首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— –Sayh al Uhaymir (SaU) 169 is a composite lunar meteorite from Oman that consists of polymict regolith breccia (8.44 ppm Th), adhering to impact‐melt breccia (IMB; 32.7 ppm Th). In this contribution we consider the regolith breccia portion of SaU 169, and demonstrate that it is composed of two generations representing two formation stages, labeled II and III. The regolith breccia also contains the following clasts: Ti‐poor to Ti‐rich basalts, gabbros to granulites, and incorporated regolith breccias. The average SaU 169 regolith breccia bulk composition lies within the range of Apollo 12 and 14 soil and regolith breccias, with the closest correspondence being with that of Apollo 14, but Sc contents indicate a higher portion of mare basalts. This is supported by relations between Sm‐Al2O3, FeO‐Cr2O3‐TiO2, Sm/Eu and Th‐K2O. The composition can best be modeled as a mixture of high‐K KREEP, mare basalt and norite/troctolite, consistent with the rareness of anorthositic rocks. The largest KREEP breccia clast in the regolith is identical in its chemical composition and total REE content to the incompatible trace‐element (ITE)‐ rich high‐K KREEP rocks of the Apollo 14 landing site, pointing to a similar source. In contrast to Apollo 14 soil, SaU 169 IMB and SaU 169 KREEP breccia clast, the SaU 169 regolith is not depleted in K/Th, indicating a low contribution of high‐Th IMB such as the SaU 169 main lithology in the regolith. The data presented here indicate the SaU 169 regolith breccia is from the lunar front side, and has a strong Procellarum KREEP Terrane signature.  相似文献   

2.
Dar al Gani (DaG) 400, Meteorite Hills (MET) 01210, Pecora Escarpment (PCA) 02007, and MacAlpine Hills (MAC) 88104/88105 are lunar regolith breccia meteorites that provide sampling of the lunar surface from regions of the Moon that were not visited by the US Apollo or Soviet Luna sample return missions. They contain a heterogeneous clast population from a range of typical lunar lithologies. DaG 400, PCA 02007, and MAC 88104/88105 are primarily feldspathic in nature, and MET 01210 is composed of mare basalt material mixed with a lesser amount of feldspathic material. Here we present a compositional study of the impact melt and impact melt breccia clast population (i.e., clasts that were generated in impact cratering melting processes) within these meteorites using in situ electron microprobe and LA‐ICP‐MS techniques. Results show that all of the meteorites are dominated by impact lithologies that are relatively ferroan (Mg#<70), have high Sc/Sm ratios (typically >10), and have low incompatible trace element (ITE) concentrations (i.e., typically <3.2 ppm Sm, <1.5 ppm Th). Feldspathic impact melt in DaG 400, PCA 02007, and MAC 88104/05 are similar in composition to that estimated composition for upper feldspathic lunar crust ( Korotev et al. 2003 ). However, these melt types are more mafic (i.e., less Eu, less Sr, more Sc) than feldspathic impact melts returned by the Apollo 16 mission (e.g., the group 3 and 4 varieties). Mafic impact melt clasts are common in MET 01210 and less common in PCA 02007 and MAC 88104/05. We show that unlike the Apollo mafic impact melt groups ( Jolliff 1998 ), these meteorite impact melts were not formed from melting large amounts of KREEP‐rich (typically >10 ppm Sm), High Magnesium Suite (typically >70 Mg#) or High Alkali Suite (high ITEs, Sc/Sm ratios <2) target rocks. Instead the meteorite mafic melts are more ferroan, KREEP‐poor and Sc‐rich, and represent mixing between feldspathic lithologies and low‐Ti or very low‐Ti (VLT) basalts. As PCA 02007 and MAC 88104/05 were likely sourced from the Outer‐Feldspathic Highlands Terrane our findings suggest that these predominantly feldspathic regions commonly contain a VLT to low‐Ti basalt contribution.  相似文献   

