首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analysed simultaneous archival XMM–Newton and Rossi X-ray Timing Explorer observations of the X-ray binary and black hole candidate Swift J  1753.5−0127  . In a previous analysis of the same data, a soft thermal component was found in the X-ray spectrum, and the presence of an accretion disc extending close to the innermost stable circular orbit was proposed. This is in contrast with the standard picture in which the accretion disc is truncated at large radii in the low/hard state. We tested a number of spectral models and found that several of them fit the observed spectra without the need of a soft disc-like component. This result implies that the classical paradigm of a truncated accretion disc in the low/hard state cannot be ruled out by these data. We further discovered a broad iron emission line between 6 and 7 keV in these data. From fits to the line profile we found an inner disc radius that ranges between ∼6 and 16 gravitational radii, which can be in fact much larger, up to ∼250 gravitational radii, depending on the model used to fit the continuum and the line. We discuss the implications of these results in the context of a fully or partially truncated accretion disc.  相似文献   

2.
We present XMM-Newton European Photon Imaging Camera (EPIC) observations of the bright Seyfert 1 galaxy MCG–6-30-15, focusing on the broad Fe K α line at ∼6 keV and the associated reflection continuum, which is believed to originate from the inner accretion disc. We find these reflection features to be extremely broad and redshifted, indicating an origin in the very central regions of the accretion disc. It seems likely that we have caught this source in the 'deep minimum' state first observed by Iwasawa et al. The implied central concentration of X-ray illumination is difficult to understand in any pure accretion disc model. We suggest that we are witnessing the extraction and dissipation of rotational energy from a spinning black hole by magnetic fields connecting the black hole or plunging region to the disc.  相似文献   

3.
The fluctuating-accretion model of Lyubarskii and its extension by Kotov, Churazov & Gilfanov seek to explain the spectral-timing properties of the X-ray variability of accreting black holes in terms of inward-propagating mass accretion fluctuations produced at a broad range of radii. The fluctuations modulate the X-ray emitting region as they move inwards and can produce temporal-frequency-dependent lags between energy bands, and energy-dependent power spectral densities (PSDs) as a result of the different emissivity profiles, which may be expected at different X-ray energies. Here, we use a simple numerical implementation to investigate in detail the X-ray spectral-timing properties of the model and their relation to several physically interesting parameters, namely the emissivity profile in different energy bands, the geometrical thickness and viscosity parameter of the accretion flow, the strength of damping on the fluctuations and the temporal coherence (measured by the 'quality factor', Q ) of the fluctuations introduced at each radius. We find that a geometrically thick flow with large viscosity parameter is favoured, and we confirm that the predicted lags are quite robust to changes in the emissivity profile and physical parameters of the accretion flow, which may help to explain the similarity of the lag spectra in the low/hard and high/soft states of Cyg X-1. We also demonstrate the model regime where the light curves in different energy bands are highly spectrally coherent. We compare model predictions directly to X-ray data from the narrow line Seyfert 1 galaxy NGC 4051 and the black hole X-ray binary (BHXRB) Cyg X-1 in its high/soft state, and we show that this general scheme can reproduce simultaneously the time lags and energy-dependence of the PSD.  相似文献   

4.
利用“慧眼”(Hard X-ray Modulation Telescope, Insight-HXMT)卫星在2017年9月对黑洞候选体MAXI J1535-571的观测数据,研究了该源在爆发期内的时变现象.当源处于不同的爆发谱态时,功率密度谱的谱型存在明显差异.在硬中间态,有明显的限带噪声(band-limited noise)成分和QPO (Quasi-Periodic Oscillation)成分.分析结果表明:低频限带噪声的特征频率随能量的变化呈现正相关,即软能段光子的特征频率小于硬能段光子的特征频率. 0.1–0.5 Hz频率区间的限带噪声RMS (Root Mean Square)谱在硬中间态和软中间态均出现峰值,且在高能端存在差异,可能是主导噪声RMS的能谱成分占比不同.当谱态由硬中间态过渡到软中间态时, C型QPO的RMS谱保持相似趋势,但限带噪声RMS谱存在谱态依赖现象,暗示着噪声和QPO有不同的起源机制.  相似文献   

