首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究处于自由面以下完全淹没状态的水平圆柱在强迫振荡运动时的水动力特性,采用基于黏性流理论建立的二维两相流数值波浪水槽模型,对不同液相黏性条件下强迫振荡水平圆柱的受力进行计算,并对压力、黏性切力和圆柱运动之间的相位关系特征进行对比和分析,进而结合流场分析解释黏性影响机理。结果表明:黏性切力和涡旋压力对流体作用力的贡献差别是导致不同流体黏性下流体作用力结果差异的主要原因;涡旋运动相对圆柱振荡运动的滞后性受流体黏性影响显著,导致不同流体黏性下压力之间有相位差;流体水质点相对于圆柱的滞后运动在大黏性流体中更为显著,这导致了其黏性切力的相位超前现象。  相似文献   

2.
为了研究处于自由面以下完全淹没状态的水平圆柱在强迫振荡运动时的水动力特性,采用基于黏性流理论建立的二维两相流数值波浪水槽模型,对不同液相黏性条件下强迫振荡水平圆柱的受力进行计算,并对压力、黏性切力和圆柱运动之间的相位关系特征进行对比和分析,进而结合流场分析解释黏性影响机理。结果表明:黏性切力和涡旋压力对流体作用力的贡献差别是导致不同流体黏性下流体作用力结果差异的主要原因;涡旋运动相对圆柱振荡运动的滞后性受流体黏性影响显著,导致不同流体黏性下压力之间有相位差;流体水质点相对于圆柱的滞后运动在大黏性流体中更为显著,这导致了其黏性切力的相位超前现象。  相似文献   

3.
In this study, a linear poroviscoelastic model based on the Biot theory is proposed to analyze the dynamic response of partially saturated soil. Both the flow-dependent and flow-independent poroviscoelastic behaviors are described in the proposed model. The compressibilities of both the constituents, including the skeleton material and porefluid, are considered, and the effective skeleton stress is determined using the linear viscoelasticity law based on the generalized spring-dashpot model. The soil surface is subjected to two types of harmonic loading, namely, vertical compressive loading and lateral shear loading. The influences of the relaxation time, saturation degree, and soil permeability on the surface and interior dynamic responses of the soil layer are investigated. It is revealed that the amplification factor, effective stress, and pore pressure decrease as the viscous damping increases, indicating that neglecting the viscoelastic property of solid skeleton could overestimate the induced dynamic responses. Furthermore, in comparison with the viscous damping of the solid skeleton, the viscous coupling involving the viscous resisting forces between the solid skeleton and pore fluid has limited effect on the dynamic behavior of the soil layer.  相似文献   

4.
地球液核的动力学效应研究进展   总被引:2,自引:1,他引:1  
简要介绍了液核动力学研究的方法及液核动力学效应检测的进展和研究结果,着重介绍了超导重力仪在液核动力学研究中的作用。基于初始参考地球模型(PREM),采用球对称、非自转、完全弹性和各向同性地球的弹性引力形变理论研究了液核动力学扰动导致的地球固体部分的形变和重力位扰动。根据重力潮汐观测中的近周日共振特征,利用国际超导重力仪观测资料研究了地球的自由核章动(FCN),精密确定了有关的共振参数,其中FCN的本征周期为429.0(424.3,4 433.7)恒星日,品质因子为 9543(6405,18714),复共振强度为(-6.10±0.20,-0.01±0.20)×10-4°/h。最近,我们还估计了全球地球动力学观测网中全球分布的14台超导重力仪21个长期、连续重力观测序列的"积谱密度"以检测固体内核的平动振荡运动。  相似文献   

5.
This paper presents an indirect boundary integral equation method for analysis of quasi-static, time-harmonic and transient boundary value problems related to infinite and semi-infinite poroelastic domains. The present analysis is based on Biot's theory for poroelastodynamics with fluid viscous dissipation. The solution to a given boundary value problem is reduced to the determination of intensities of forces and fluid sources applied on an auxiliary surface defined interior to the surface on which the boundary conditions are specified. A coupled set of integral equations is established to determine the intensities of forces and fluid sources applied on the auxiliary surface. The integral equations are solved numerically in the Laplace domain for quasi-static and transient problems, and in the frequency domain for time-harmonic excitations. The kernel functions of the integral equation correspond to appropriate Green's functions for a poroelastic full space or half-space. The convergence and numerical stability of the present scheme are established by considering a number of bench mark problems. The versatility of the present method is demonstrated by studying the quasi-static response of a rigid spheroidal anchor, and time-harmonic and transient response of a rigid semi-circular tunnel.  相似文献   

