首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The downward flux of Mn through the water column was directly measured using sediment traps. The Mn flux from the bottom sediment to the water column, and the removal rate of Mn in the bottom water were estimated from Mn gradients in the bottom water. The sediment traps were deployed more than ten times at the same station in Funka Bay, Japan. The trapped settling matter and filtered suspended matter samples were analyzed for Mn, Fe, Al and ignition loss. The observed downward flux of Mn through the water column in winter (1.3–2.8 μg/cm2 /day) was generally an order of magnitude larger than that in summer (0.13–0.45 μg/cm2 /day), and the Mn fluxes for both seasons were also greater than the accumulation rate of Mn in the bottom sediments (0.10 μg/cm 2/day). More Al was contained in the trapped settling matter than in the suspended matter, while Mn showed the opposite behavior. The Fe/Mn ratio of the residual fraction (obtained by subtracting the sediment component of the settling matter) was rather well correlated with the corresponding ratio in suspended matter. Settling particles are expected to scavenge suspended matter during their passage through the water column. The flux of Mn across the sediment—water interface was estimated from its vertical profiles in the water column to be 0.1–0.3 μg/cm2 day. The residence time of Mn in bottom water was about one to several months. These results suggest that Mn is actively recycled between the water column and the sediments of the coastal sea.  相似文献   

2.
Hydrophobic organic contaminants (HOCs) may be used as tracers of particle dynamics in aquatic systems. Internal cycling of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were studied in the mesohaline Chesapeake Bay to assess the role of resuspension in maintaining particle and contaminant inventories in the water column, and to compare settling and suspended particle characteristics. Direct measurements of sediment resuspension and settling conducted in conjunction with one of the sediment trap deployments indicate reasonable agreement between measurements of particle flux using the two different methods. Organic carbon and PCB concentrations in settling solids collected in near-surface sediment traps were remarkably lower than concentrations in suspended particles collected by filtration during the trap deployments, but higher PAH concentrations were found in the settling particles. The different behaviors of PAHs and PCBs in the settling particles are due to their different source types and association to different types of particles. Sediment trap collections in near bottom waters were dominated by resuspension. Resuspension fluxes of HOCs measured 2 m above the bay bottom were as high as 2.5 μg/m2 day for total PCBs and 15 μg/m2 day for fluoranthene, and were 25 and 10 times higher than their settling fluxes from surface waters, respectively. HOC concentrations in the near bottom traps varied much less between trap deployments than HOC concentrations in the surface traps, indicating that the chemical composition of the resuspended particles collected in the near bottom traps was more time-averaged by repeated resuspension than the surface particles.  相似文献   

3.
Sediment trap experiments were carried out 39 times during the years from 1977 to 1981 in Funka Bay, Hokkaido, Japan. The observed total particulate flux varies seasonally, that is, the particulate fluxes in winter and spring are larger than those in summer. The fluxes in all seasons increased with depth. Major components of settling particles are aluminosilicate in winter, biogenic silicate in spring and organic matter and terrestrial material in summer, respectively. The fluxes of each chemical component observed with sediment traps are normalized to that of Al by assuming that the actual flux of Al is equal to the accumulation rate onto the sediment surface. Vertical changes of the normalized flux of each chemical component indicate the following: Fe was not regenerated from the settling particles in the water column. Mn was regenerated from the settling particles in the lower layer exclusively between 80 m depth and the sediment surface. Cd was actively regenerated in the upper layer above 80 m depth. Phosphate was regenerated in the upper layer, while biogenic silicate was in the lower layer. The silicate regeneration, therefore, occurs after phosphate regeneration. The material decomposing in the water column below 40 m has an atomic ratio of P ∶ Si ∶ C = 1 ∶ 52 ∶ 128.  相似文献   