3.
Abstract– Lunar meteorite Northeast Africa (NEA) 001 is a feldspathic regolith breccia. This study presents the results of electron microprobe and LA‐ICP‐MS analyses of a section of NEA 001. We identify a range of lunar lithologies including feldspathic impact melt, ferroan noritic anorthosite and magnesian feldspathic clasts, and several very‐low titanium (VLT) basalt clasts. The largest of these basalt clasts has a rare earth element (REE) pattern with light‐REE (LREE) depletion and a positive Euanomaly. This clast also exhibits low incompatible trace element (ITE) concentrations (e.g., <0.1 ppm Th, <0.5 ppm Sm), indicating that it has originated from a parent melt that did not assimilate KREEP material. Positive Eu‐anomalies and such low‐ITE concentrations are uncharacteristic of most basalts returned by the Apollo and Luna missions, and basaltic lunar meteorite samples. We suggest that these features are consistent with the VLT clasts crystallizing from a parent melt which was derived from early mantle cumulates that formed prior to the separation of plagioclase in the lunar magma ocean, as has previously been proposed for some other lunar VLT basalts. Feldspathic impact melts within the sample are found to be more mafic than estimations for the composition of the upper feldspathic lunar crust, suggesting that they may have melted and incorporated material from the lower lunar crust (possibly in large basin‐forming events). The generally feldspathic nature of the impact melt clasts, lack of a KREEP component, and the compositions of the basaltic clasts, leads us to suggest that the meteorite has been sourced from the Outer‐Feldspathic Highlands Terrane (FHT‐O), probably on the lunar farside and within about 1000 km of sources of both Low‐Ti and VLT basalts, the latter possibly existing as cryptomaria deposits.  相似文献   

4.
Abstract— We have analyzed nine highland lunar meteorites (lunaites) using mainly INAA. Several of these rocks are difficult to classify. Dhofar 081 is basically a fragmental breccia, but much of its groundmass features a glassy‐fluidized texture that is indicative of localized shock melting. Also, much of the matrix glass is swirly‐brown, suggesting a possible regolith derivation. We interpret Dar al Gani (DaG) 400 as an extremely immature regolith breccia consisting mainly of impact‐melt breccia clasts; we interpret Dhofar 026 as an unusually complex anorthositic impact‐melt breccia with scattered ovoid globules that formed as clasts of mafic, subophitic impact melt. The presence of mafic crystalline globules in a lunar material, even one so clearly impact‐heated, suggests that it may have originated as a regolith. Our new data and a synthesis of literature data suggest a contrast in Al2O3‐incompatible element systematics between impact melts from the central nearside highlands, where Apollo sampling occurred, and those from the general highland surface of the Moon. Impact melts from the general highland surface tend to have systematically lower incompatible element concentration at any given Al2O3 concentration than those from Apollo 16. In the case of Dhofar 026, both the bulk rock and a comparatively Al‐poor composition (14 wt% Al2O3, 7 μg/g Sm) extrapolated for the globules, manifest incompatible element contents well below the Apollo 16 trend. Impact melts from Luna 20 (57°E) distribute more along the general highland trend than along the Apollo 16 trend. Siderophile elements also show a distinctive composition for Apollo 16 impact melts: Ni/Ir averaging ?1.8x chondritic. In contrast, lunaite impact‐melt breccias have consistently chondritic Ni/Ir. Impact melts from Luna 20 and other Apollo sites show average Ni/Ir almost as high as those from Apollo 16. The prevalence of this distinctive Ni/Ir ratio at such widely separated nearside sites suggests that debris from one extraordinarily large impact may dominate the megaregolith siderophile component of a nearside region 2300 km or more across. Highland polymict breccia lunaites and other KREEP‐poor highland regolith samples manifest a strong anticorrelation between Al2O3 and mg. The magnesian component probably represents the chemical signature of the Mg‐suite of pristine nonmare rocks in its most “pure” form, unaltered by the major KREEP‐assimilation that is so common among Apollo Mg‐suite samples. The average composition of the ferroan anorthositic component is now well constrained at Al2O3 ?29–30 wt% (implying about 17–19 wt% modal mafic silicates), in good agreement with the composition predicted for flotation crust over a “ferroan” magma ocean (Warren 1990).  相似文献   

5.
Lunar meteorite Northwest Africa (NWA) 5744 is a granulitic breccia with an anorthositic troctolite composition that may represent a distinct crustal lithology not previously described. This meteorite is the namesake and first‐discovered stone of its pairing group. Bulk rock major element abundances show the greatest affinity to Mg‐suite rocks, yet trace element abundances are more consistent with those of ferroan anorthosites. The relatively low abundances of incompatible trace elements (including K, P, Th, U, and rare earth elements) in NWA 5744 could indicate derivation from a highlands crustal lithology or mixture of lithologies that are distinct from the Procellarum KREEP terrane on the lunar nearside. Impact‐related thermal and shock metamorphism of NWA 5744 was intense enough to recrystallize mafic minerals in the matrix, but not intense enough to chemically equilibrate the constituent minerals. Thus, we infer that NWA 5744 was likely metamorphosed near the lunar surface, either as a lithic component within an impact melt sheet or from impact‐induced shock.  相似文献   