6.
Petrova  N. K.  Nefedyev  Yu. A.  Zagidullin  A. A.  Andreev  A. O. 《Astronomy Reports》2018,62(12):1021-1025

A brief review of modern observational achievements and the theoretical basis of physical libration of the Moon is presented. Special attention is given to the inferred existence of a lunar core and determination of its parameters. The creation of a theory of physical libration of the Moon, which requires analyses of semi-empirical series of long-term laser observations and the use of the highly accurate DE421 dynamical ephemeris, is related to this. A large role in this area has been played by the analytical theory of physical libration of the Moon constructed by Yu.V. Barkin, which made it possible for the first time to derive parameters of the free nutation of the lunar core from observations. This paper is based on a talk given at the conference “Modern Astrometry 2017,” dedicated to the memory of K.V. Kuimov (Sternberg Astronomical Institute, Moscow State University, October 23–25, 2017).

  相似文献   

7.
The paper is focused on the investigation of snow creep and settlement of alpine snowpacks. A detailed investigation of the constitutive behavior of snow for long-term creeping under low-strain rates is provided. The snowpack is considered as a compressible, viscous fluid. An assumption for a temperature and density-dependent viscosity and viscous Poisson ratio is provided in this paper, based on observations in nature and laboratory. The provided model is particularly applicable for settlement calculation of seasonal alpine snowpacks and computation of reaction forces on obstacles. The model is evaluated by numerous laboratory and field experiments. Different case studies are provided in this paper.  相似文献   

8.
张鑫磊  王志华  许振巍  吕丛 《岩土力学》2016,37(8):2347-2352
采用振动台激励使饱和砂土发生液化,并侧向拖拽埋入砂土中的铝管,模拟液化土体与管体相对运动以分析液化砂土流动的力学效应。引入流体力学理论与方法,推导出以拉力反算表观黏度的表达式以及液化土体作为流体对管壁作用的黏滞剪切力。分析和比较了振时拖动、振后拖动下土体的流体性质及其流动效应的率相关性和孔压相关性,探讨了砂土密实度对土体流动效应的影响。结果表明,土体初始密实度与液化后土体的表观黏度正相关;液化土体的表观黏度以及因流动产生的黏滞剪切力与孔压反相关;液化砂土流动产生的黏滞剪切力具有强烈的率相关性。针对可液化场地中的结构抗震分析,应考虑土-结构率相关相互作用。  相似文献   

9.
通过对深井旋转钻柱空转功率消耗因素的分析,考虑空转时离心力作用在井壁上引起的摩擦力导致的功率消耗,并将钻井液视为牛顿液体,运用柱坐标系建立了旋转钻柱在深井作业条件下空转功率消耗的分析模型。综合考虑空转功率与钻柱旋转的角速度、钻柱与井眼结构参数、钻井液粘度系数等因素间的关系,即旋转钻柱运动过程中的离心力和钻井液作用在钻柱上的剪切应力对功率的影响,建立了更加符合实际工况的数学模型。  相似文献   

10.
建立含有可压缩粘滞流体的多孔隙垂向非均匀弹性固体内之应力波传播理论。论述了其中的一个问题。即当Poiseuille流动假设成立的低频率范围且流体与固体的质量密度可相比拟(例如含水饱和岩石之类)时,流体与固体间虽有相对运动但无摩擦的情形。在一定的近似条件下,可以存在两类膨胀波和一类旋转波,它们都存在频散  相似文献   

11.
为研究大波幅波浪作用下,非完全淹没水平圆柱所受波浪力的特征,基于黏性流理论采用有限体积法建立两相流数值波浪水槽模型,对不同波幅和圆柱垂向位置下非完全淹没水平圆柱所受波浪力进行了数值计算,并对波浪力和冲击力的特征进行了分析,讨论了冲击力与冲击速度的关系,结合经验计算公式拟合得到了冲击力系数。结果表明:波浪力的大小受波幅和圆柱垂向位置的影响比较显著,其影响机理与波浪场流体运动特性相关;冲击力的大小与冲击速度密切相关,而垂向冲击力在波浪力中起主导作用时,对应的最小预测冲击速度受圆柱垂向位置影响并不显著;不同圆柱垂向位置下冲击力系数随着波幅增大由分散性较强逐渐趋于集中。  相似文献   