4.
Particulate fluxes were determined by two methods to elucidate the behavior of settling particles in seawater. One method involves direct observation of fluxes with sediment traps, while in the other method flux is indirectly calculated from the radioactive disequilibrium between U-238 and Th-234 in seawater, which gives net flux. Observations were carried out several times throughout a year in Funka Bay. When linearly extrapolated, the observed gross fluxes of Th-234 did not converge to zero at the surface. In the subsurface water the difference between the observed and calculated fluxes showed a seasonal variation. The observed fluxes roughly coincided with the calculated net fluxes in the summer stratified water but the observedfluxes were much larger than the calculated ones in the convective winter water. Conversely the observed fluxes were smaller than the calculated ones in spring when the water was exchanging. These results suggest that we can apply this two approach method to get information not only on the behavior of settling particles in seawater but also on the physical stability of water.  相似文献   

5.
To study biological effects on the particulate removal of chemical elements from seawater, sediment trap experiments were carried out successively ten times throughout the spring phytoplankton bloom in Funka Bay. Sediment traps were deployed every one to two weeks at 1, 40 and 80 m depths. The settling particles obtained were analyzed for trace metals, phosphate and silicate. The propagation of diatoms in spring results in larger particulate fluxes than that of dinoflagellates. The biogenic silicate concentration is higher in the earlier period, when diatoms are predominant, than in the subsequent period, when dinoflagellates are predominant. The concentrations of aluminum, iron, manganese and cobalt in the settling particles comprising largely biogenic particles are lower during phytoplankton bloom. The concentration of copper is not reduced by the addition of biogenic particles, and its vertical flux is approximately proportional to the total flux, indicating that its concentration in the biogenic particles is nearly equal to that in the non-biogenic particles. The results for nickel and lead show the same tendency as for copper. Cadmium is more concentrated in biogenic particles than in non-biogenic particles, and the concentration of cadmium in the settling particles decreases with depth, similarly to phosphate and organic matter. Thus, metals in seawater are segregated by biological affinities, and the degree of incorporation into biogenic particles is in the order Cd > Pb, Ni, Cu > Co > Mn, Fe, Al. Biogenic particles are the most important agent controlling the vertical distribution of metals in the ocean. They remove the metals from the surface water, transport them through the water column, and regenerate them in the deep.  相似文献   

6.
Sediment trap experiments were carried out ten times in one year (1977) at three depths in Funka Bay. The material obtained in the traps was analyzed for metals, organic elements and radionuclides, together with the suspended matter in the overlying water column. Two groups with extremely different downward fluxes were found, a group with a small flux increasing with depth, and another with a large flux that is rather constant with depth and is observed only in winter. The flux in winter, and sometimes in the bottom layer below the summer thermocline was larger than the net sedimentation rate for total dry matter or for each chemical constituent. The flux was also larger than the net removal flux for 234Th. A most striking fact is that the specific activity of short-lived 234Th did not decrease in winter, indicating that the large flux in winter was not caused by the re-suspension of old bottom sediments. The concentration of suspended matter in winter was not much greater than that in other seasons. These results suggest that the downward flux observed in sediment trap experiments is not a net removal rate and that there must be an upward particulate flux in the bay.  相似文献   

7.
The vertical distributions of suspended particles in Osaka Bay were measured by using anin situ beam attenuation meter. The concentration of suspended particles near the bottom increases rapidly toward the bottom where size of sediment is in a range of silt. The settling velocity of suspended particles near the bottom was measured with the use of a settling tower in the laboratory. The settling velocity of the suspended particles with diameter from 10 to 100m is 2×10–3cm s–1 to 5×10–2cm s–1. The density of the particles ranges from 2.0 to 1.1 and decreases with increasing particle diameter.  相似文献   