6.
Abstract— The Calcalong Creek lunar meteorite is a polymict breccia that contains clasts of both highlands and mare affinity. Reported here is a compilation of major, minor, and trace element data for bulk, clast, and matrix samples determined by instrumental neutron activation analysis (INAA). Petrographic information and results of electron microprobe analyses are included. The relationship of Calcalong Creek to lunar terranes, especially the Procellarum KREEP Terrane and Feldspathic Highlands Terrane, is established by the abundance of thorium, incompatible elements and their KREEP‐like CI chondrite normalized pattern, FeO, and TiO2. The highlands component is associated with Apollo 15 KREEP basalt but represents a variant of the KREEP‐derived material widely found on the moon. Sources of Calcalong Creek's mare basalt components may be related to low‐titanium (LT) and very low‐titanium (VLT) basalts seen in other lunar meteorites but do not sample the same source. The content of some components of Calcalong Creek are found to display similarities to the composition of the South Pole‐Aitken Terrane. What appear to be VLT relationships could represent new high aluminum, low titanium basalt types.  相似文献   

7.
Abstract– Sixty named lunar meteorite stones representing about 24 falls have been found in Oman. In an area of 10.7 × 103 km2 in southern Oman, lunar meteorite areal densities average 1 g km?2. All lunar meteorites from Oman are breccias, although two are dominated by large igneous clasts (a mare basalt and a crystalline impact‐melt breccia). Among the meteorites, the range of compositions is large: 9–32% Al2O3, 2.5–21.1% FeO, 0.3–38 μg g?1 Sm, and <1 to 22.5 ng g?1 Ir. The proportion of nonmare lunar meteorites is higher among those from Oman than those from Antarctica or Africa. Omani lunar meteorites extend the compositional range of lunar rocks as known from the Apollo collection and from lunar meteorites from other continents. Some of the feldspathic meteorites are highly magnesian (high MgO/[MgO + FeO]) compared with most similarly feldspathic Apollo rocks. Two have greater concentrations of incompatible trace elements than all but a few Apollo samples. A few have moderately high abundances of siderophile elements from impacts of iron meteorites on the Moon. All lunar meteorites from Oman are contaminated, to various degrees, with terrestrial Na, K, P, Zn, As, Se, Br, Sr, Sb, Ba, U, carbonates, or sulfates. The contamination is not so great, however, that it seriously compromises the scientific usefulness of the meteorites as samples from randomly distributed locations on the Moon.  相似文献   

8.
Abstract— We present new compositional data for 30 lunar stones representing about 19 meteorites. Most have iron concentrations intermediate to those of the numerous feldspathic lunar meteorites (3–7% FeO) and the basaltic lunar meteorites (17–23% FeO). All but one are polymict breccias. Some, as implied by their intermediate composition, are mainly mixtures of brecciated anorthosite and mare basalt, with low concentrations of incompatible elements such as Sm (1–3 μg/g). These breccias likely originate from points on the Moon where mare basalt has mixed with material of the FHT (Feldspathic Highlands Terrane). Others, however, are not anorthosite‐basalt mixtures. Three (17–75 μ/g Sm) consist mainly of nonmare mafic material from the nearside PKT (Procellarum KREEP Terrane) and a few are ternary mixtures of material from the FHT, PKT, and maria. Some contain mafic, nonmare lithologies like anorthositic norites, norites, gabbronorites, and troctolite. These breccias are largely unlike breccias of the Apollo collection in that they are poor in Sm as well as highly feldspathic anorthosite such as that common at the Apollo 16 site. Several have high Th/Sm compared to Apollo breccias. Dhofar 961, which is olivine gabbronoritic and moderately rich in Sm, has lower Eu/Sm than Apollo samples of similar Sm concentration. This difference indicates that the carrier of rare earth elements is not KREEP, as known from the Apollo missions. On the basis of our present knowledge from remote sensing, among lunar meteorites Dhofar 961 is the one most likely to have originated from South Pole‐Aitken basin on the lunar far side.  相似文献   

