measured using the astrometric satellites Space Interferometry Mission ( SIM ) and Global Astrometric Interferometer for Astrophysics ( GAIA ). Using 100 globular clusters at projected radii 20 R 50 kpc with both radial velocities and proper motions, it will be possible to estimate the mass within 50 kpc to an accuracy of 20 per cent. Measuring the proper motions of the companion galaxies with SIM and GAIA will reduce the uncertainty in the total mass caused by the small size of the data set to 22 per cent.  相似文献   

6.
7.
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.  相似文献   

8.
Distances and metallicities for 17 Local Group galaxies   总被引:1,自引:0,他引:1  
We have obtained Johnson V and Gunn  i photometry for a large number of Local Group galaxies using the Isaac Newton Telescope Wide Field Camera (INT WFC). The majority of these galaxies are members of the M31 subgroup and the observations are deep enough to study the top few magnitudes of the red giant branch in each system. We previously measured the location of the tip of the red giant branch (TRGB) for Andromeda I, Andromeda II and M33 to within systematic uncertainties of typically <0.05 mag. As the TRGB acts as a standard candle in old, metal-poor stellar populations, we were able to derive distances to each of these galaxies. Here we derive TRGB distances to the giant spiral galaxy M31 and 13 additional dwarf galaxies – NGC 205, 185, 147, Pegasus, WLM, LGS3, Cetus, Aquarius, And III, V, VI, VII and the newly discovered dwarf spheroidal And IX. The observations for each of the dwarf galaxies were intentionally taken in photometric conditions. In addition to the distances, we also self-consistently derive the median metallicity of each system from the colour of their red giant branches. This allows us to take into account the small metallicity variation of the absolute I magnitude of the TRGB. The homogeneous nature of our data and the identical analysis applied to each of the 17 Local Group galaxies ensures that these estimates form a reliable set of distance and metallicity determinations that are ideal for comparative studies of Local Group galaxy properties.  相似文献   

9.
10.
We present wide-field     multiband ( BVI ) CCD photometry (down to     of the very low surface brightness dwarf spheroidal galaxy Sextans. In the derived colour–magnitude diagrams we find evidence suggesting the presence of multiple stellar populations in this dwarf spheroidal. In particular, we discover (i) a blue horizontal branch tail that appears to lie on a brighter sequence with respect to the prominent red horizontal branch and the RR Lyrae stars, very similar to what was found by Majewski et al. for the Sculptor dwarf spheroidal, (ii) hints of a bimodal distribution in colour of the red giant branch stars, (iii) a double red giant branch bump. All of these features suggest that (at least) two components are present in the old stellar population of this galaxy: the main one with     and a minor component around     . The similarity to the Sculptor case may indicate that multiple star formation episodes are also common in the most nearby dwarf spheroidals that ceased their star formation activity at very early epochs.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
The chemical evolution history of a galaxy hides clues about how it formed and has been changing through time. We have studied the chemical evolution history of the Milky Way (MW) and Andromeda (M31) to find which are common features in the chemical evolution of disc galaxies as well as which are galaxy-dependent. We use a semi-analytic multizone chemical evolution model. Such models have succeeded in explaining the mean trends of the observed chemical properties in these two Local Group spiral galaxies with similar mass and morphology. Our results suggest that while the evolution of the MW and M31 shares general similarities, differences in the formation history are required to explain the observations in detail. In particular, we found that the observed higher metallicity in the M31 halo can be explained by either (i) a higher halo star formation efficiency (SFE), or (ii) a larger reservoir of infalling halo gas with a longer halo formation phase. These two different pictures would lead to (i) a higher [O/Fe] at low metallicities, or (ii) younger stellar populations in the M31 halo, respectively. Both pictures result in a more massive stellar halo in M31, which suggests a possible correlation between the halo metallicity and its stellar mass.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号