首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present a detailed calculation of model atmospheres for DA white dwarfs. Our atmosphere code solves the atmosphere structure in local thermodynamic equilibrium with a standard partial linearization technique, which takes into account the energy transfer by radiation and convection. This code incorporates recent improved and extended data base of collision-induced absorption by molecular hydrogen. We analyse the thermodynamic structure and emergent flux of atmospheres in the range 2500 T eff60 000 K and 6.5log  g 9.0. Bolometric correction and colour indices are provided for a subsample of the model grid. Comparison of the colours is made with published observational material and results of other recent model calculations.
Motivated by the increasing interest in helium-core white dwarfs, we analyse the photometric characteristics of these stars during their cooling, using evolutionary models recently available. Effective temperatures, surface gravities, masses and ages have been determined for some helium-core white dwarf candidates, and their possible binary nature is briefly discussed.  相似文献   

3.
4.
The presence of low-mass, degenerate secondaries in millisecond pulsar binaries offers the opportunity to determine an age for the binary system independently of the rotational properties of the pulsar. To this end, we present here a detailed calculation of the evolution of a grid of low-mass (< 0.05 M⊙) helium core white dwarfs. We investigate the effects of different hydrogen layer masses and provide results for well-known optical bandpasses. We supplement the OPAL opacity calculations with our own calculations for low effective temperatures ( T eff < 6000 K) and also provide fitting formulae for the gravity as a function of mass and effective temperature. In Paper II we apply these results to individual cases.  相似文献   

5.
The purpose of this work is to explore the evolution of helium-core white dwarf stars in a self-consistent way with the predictions of detailed non-grey model atmospheres and element diffusion. To this end, we consider helium-core white dwarf models with stellar masses of 0.406, 0.360, 0.327, 0.292, 0.242, 0.196 and 0.169 M and follow their evolution from the end of mass-loss episodes, during their pre-white dwarf evolution, down to very low surface luminosities.
We find that when the effective temperature decreases below 4000 K, the emergent spectrum of these stars becomes bluer within time-scales of astrophysical interest. In particular, we analyse the evolution of our models in the colour–colour and in the colour–magnitude diagrams and find that helium-core white dwarfs with masses ranging from ∼0.18 to 0.3 M can reach the turn-off in their colours and become blue again within cooling times much less than 15 Gyr and then remain brighter than M V ≈16.5 . In view of these results, many low-mass helium white dwarfs could have had enough time to evolve to the domain of collision-induced absorption from molecular hydrogen, showing blue colours.  相似文献   

6.
7.
8.
9.
The amount of 56Ni produced in Type Ia supernova (SN Ia) explosion is probably the most important physical parameter underlying the observed correlation of SN Ia lumi-nosities with their light curves. Based on an empirical relation between the 56Ni mass and the light curve parameter △m15, we obtained rough estimates of the 56Ni mass for a large sample of nearby SNe Ia with the aim of exploring the diversity in SN Ia. We found that the derived 56Ni masses for different SNe Ia could vary by a factor of ten (e.g., MNi = 0.1 - 1.3 M⊙),which cannot be explained in terms of the standard Chandraseldaar-mass model (with a 56Ni mass production of 0.4 - 0.8 M⊙). Different explosion and/or progenitor models are clearly required for various SNe Ia, in particular, for those extremely nickel-poor and nickel-rich producers. The nickel-rich (with MNi 0.8 M⊙) SNe Ia are very luminous and may have massive progenitors exceeding the Chandrasekhar-mass limit since extra progenitor fuel is required to produce more 56Ni to power the light curve. This is also consistent with the find-ing that the intrinsically bright SNe Ia prefer to occur in stellar environments of young and massive stars. For example, 75% SNe Ia in spirals have △m15 < 1.2 while this ratio is only 18% in E/S0 galaxies. The nickel-poor SNe Ia (with MNi < 0.2 M⊙) may invoke the sub-Chandrasekhar model, as most of them were found in early-type E/S0 galaxies dominated by the older and low-mass stellar populations. This indicates that SNe Ia in spiral and E/S0 galaxies have progenitors of different properties.  相似文献   

10.
11.
12.
The interpretation of pulsation data for sun-like stars is currently facing challenges quite similar to those faced by white dwarf modelers ten years ago. The observational requirements for uninterrupted long-term monitoring are beginning to be satisfied by successful multi-site campaigns and dedicated satellite missions. But exploration of the most important physical parameters in theoretical models has been fairly limited, making it difficult to establish a detailed best-fit model for a particular set of oscillation frequencies. I review the past development and the current state of white dwarf asteroseismology, with an emphasis on what this can tell us about the road to success for asteroseismology of other types of stars.  相似文献   