9.
Abar al' Uj (AaU) 012 is a clast‐rich, vesicular impact‐melt (IM) breccia, composed of lithic and mineral clasts set in a very fine‐grained and well‐crystallized matrix. It is a typical feldspathic lunar meteorite, most likely originating from the lunar farside. Bulk composition (31.0 wt% Al2O3, 3.85 wt% FeO) is close to the mean of feldspathic lunar meteorites and Apollo FAN‐suite rocks. The low concentration of incompatible trace elements (0.39 ppm Th, 0.13 ppm U) reflects the absence of a significant KREEP component. Plagioclase is highly anorthitic with a mean of An96.9Ab3.0Or0.1. Bulk rock Mg# is 63 and molar FeO/MnO is 76. The terrestrial age of the meteorite is 33.4 ± 5.2 kyr. AaU 012 contains a ~1.4 × 1.5 mm2 exotic clast different from the lithic clast population which is dominated by clasts of anorthosite breccias. Bulk composition and presence of relatively large vesicles indicate that the clast was most probably formed by an impact into a precursor having nonmare igneous origin most likely related to the rare alkali‐suite rocks. The IM clast is mainly composed of clinopyroxenes, contains a significant amount of cristobalite (9.0 vol%), and has a microcrystalline mesostasis. Although the clast shows similarities in texture and modal mineral abundances with some Apollo pigeonite basalts, it has lower FeO and higher SiO2 than any mare basalt. It also has higher FeO and lower Al2O3 than rocks from the FAN‐ or Mg‐suite. Its lower Mg# (59) compared to Mg‐suite rocks also excludes a relationship with these types of lunar material.  相似文献   

10.
Abstract— Here we report the petrography, mineralogy, and trace element geochemistry of the Dhofar 1180 lunar meteorite. Dhofar 1180 is predominantly composed of fine‐grained matrix with abundant mineral fragments and a few lithic and glassy clasts. Lithic clasts show a variety of textures including cataclastic, gabbroic, granulitic, ophitic/subophitic, and microporphyritic. Both feldspathic and mafic lithic clasts are present. Most feldspathic lithic clasts have a strong affinity to ferroan anorthositic suite rocks and one to magnesian suite rocks. Mafic lithic clasts are moderately to extremely Fe‐rich. The Ti/[Ti+Cr]‐Fe/[Fe+Mg] compositional trend of pyroxenes in mafic lithic clasts is consistent with that of low‐Ti mare basalts. Glasses display a wide chemical variation from mafic to feldspathic. Some glasses are very similar to those from Apollo 16 soils. KREEP components are essentially absent in Dhofar 1180. One glassy clast is rich in K, REE and P, but its Mg/[Mg+Fe] is very low (0.25). It is probably a last‐stage differentiation product of mare basalt. Molar Fe/Mn ratios of both olivine and pyroxene are essentially consistent with a lunar origin. Dhofar 1180 has a LREE‐enriched (La 18 × CI, Sm 14 × CI) pattern with a small positive Eu anomaly (Eu 15 × CI). Th concentration is 0.7 ppm in Dhofar 1180. Petrography, mineralogy, and trace element geochemistry of Dhofar 1180 are different from those of other lunar meteorites, indicating that Dhofar 1180 represents a unique mingled lunar breccia derived from an area on the lunar nearside but far away from the center of the Imbrium Basin.  相似文献   

11.
Abstract— The meteorite Northwest Africa 773 (NWA 773) is a lunar sample with implications for the evolution of mafic magmas on the moon. A combination of key parameters including whole‐rock oxygen isotopic composition, Fe/Mn ratios in mafic silicates, noble gas concentrations, a KREEP‐like rare earth element pattern, and the presence of regolith agglutinate fragments indicate a lunar origin for NWA 773. Partial maskelynitization of feldspar and occasional twinning of pyroxene are attributed to shock deformation. Terrestrial weathering has caused fracturing and precipitation of Carich carbonates and sulfates in the fractures, but lunar minerals appear fresh and unoxidized. The meteorite is composed of two distinct lithologies: a two‐pyroxene olivine gabbro with cumulate texture, and a polymict, fragmental regolith breccia. The olivine gabbro is dominated by cumulate olivine with pigeonite, augite, and interstitial plagioclase feldspar. The breccia consists of several types of clasts but is dominated by clasts from the gabbro and more FeO‐rich derivatives. Variations in clast mineral assemblage and pyroxene Mg/(Mg + Fe) and Ti/(Ti + Cr) record an igneous Fe‐enrichment trend that culminated in crystallization of fayalite + silica + hedenbergite‐bearing symplectites. The Fe‐enrichment trend and cumulate textures observed in NWA 773 are similar to features of terrestrial ponded lava flows and shallow‐level mafic intrusives, indicating that NWA 773 may be from a layered mafic intrusion or a thick, differentiated lava flow. NWA 773 and several other mafic lunar meteorites have LREE‐enriched patters distinct from Apollo and Luna mare basalts, which tend to be LREE‐depleted. This is somewhat surprising in light of remote sensing data that indicates that the Apollo and Luna missions sampled a portion of the moon that was enriched in incompatible heatproducing elements.  相似文献   