8.
Investigation of lithogenic particles collected by sediment traps in open-ocean stations revealed that the sediment flux increased linearly with depth in the water column. This rate of increase decreased with distance of the station from the continent; it was largest at the Panama Basin station and almost negligible at the E. Hawaii Abyssal Plain station. At the Panama Basin station, smectite flux increased with depth. We suggest that smectite resuspended from bottom sediments of the continental slope west of the sediment-trap station is advected by easterly deep currents, and the suspended particles are then possibly entrapped by large settling particles. On the other hand, the flux of hemipelagic clay particles, kaolinite and chlorite, was nearly constant at all depths; this can be explained by incorporation of these particles in fecal pellets which then settle from the surface water. At the Demerara Abyssal Basin Station, flux of illite and chlorite particles increased with depth and the flux of smectite was constant. A sudden increase of the flux of illite and chlorite was observed near the bottom traps at the Söhm Abyssal Plain station. The flux of quartz and feldspar was 10 to 15% of the clay flux.  相似文献   

9.
近海悬浮物在海水中的运移受诸多因素影响,其中由于径流输入导致的水体层化是不可忽视的因素之一,研究层结水体中沉积物受潮流、波浪影响的再悬浮特征有重要意义.2005年5月15日在黄河口西侧18海里处的莱州湾口设立了一个周日连续观测站,试图揭示弱层结水体中悬浮物的再悬浮特征及其水平、沉降通量.利用ADCP回声强度反演得到了高...  相似文献   

10.
伶仃洋河口泥沙絮凝特征及影响因素研究   总被引:1,自引:1,他引:0  
田枫  欧素英  杨昊  刘锋 《海洋学报》2017,39(3):55-67
泥沙絮凝对河口细颗粒泥沙运动过程起着极其重要的作用。本文通过LISST-100激光粒度仪等仪器实测伶仃洋河口2013年洪季悬浮泥沙絮凝体现场粒径及水动力、泥沙条件,结合实验室悬沙粒径分析,研究大小潮期间伶仃洋河口泥沙絮凝特征,探讨紊动剪切强度、含沙量、盐度分层及波浪等因素对伶仃洋河口泥沙絮凝的影响。结果表明:伶仃洋河口水体中现场粒径平均值为148.53 μm,大于实验室悬沙分散粒径36.74 μm,河口絮凝现象明显;沉速与有效密度、粒径呈正相关,絮团平均有效密度为153.49 kg/m3,平均沉速达1.13 mm/s;小潮时絮团平均粒径大于大潮,垂向上表底层絮团粒径小、中层大,中底层絮团沉速大于表层。伶仃洋河口水动力、泥沙条件是影响其泥沙絮凝的重要因素,低剪切强度(小于5 s-1)、低含沙量(小于50 mg/L)及高体积浓度有利于细颗粒泥沙之间的相互碰撞,促进絮凝作用;当剪切强度与颗粒间碰撞强度高于絮团所能承受的强度时,絮团易破碎分解成小絮团或更细的泥沙颗粒;伶仃洋河口盐度层化引起的泥沙捕获现象增大中层泥沙体积浓度,有利于中层絮凝体的发育;观测期相对较大的波浪增强水体紊动,增大了水体细颗粒泥沙的碰撞几率,表层絮团粒径随波高峰值的出现而增大。  相似文献   

11.
福建罗源湾海水悬浮物的研究   总被引:1,自引:0,他引:1  
于1986年11月-1987年9月对福建罗源湾海水悬浮的含量的观测结果表明,水动力条件引起的再悬浮过程和生物活分别是罗源湾冬季和夏季悬浮物分布及性质变化的主要影响因素。底部沉积物的再悬浮对水体营养盐的再生和补充及有机碎屑的提供起重要的作用,夏季颗粒有机碳的学降能量一般占水柱浮游植物初级生产量的67-85%,大部分初级生产的有机碳沉降海底。  相似文献   