13.
We have undertaken a detailed near-infrared spectroscopic analysis of eight notable white dwarfs, predominantly of southern declination. In each case the spectrum failed to reveal compelling evidence for the presence of a spatially unresolved, cool, late-type companion. Therefore, we have placed an approximate limit on the spectral type of a putative companion to each degenerate. From these limits we conclude that if GD659, GD50, GD71 or WD2359−434 possesses an unresolved companion then most probably it is substellar in nature  ( M < 0.072 M)  . Furthermore, any spatially unresolved late-type companion to RE J0457−280, RE J0623−374, RE J0723−274 or RE J2214−491 most likely has   M < 0.082 M  . These results imply that if weak accretion from a nearby late-type companion is the cause of the unusual photospheric composition observed in a number of these degenerates then the companions are of very low mass, beyond the detection thresholds of this study. Furthermore, these results do not contradict a previously noted deficit of very-low-mass stellar and brown dwarf companions to main sequence F, G, K and early-M type primaries ( a ≲ 1000 au).  相似文献   

14.
15.
We present a phenomenological study of highly ionized, non-photospheric absorption features in high spectral resolution vacuum ultraviolet spectra of 23 hot DA white dwarfs. Prior to this study, four of the survey objects (Feige 24, REJ 0457−281, G191−B2B and REJ 1614−085) were known to possess these features. We find four new objects with multiple components in one or more of the principal resonance lines: REJ 1738+665, Ton 021, REJ 0558−373 and WD 2218+706. A fifth object, REJ 2156−546, also shows some evidence of multiple components, though further observations are required to confirm the detection. We discuss possible origins for these features including ionization of the local interstellar environment, the presence of material inside the gravitational well of the white dwarf, mass loss in a stellar wind and the existence of material in an ancient planetary nebula around the star. We propose ionization of the local interstellar medium as the origin of these features in G191−B2B and REJ 1738+665, and demonstrate the need for higher-resolution spectroscopy of the sample, to detect multiple interstellar medium velocity components and to identify circumstellar features that may lie close to the photospheric velocity.  相似文献   

16.
We present the results of a radial velocity survey designed to measure the fraction of double degenerates among DA white dwarfs. The narrow core of the H line was observed twice or more for 46 white dwarfs yielding radial velocities accurate to a few km s1. This makes our survey the most sensitive to the detection of double degenerates undertaken to date. We found no new double degenerates in our sample, though H emission from distant companions is seen in two systems. Two stars known to be double degenerates prior to our observations are included in the analysis. We find a 95 per cent probability that the fraction of double degenerates among DA white dwarfs lies in the range [0.017, 0.19].  相似文献   

17.
对20颗依巴谷(Hipparcos)卫星所观测的碳星作了近红外JHK测光,由近红外观测结果估算了其在K波段的热改正BCK和视热星等mbpl以及有效温度Te,结合依巴谷卫星所得视差,得到其中一些星的绝对热星等Mbol。  相似文献   

18.
The influence of strong, large‐scale magnetic fields on the structure and temperature distribution in white dwarf atmospheres is investigated. Magnetic fields may provide an additional component of pressure support, thus possibly inflating the atmosphere compared to the non‐magnetic case. Since the magnetic forces are not isotropic, atmospheric properties may significantly deviate from spherical symmetry. In this paper the magnetohydrostatic equilibrium is calculated numerically in the radial direction for either for small deviations from different assumptions for the poloidal current distribution. We generally find indication that the scale height of the magnetic white dwarf atmosphere enlarges with magnetic field strength and/or poloidal current strength. This is in qualitative agreement with recent spectropolarimetric observations of Grw+10°8247. Quantitatively, we .nd for e.g. a mean surface poloidal field strength of 100 MG and a toroidal field strength of 2‐10 MG an increase of scale height by a factor of 10. This is indicating that already a small deviation from the initial force‐free dipolar magnetic field may lead to observable effects. We further propose the method of finite elements for the solution of the two‐dimensional magnetohydrostatic equilibrium including radiation transport in the diffusive approximation. We present and discuss preliminary solutions, again indicating on an expansion of the magnetized atmosphere.  相似文献   

19.
We report the detection, from the Far Ultraviolet Spectroscopic Explorer (FUSE) data, of phosphorus in the atmospheres of GD71 and two similar DA white dwarfs. This is the first detection of a trace metal in the photosphere of the spectrophotometric standard star GD71. Collectively, these objects represent the coolest DA white dwarfs in which photospheric phosphorus has been observed. We use a grid of homogeneous non-local thermodynamic equilibrium synthetic spectra to measure abundances of  [P/H]=−8.57+0.09−0.13, −8.70+0.23−0.37  and  −8.36+0.14−0.19  in GD71, RE J1918+595 and RE J0605−482 respectively. At the observed level we find that phosphorus has no significant impact on the overall energy distribution of GD71. We explore possible mechanisms responsible for the presence of this element in these stars, concluding that the most likely is an interplay between radiative levitation and gravitational settling, possibly modified by weak mass loss.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号