12.
季宪军  梁瑛  欧国强  杨顺  王钧  陆桂红 《岩土力学》2015,36(8):2402-2408
由无黏粗颗粒与黏性泥浆组成的黏性碎屑流,其运动过程会产生不连续变形,基于连续介质假定的流体理论无法描述。根据散体材料理论,在考虑黏性泥浆影响情况下,以PFC3D为平台,编写黏性碎屑坡面运动数值模型试验程序,根据泥浆(成都黏土,密度1.413 g/cm3)室内拉伸试验和旋转剪切试验结果,设置数值模型参数,开展黏性碎屑流坡面运动数值模型试验,再现黏性碎屑坡面运动过程及运动过程中不连续变形现象,并通过同尺寸黏性碎屑坡面运动物理模型试验进行验证。结果表明:基于散体材料理论的PFC3D离散单元法能很好地再现黏性碎屑坡面运动过程及运动过程中不连续变形现象,为深入分析黏性泥浆介质影响下黏性碎屑坡面运动过程提供新的途径。  相似文献   

13.
Corrections to the IAU 2000/2006 parameters of the theory of precession and nutation are calculated using five different series—two individual series and three combined series that have been used in the literature for this purpose. A comparison of the sets of corrections obtained using the different datasets indicates significance systematic differences between them, which often substantially exceed the corresponding random errors. At the same time, existing studies have usually used data obtained from one or two series chosen by the authors without special justification. When refining the theory of precession and nutation, it is necessary to consider and compare various available series of VLBI data if one wishes to reduce the systematic errors in an improved model.  相似文献   

14.
泥石流冲毁桥墩是桥梁在遭受泥石流冲击时的常见破坏形式。为了研究泥石流对桥墩的冲击力大小,通过调整黏土、沙、石子、水的不同含量,配置不同流变特性、不同密度的泥石流,使用所配置的原料在泥石流槽内对两种形状(圆形、方形)的桥墩缩尺模型进行冲击,综合考察了流变特性、流速、桥墩形状以及冲击力的关系。试验表明:试验配置的泥石流原料流变特性差异明显,且可以用简单的选择流变仪测得,用牛顿流体或宾汉体描述。泥石流的流速可用曼宁公式求得,而公式中的糙率系数与泥石流黏度满足幂函数关系。相同工况下,不同形状桥墩所受的冲击力差异明显,方形桥墩阻力系数普遍大于圆形桥墩。使用非牛顿流体雷诺数(Re)可以综合反映流变特性和流速,因此,圆墩的阻力系数可表达为Re的函数,而方墩则没有明显关系。为方便工程应用,可根据黏性泥石流、稀性泥石流对圆墩的阻力系数分别为2.3、0.9,对方墩分别为2.6、1.9进行选用。  相似文献   

15.
The rotation behavior of rigid elliptical inclusions adherent to the viscous matrix in simple shear flow is investigated using a 2-D finite element numerical model. Several simulations were performed using different ratios (S) between shear zone width and inclusion's least principal axis. A computational strategy was devised to calculate pressure and viscous forces exerted on the inclusion and deduce its angular velocity. For large S values, results agree remarkably well with theoretical predictions, while for small S values results deviate significantly from theory but are in agreement with previous analogue experiments. The numerical model provided detailed and coherent information about the physical parameters involved in the process (e.g., pressure, strain rate and vorticity distributions within the model).  相似文献   

16.
Modelling and numerical simulation of two-phase debris flows   总被引:1,自引:0,他引:1  
Gravity-driven geophysical mass flows often consist of fluid–sediment mixtures. The contemporary presence of a fluid and a granular phase determines a complicated fluid-like and solid-like behaviour. The present paper adopts the mixture theory to incorporate the two phases and describe their respective movements. For the granular phase, a Mohr–Coulomb plasticity is employed to describe the relationship between normal and shear stresses, while for the fluid phase, the viscous Newtonian fluid is taken into account. At the basal topography, a Coulomb sliding condition for the solid phase and a Navier’s sliding condition for the fluid phase are satisfied, while the top free surface is traction-free for both the phases. For the interactive forces between the phases, the buoyancy force and viscous drag force are included. The established governing equations are expressed in a curvilinear coordinate system embedded in a curvilinear reference basal surface, above which an arbitrary shallow basal topography is permitted. Taking into account the typical length characteristics of such geophysical mass flows, the “thin-layer” approximation is assumed, so that a depth integration can be performed to simplify the governing equations. The resulting strongly nonlinear partial differential equations (PDEs) are first simplified and then analysed for a steady state in a travelling coordinate system. We find the current model can reproduce the characteristic shape of some flow fronts. Additionally, a stability analysis for steady uniform flows is performed to demonstrate the development of roll waves that means instabilities grow up and become clearly distinguishable waves. Furthermore, we numerically solve the resulting PDEs to investigate general unsteady flows down a curved surface by means of a high-resolution non-oscillatory central difference scheme with the total variation diminishing property. The dynamic behaviours of the granular and fluid phases, especially, the effects of the drag force and the fluid bed friction are discussed. These investigations can enhance the understanding of physics behind natural debris flows.  相似文献   