12.
Spatial and temporal variations in the vertical fluxes of amino acids and hexosamine were studied at coastal sites in the south of the Chukchi Sea, Otsuchi Bay, and the center and the entrance of Funka Bay. Amino acid fluxes were higher in the upper trap than in the lower trap material, but hexosamine fluxes were opposite to amino acid fluxes. The ratios between protein amino acids (Asp, Glu and Arg) and their decomposition products (β-Ala, γ-Aba and Orn) indicate that the labile organic matter was more abundant in the upper traps than in the lower ones and increased during periods of enhanced amino acid fluxes. The ratios of Ser/Gly did not vary temporally and spatially and were nearly constant, indicating that Ser and Gly were preserved in a stable form within sinking particles. Hexosamine/amino acid ratios of these particles were higher in the lower sediment trap than in the upper trap material. This implies that the sinking particles derived from zooplankton are relatively more abundant in deep layers than in the surface layer in the water column. We suggest that the difference in amino acid flux and the composition between the upper and lower trap material is influenced by the processes of microbial decomposition and zooplankton consumption of sinking particulate organic matter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
1 IntroductionKnowledge of suspended particle size and distri-bution is the key elements for better understandingthe sediment transport processes ( Wang et al.,2004), primary production (Ning et al., 2004),water quality controlling and pollution predictio…  相似文献   

14.
The common assumption that the ratio between particulate organic carbon (POC) and particulate 234Th obtained from shallow sediment traps and filterable particles are representative of the ratio in the total particle settling flux should be treated with caution in view of well-known biases associated with tethered shallow sediment traps and the decoupling between size and settling velocity of many natural particle regimes. To make progress toward reliably constraining the POC / 234Th ratio on truly settling particles, we have tested here a settling collection technique designed to remove any hydrodynamic bias; split flow-thin cell fractionation (SPLITT). These first results from a North Sea fjord and an open Baltic Sea time-series station indicates that the POC / 234Th ratio on the more complete particle-settling spectrum, isolated with SPLITT, was higher than the POC / 234Th ratio obtained simultaneously from tethered shallow sediment traps in seven out of seven parallel deployments with an average factor of 210%. The POC / 234Th ratio from the SPLITT was either in the same range or higher than that obtained on filtered “bulk” particles. To explain this novel data we hypothesize that the slowest settling fraction is organic-matter rich and does not strongly complex 234Th (i.e., high POC / 234Th). We suggest that this ultra-slow sinking fraction is better collected by SPLITT than with tethered sediment traps because of minimized hydrodynamic bias.This was tested using the ratio of POC / Al as a tracer of detrital mineral-ballast influenced settling velocity. The higher POC / Al ratios in SPLITT samples relative to in traps is consistent with the hypothesis that SPLITT is better suited for collecting also the slow-settling component of sinking particles. This important slow-settling component appears to here consist primarily of non-APS/TEP components of plankton exudates or other less-strongly 234Th-complexing organic matter. Further applications of the SPLITT technique are likely to return increasingly new insights on the composition (including “truly settling” POC / 234Th) of the total spectrum of particles settling out of the upper ocean.  相似文献   

15.
《Journal of Sea Research》1999,41(1-2):109-118
Settling velocities of suspended fine-grained sediment in estuaries vary over a range of several orders in magnitude. Variations in the suspended sediment concentration are often put forward as the principal cause. However, comparison of settling velocities from a number of estuaries shows that even in the case of the same suspended sediment concentration, large variations in the settling velocities can occur of up to two orders in magnitude. From measurements in the Ems estuary we found that even within a single estuary such large variations can occur. Field measurements and complementary laboratory experiments demonstrate that `other factors' can affect the settling velocity in the same order as the assumed effects of the suspended sediment concentration. To address these `other factors', which include physical–chemical and biological effects, the concept of `flocculation ability' is introduced, as a measure of the effectiveness of the collisions between suspended particles for floc growth. On the basis of the results from the Ems estuary, it is hypothesised that variations in the flocculation ability of the suspended fine-grained sediments are at the root of the large differences in settling properties of suspended fine-grained sediment in estuaries.  相似文献   