5.
6.
采用含有频率涨落噪声和指数形式关联随机力作用的广义朗之万(Langevin)方程模型描述黑洞吸积盘的垂向振荡,推导出吸积盘随机振荡光度功率谱密度的解析表达式,并讨论了系统参数对功率谱密度中低频准周期振荡(Low Frequency Quasi-Periodic Oscillations,LFQPOs)现象的影响。研究结果发现选取合适的系统参数时,功率谱密度曲线上出现了一个基频和一个二次谐频的共振双峰低频准周期振荡,基频峰对应的中心频率为吸积盘振荡的特征频率;随机力关联时间决定了基频峰的高度和宽度,频率噪声强度和粘滞阻尼只对二次谐频峰产生影响。结果说明吸积盘的随机振荡模型可以作为低频准周期振荡起源的一种解释。  相似文献   

7.
The galactic black hole candidate Cygnus X-1 is observed to be in one of two X-ray spectral states: either the low/hard (low soft X-ray flux and a flat power-law tail) or high/soft (high blackbody-like soft X-ray flux and a steep power-law tail) state. The physical origin of these two states is unclear. We present here a model of an ionized accretion disc, the spectrum of which is blurred by relativistic effects, and fit it to the ASCA , Ginga and EXOSAT data of Cygnus X-1 in both spectral states. We confirm that relativistic blurring provides a much better fit to the low/hard state data and, contrary to some previous results, find the data of both states to be consistent with an ionized thin accretion disc with a reflected fraction of unity extending to the innermost stable circular orbit around the black hole. Our model is an alternative to those that, in the low/hard state, require the accretion disc to be truncated at a few tens of Schwarzschild radii, within which there is a Thomson-thin, hot accretion flow. We suggest a mechanism that may cause the changes in spectral state.  相似文献   

8.
We numerically examine centrifugally supported shock waves in 2D rotating accretion flows around a stellar mass  (10 M)  and a supermassive  (106 M)  black holes over a wide range of input accretion rates of     . The resultant 2D shocks are unstable with time and the luminosities show quasi-periodic oscillations (QPOs) with modulations of a factor of 2–3 and with periods of a tenth of a second to several hours, depending on the black hole masses. The shock oscillation model may explain the intermediate frequency QPOs with 1–10 Hz observed in the stellar mass black hole candidates and also suggest the existence of QPOs with the period of hours in active galactic nuclei. When the accretion rate     is low, the luminosity increases in proportion to the accretion rate. However, when     greatly exceeds the Eddington critical rate     , the luminosity is insensitive to the accretion rate and is kept constantly around  ∼3 L E  . On the other hand, the mass-outflow rate     increases in proportion to     and it amounts to about a few per cent of the input mass-flow rate.  相似文献   

9.
With extensive monitoring data spanning over 30 years from Vela 5B , Ariel 5 , Ginga , Compton Gamma Ray Observatory , Rossi X-ray Timing Explorer and BeppoSAX , we find evidence for long-term X-ray variability on time-scales     from the black hole low-mass X-ray binary system     . Such variability resembles the outburst cycle of Z Cam-type dwarf novae, in which the standard disc instability model plays a crucial role. If such a model is applicable to     , then the observed variability might be due to the irradiation of an unstable accretion disc. We show that within the framework of the X-ray irradiation model, when the accretion rate exceeds a critical value,     enters a 'flat-topped' high/soft state, such as seen in 1998, which we suggest corresponds to the 'standstill' state of Z Cam systems.  相似文献   