17.
On 13 August 2010, significant debris flows were triggered by intense rainfall events in Wenchuan earthquake-affected areas, destroying numerous houses, bridges, and traffic facilities. To investigate the impact force of debris flows, a fluid–structure coupled numerical model based on smoothed particle hydrodynamics is established in this work. The debris flow material is modeled as a viscous fluid, and the check dams are simulated as elastic solid (note that only the maximum impact forces are evaluated in this work). The governing equations of both phases are solved respectively, and their interaction is calculated. We validate the model with the simulation of a sand flow model test and confirm its ability to calculate the impact force. The Wenjia gully and Hongchun gully debris flows are simulated as the application of the coupled smoothed particle hydrodynamic model. The propagation of the debris flows is then predicted, and we obtain the evolution of the impact forces on the check dams.  相似文献   

18.
Given the contrasting behaviour observed for geomaterials, for example, during landslides of the flow type, this contribution proposes an original constitutive model, which associates both an elasto‐plastic relation and a Bingham viscous law linked by a mechanical transition criterion. This last is defined as the second‐order work sign for each material point, which is a general criterion for divergence instabilities. Finite element method with Lagrangian integration points is chosen as a framework for implementing the new model because of its well‐known ability to deal with both solid and fluid behaviours in large deformation processes. A first boundary model considering a sample of initially stable soil, a slope and an obstacle is performed. The results show the power of the constitutive model because the consistent evolution of initiation, propagation and arrest of the mudflow is described. A parametric study is led on various plastic and viscous parameters to determine their influence on the flow development and arrest. Finally, forces against the obstacle are compared with good agreement with those of other authors for the same geometry and a pure viscous behaviour. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper discusses the role of macro‐ and micro‐inertial forces in the falling head permeability test. The model of flow including viscous and dynamic interaction forces is formulated. Then, the model is used to perform numerical simulations of the tests for high‐permeability soils. The presented results prove the existence of a level of permeability of materials above which macro‐and micro‐inertial forces are important and that in all cases the latter forces are dominant. The results suggest limited validity of the standard interpretation of the falling head permeability test and possible usefulness of the test to determine both permeability and the parameter characterizing non‐linear interactions of fluid and solid skeleton. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, quasistatic models are developed for the slow flow of compressible fluids through porous solids, where the solid exhibits fading memory viscoelasticity. Problems of this type are important in practical geomechanics contexts, for example, in the context of fluid flow through unconsolidated reservoir sands and of wellbore deformation behaviour in gas and oil shale reservoirs, all of which have been studied extensively. For slow viscous fluid flow in the poro-viscoelastic media we are able to neglect the dynamic effects related to inertia forces, as well as the dissipation associated with the viscous flows. This is in contrast to the vast body of work in the poro-elastic context, where much faster flow of the viscous fluids may give rise to memory effects associated with microflows in pores of the solid media. Such problems have been treated extensively in both the dynamic and quasistatic cases. We are taking a specific type of the porous medium subject to slow deformation processes possibly inducing moderate pressure gradients and flow rates characterised by negligible inertia effects. As the result of homogenisation of such a two-phase medium, we observe the fading memory behaviour in the Biot modulus which controls the pressure increase due to skeleton macroscopic deformation and pore fluid content. Although our derivation leads to a result which is consistent with the formal phenomenological approach proposed by Biot (J Appl Phys 23:1482–1498, 1962), we offer the reader more insight into the structure of the poro-viscoelastic constitutive relations obtained; in particular, we can show that the Biot compressibility evolves in time according to the creep function while the skeleton stiffness is driven by the relaxation function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号