16.
江苏大丰潮滩悬沙级配特征及其动力响应   总被引:6,自引:5,他引:1  
根据2002和2003年夏季在江苏大丰潮滩的现场观测资料,详细分析了悬沙级配的时空分布特征、影响因素及其对再悬浮、沉降和流速的响应.研究结果表明,悬沙颗粒较细,以粉砂为主,悬沙级配在潮周期内的变化模式有两种类型:一是稳定型,悬沙级配的时空(垂向和平面)变化很小;二是双峰型,悬沙级配的时空变化显著,粗细峰高度不断变化.再悬浮、沉降、涨潮时输入潮滩的悬沙和底质级配是影响悬沙级配的重要因子.再悬浮使粗颗粒悬沙的含量增加,悬沙与底质级配不断接近,沉降对悬沙级配的影响与再悬浮相反.再悬浮发生时悬沙级配对流速有明显响应.在没有再悬浮和沉降影响的情况下,潮滩不同部位、不同时间的悬沙级配趋于稳定和相同,对这种状态下的悬沙级配可称为背景悬沙级配,大丰潮滩背景悬沙级配的平均粒径为7μm.  相似文献   

17.
废黄河三角洲是南黄海内陆架的重要物源。为深入探索废黄河口海域沉积物输运机制,利用2015~2016年夏季与冬季在废黄河口外海域10个站位获取的现场沉积动力数据,计算潮不对称参数、余流、悬沙输运量等。分析结果表明,废黄河口海域沉积物输运模式存在显著的空间差异,大部分海域悬沙沿等深线向南输运,仅在近岸侧局部悬沙向岸或向北输运、离岸最远处站位向北输运但输运率较小;近岸浅水海域以平流输沙为主,其他离岸区域以再悬浮作用为主。由于流速和悬沙浓度之间的相位差,导致余流(净水输运)方向与净悬沙输运方向存在差异。研究沉降速度与悬沙输运涨落潮不对称的关系,发现沉降速度越大,悬沙输运的不对称性就越显著;沉降速度是造成近底部流速与悬沙浓度相位差的主要原因,导致废黄河口外净悬沙输运存在显著的垂向差异。  相似文献   

18.
Sedimentation of food particles and fecal pellets under fish pens can lead to organic enrichment of the sediment. This study looked at the potential of lipid biomarkers as an indicator for the dispersal of organic waste from a fish enclosure. The lipid class and fatty acid composition of settling particles collected by sediment traps on a transect away from a cod enclosure was determined. The proportions of free fatty acids and of three long-chain monounsaturated fatty acids close to the fish pens were significantly higher (p<0.05) than before the fish enclosure was in operation and decreased moving away from the pens. This indicated a higher contribution of feces and/or uneaten feed to the settling particles at this location. Free fatty acids are the major lipid class in feces. Long-chain monounsaturated fatty acids are abundant in the feed and are also found in high proportions in feces because of their lower digestibility compared to other fatty acids.  相似文献   

19.
Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific Western Subarctic Gyre (WSG) revealed seasonal changes in δ 15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting sediment traps (DST; 100–200 m) and moored sediment traps (MST; 200 and 500 m). All particles showed higher δ 15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ 15N(SUS) of 0.4–3.1 ‰ in the euphotic zone (EZ). The δ 15N(SUS) signature was reflected by δ 15N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ 15N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ 15N(DST) variations of 2.4–7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ 15N(DST) vs. PP regression to δ 15N(MST) of 1.9–8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. This new approach to estimate productivity can be a powerful tool for further understanding of the biological pump in the WSG, even though its validity needs to be examined carefully.  相似文献   

20.
1Introduction The sediment dynamics of intertidal flats in-volves erosion, transport, and settling processes. A-mong these, the mechanisms of sediment transportare a key question. Progress has been made in awide range of associated areas, including sedime…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号