10.
The eccentricities of the barium stars   总被引:3,自引:0,他引:3  
We investigate the eccentricities of barium (Ba  ii ) stars formed via a stellar wind accretion model. We carry out a series of Monte Carlo simulations using a rapid binary evolution algorithm, which incorporates full tidal evolution, mass loss and accretion, and nucleosynthesis and dredge-up on the thermally pulsing asymptotic giant branch. We follow the enhancement of barium in the envelope of the accreting main-sequence companion and dilution into its convective envelope once the star ascends the giant branch.
The observed eccentricities of Ba  ii stars are significantly smaller than those of an equivalent set of normal red giants but are nevertheless non-zero. We show that such a distribution of eccentricities is consistent with a wind accretion model for Ba  ii star production with weak viscous tidal dissipation in the convective envelopes of giant stars. We successfully model the distribution of orbital periods and the number of observed Ba  ii stars. The actual distribution of eccentricities is quite sensitive to the strength of the tides, so that we are able to confirm that this strength is close to, but less than, what is expected theoretically and found with alternative observational tests. Two systems – one very short-period but eccentric, and one long-period and highly eccentric – still lie outside the envelope of our models, and so require a more exotic formation mechanism. All our models, even those which were a good fit to the observed distributions, overproduced the number of high-period barium stars, a problem that could not be solved by some combination of the three parameters: tidal strength, tidal enhancement and wind accretion efficiency.  相似文献   

11.
We present Fe Kα line profiles from and images of relativistic discs with finite thickness around a rotating black hole using a novel code. The line is thought to be produced by iron fluorescence of a relatively cold X-ray-illuminated material in the innermost parts of the accretion disc and provides an excellent diagnostic of accretion flows in the vicinity of black holes. Previous studies have concentrated on the case of a thin, Keplerian accretion disc. This disc must become thicker and sub-Keplerian with increasing accretion rates. These can affect the line profiles and in turn can influence the estimation of the accretion disc and black hole parameters from the observed line profiles. We here embark on, for the first time, a fully relativistic computation which offers key insights into the effects of geometrical thickness and the sub-Keplerian orbital velocity on the line profiles. We include all relativistic effects such as frame-dragging, Doppler boost, time dilation, gravitational redshift and light bending. We find that the separation and the relative height between the blue and red peaks of the line profile diminish as the thickness of the disc increases. This code is also well suited to produce accretion disc images. We calculate the redshift and flux images of the accretion disc and find that the observed image of the disc strongly depends on the inclination angle. The self-shadowing effect appears remarkable for a high inclination angle, and leads to the black hole shadow being in this case, completely hidden by the disc itself.  相似文献   

12.
We use the grid of hydrodynamic accretion disc calculations of Stehle to construct orbital phase‐dependent emission‐line profiles of thin discs carrying spiral density waves. The observational signatures of spiral waves are explored to establish the feasibility of detecting spiral waves in cataclysmic variable discs using prominent emission lines in the visible range of the spectrum. For high Mach number accretion discs ( M v φ c s≃ 15 – 30), we find that the spiral shock arms are so tightly wound that they leave few obvious fingerprints in the emission lines. Only a minor variation of the double peak separation in the line profile at a level of ∼8 per cent is produced. For accretion discs in outburst ( M ≃ 5 – 20) however, the lines are dominated by the emission from an m =2 spiral pattern in the disc. We show that reliable Doppler tomograms of spiral shock patterns can be reconstructed provided that a signal‐to‐noise ratio of at least 15, a wavelength resolution of ∼80 km s−1 and a time resolution of ∼50 spectra per binary orbit are achieved. We confirm that the observed spiral pattern in the disc of IP Pegasi can be reproduced by tidal density waves in the accretion disc and demands the presence of a large, hot disc, at least in the early outburst stages.  相似文献   

13.
Observations suggest that accretion discs in many X-ray binaries are likely flared. An outer edge of the disc intercepts radiation from the central X-ray source. Part of that radiation is absorbed and re-emitted in the optical/UV spectral ranges. However, a large fraction of that radiation is reflected and appears in the broad-band X-ray spectrum as a Compton reflection bump. This radiation is delayed and variability is somewhat smeared compared with the intrinsic X-ray radiation. We compute response functions for flat and flared accretion discs and for isotropic and anisotropic X-ray sources. A simple approximation for the response function which is valid in the broad range of the disc shapes and inclinations, inner and outer radii, and the plasma bulk velocity is proposed. We also study the impact of the X-ray reprocessing on temporal characteristics of X-ray binaries such as the power spectral density, auto- and cross-correlation functions, and time/phase lags. We propose a reprocessing model which explains the secondary peaks in the phase lag Fourier spectra observed in Cyg X-1 and other Galactic black hole sources. The position of the peaks could be used to determine the size of the accretion disc.  相似文献   

14.
Most astrophysical sources powered by accretion on to a black hole, either of stellar mass or supermassive, when observed with hard X-rays show signs of a hot Comptonizing component in the flow, the so-called corona , with observed temperatures and optical depths lying in a narrow range (0.1≲ τ ≲1 and 1×109 K≲ T ≲3×109 K). Here we argue that these facts constitute strong supporting evidence for a magnetically dominated corona. We show that the inferred thermal energy content of the corona, in all black hole systems, is far too low to explain their observed hard X-ray luminosities, unless either the size of the corona is at least of the order of 103 Schwarzschild radii, or the corona itself is in fact a reservoir , where the energy is mainly stored in the form of a magnetic field generated by a sheared rotator (probably the accretion disc). We briefly outline the main reasons why the former possibility is to be discarded, and the latter preferred.  相似文献   

15.
通过几十年的观测研究, 黑洞X射线双星(X-Ray Binary, XRB)部分特征被揭示. 然而, 吸积盘结构尚不确定. 黑洞XRB功率密度谱的截断频率与准周期振荡(Quasi Periodic Oscillation, QPO)的相关性质(W-K关系)可以限制吸积盘结构. 利用慧眼-HXMT (Hard X-ray Modulation Telescope)观测到的5个黑洞XRB的数据, 对黑洞XRB的W-K关系进行了研究, 结果表明在慧眼-HXMT观测的3个探测器能段中W-K关系成立. 此外在MAXI J1535-571之中存在截断频率和吸积盘内半径的相关关系, 这和截断的吸积盘结构一致. 如果观测到的功率密度谱来自质量吸积率的扰动传播, 可以推测吸积盘内半径接近最内圆形稳定轨道, 此黑洞可能是高自旋系统.  相似文献   

16.
We develop a model of an accretion disc in which the variability induced at a given radius is governed by a damped harmonic oscillator at the corresponding epicyclic frequency. That variability induces both linear and non-linear responses in the locally emitted radiation. The total observed variability of a source is the sum of these contributions over the disc radius weighted by the energy dissipation rate at each radius. It is shown that this simple model, which effectively has only three parameters including the normalization, can explain the range of the power spectra observed from Cyg X-1 in the soft state. Although a degeneracy between the black hole mass and the strength of the damping does not allow a unique determination of the mass, we can still constrain it to  ≲(16–20) M  . We also show that our model preserves the observed linear rms–flux relationship even in the presence of the non-linear flux response.  相似文献   

17.
Using RXTE /PCA data, we study the fast variability of the reflected emission in the soft spectral state of Cyg X-1 by means of Fourier frequency-resolved spectroscopy. We find that the rms amplitude of variations of the reflected emission has the same frequency dependence as the primary radiation down to time-scales of ≲30–50 ms. This might indicate that the reflected flux reproduces, with nearly flat response, variations of the primary emission. Such behaviour differs notably from that of the hard spectral state, in which variations of the reflected flux are significantly suppressed in comparison with the primary emission, on time-scales shorter than ∼0.5–1 s.
If related to the finite light-crossing time of the reflector, these results suggest that the characteristic size of the reflector, presumably an optically thick accretion disc, in the hard spectral state is larger by a factor of ≳5–10 than in the soft spectral state. Modelling the transfer function of the disc, we estimate the inner radius of the accretion disc to be R in∼100 R g in the hard state and R in≲10 R g in the soft state for a 10-M black hole.  相似文献   

18.
In this paper I propose that the inner part of a black hole accretion inflow (< 100 rg) may enter a magnetically dominated, magnetosphere-like phase in which the strong, well-ordered fields play a more important role than weak, turbulent fields. In the low/hard state this flow is interior to the standard ADAF usually invoked to explain the observed hot, optically thin emission. Preliminary solutions for these new MDAFs are presented. Time-dependent X-ray and radio observations give considerable insight into these processes, and a new interpretation of the X-ray power spectrum (as arising from many disk radii) may be in order. While an evaporative ADAF model explains the noise power above 0.01 Hz, an inner MDAF is needed to explain the high-frequency cutoff near 1 Hz, the presence of a QPO, and the production of a jet. The MDAF scenario also is consistent with the phenomonological models presented at this meeting by several authors.  相似文献   

19.
观测表明, 黑洞双星的B型准周期振荡(Quasi-Periodic Oscillation, QPO)频率与幂律通量之间存在正相关性. 试图基于阿尔文波振荡模型定量解释该相关性. 标准薄吸积盘辐射通量极大值处的阿尔文波振荡产生QPO. 标准薄盘上的软光子与冕或喷流基部的热电子介质发生逆康普顿散射产生幂律通量. 通过吸积率的连续变化, 得到QPO频率与幂律通量关系的分析解和数值解. 模拟得到的相关性在合理的参数范围内与观测值相吻合. QPO频率与幂律通量的正相关性可以理解为, 较强的磁场导致较高的阿尔文波频率和较高的电子温度从而得到较高的幂律通量. 结果表明B型QPO可能与吸积盘或喷流中的环向磁场的活动有关.  相似文献   

20.
This is the second of a series of papers aimed to look for an explanation on the generation of high frequency quasi-periodic oscillations (QPOs) in accretion disks around neutron star, black hole, and white dwarf binaries. The model is inspired by the general idea of a resonance mechanism in the accretion disk oscillations as was already pointed out by Abramowicz and Klu’zniak (2001). In a first paper (P'etri, 2005a, paper I), we showed that a rotating misaligned magnetic field of a neutron star gives rise to some resonances close to the inner edge of the accretion disk. In this second paper, we suggest that this process does also exist for an asymmetry in the gravitational potential of the compact object. We prove that the same physics applies, at least in the linear stage of the response to the disturbance in the system. This kind of asymmetry is well suited for neutron stars or white dwarfs possessing an inhomogeneous interior allowing for a deviation from a perfectly spherically symmetric gravitational field. After a discussion on the magnitude of this deformation applied to neutron stars, we show by a linear analysis that the disk initially in a cylindrically symmetric stationary state is subject to {three kinds of resonances: a corotation resonance, a Lindblad resonance due to a driven force and a parametric resonance}. In a second part, we focus on the linear response of a thin accretion disk in the 2D limit. {Waves are launched at the aforementioned resonance positions and propagate in some permitted regions inside the disk, according to the dispersion relation obtained by a WKB analysis}. In a last part, these results are confirmed and extended via non linear hydrodynamical numerical simulations performed with a pseudo-spectral code solving Euler's equations in a 2D cylindrical coordinate frame. {We found that for a weak potential perturbation, the Lindblad resonance is the only effective mechanism producing a significant density fluctuation}. In a last step, we replaced the Newtonian potential by the so called logarithmically modified pseudo-Newtonian potential in order to take into account some general-relativistic effects like the innermost stable circular orbit (ISCO). The latter potential is better suited to describe the close vicinity of a neutron star or a black hole. However, from a qualitative point of view, the resonance conditions remain the same. The highest kHz QPOs are then interpreted as the orbital frequency of the disk at locations where the response to the resonances are maximal. It is also found that strong gravity is not required to excite the resonances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号