12.
This study presents the petrography, mineralogy, and bulk composition of lunar regolith breccia meteorite Northwest Africa (NWA) 7948. We identify a range of lunar lithologies including basaltic clasts (very low-titanium and low-titanium basalts), feldspathic lithologies (ferroan anorthosite, magnesian-suite rock, and alkali suite), granulites, impact melt breccias (including crystalline impact melt breccias, clast-bearing impact melt breccias, and glassy melt breccias), as well as regolith components (volcanic glass and impact glass). A compositionally unusual metal-rich clast was also identified, which may represent an impact melt lithology sourced from a unique Mg-suite parent rock. NWA 7948 has a mingled bulk rock composition (Al2O3 = 21.6 wt% and FeO = 9.4 wt%) and relatively low concentrations of incompatible trace elements (e.g., Th = 1.07 ppm and Sm = 2.99 ppm) compared with Apollo regolith breccias. Comparing the bulk composition of the meteorite with remotely sensed geochemical data sets suggests that the sample was derived from a region of the lunar surface distal from the nearside Th-rich Procellarum KREEP Terrane. Our investigations suggest that it may have been ejected from a nearside highlands-mare boundary (e.g., around Mare Crisium or Orientale) or a cryptomare region (e.g., Schickard-Schiller or Mare smythii) or a farside highlands-mare boundary (e.g., Mare Australe, Apollo basin in the South Pole–Aitken basin). The distinctive mineralogical and geochemical features of NWA 7948 suggest that the meteorite may represent lunar material that has not been reported before, and indicate that the lunar highlands exhibit wide geological diversity.  相似文献   

13.
Miller Range (MIL) 13317 is a heterogeneous basalt‐bearing lunar regolith breccia that provides insights into the early magmatic history of the Moon. MIL 13317 is formed from a mixture of material with clasts having an affinity to Apollo ferroan anorthosites and basaltic volcanic rocks. Noble gas data indicate that MIL 13317 was consolidated into a breccia between 2610 ± 780 Ma and 1570 ± 470 Ma where it experienced a complex near‐surface irradiation history for ~835 ± 84 Myr, at an average depth of ~30 cm. The fusion crust has an intermediate composition (Al2O3 15.9 wt%; FeO 12.3 wt%) with an added incompatible trace element (Th 5.4 ppm) chemical component. Taking the fusion crust to be indicative of the bulk sample composition, this implies that MIL 13317 originated from a regolith that is associated with a mare‐highland boundary that is KREEP‐rich (i.e., K, rare earth elements, and P). A comparison of bulk chemical data from MIL 13317 with remote sensing data from the Lunar Prospector orbiter suggests that MIL 13317 likely originated from the northwest region of Oceanus Procellarum, east of Mare Nubium, or at the eastern edge of Mare Frigoris. All these potential source areas are on the near side of the Moon, indicating a close association with the Procellarum KREEP Terrane. Basalt clasts in MIL 13317 are from a very low‐Ti to low‐Ti (between 0.14 and 0.32 wt%) source region. The similar mineral fractionation trends of the different basalt clasts in the sample suggest they are comagmatic in origin. Zircon‐bearing phases and Ca‐phosphate grains in basalt clasts and matrix grains yield 207Pb/206Pb ages between 4344 ± 4 and 4333 ± 5 Ma. These ancient 207Pb/206Pb ages indicate that the meteorite has sampled a range of Pre‐Nectarian volcanic rocks that are poorly represented in the Apollo, Luna, and lunar meteorite collections. As such, MIL 13317 adds to the growing evidence that basaltic volcanic activity on the Moon started as early as ~4340 Ma, before the main period of lunar mare basalt volcanism at ~3850 Ma.  相似文献   

14.
The bulk matrix domain of the Martian breccia NWA 7034 was examined petrographically and isotopically to better understand the provenance and age of the source material that make up the breccia. Both 147Sm‐143Nd and 146Sm‐142Nd age results for mineral separates from the bulk matrix portion of breccia NWA 7034 suggest that various lithological components in the breccia probably formed contemporaneously ~4.44 Ga ago. This old age is in excellent agreement with the upper intersection ages (4.35–4.45 Ga) for U‐Pb discordia and also concordia defined by zircon and baddeleyite grains in matrix and igneous‐textured clasts. Consequently, we confirm an ancient age for the igneous components that make up the NWA 7034 breccia. Substantial disturbance in the Rb‐Sr system was detected, and no age significance could be gleaned from our Rb‐Sr data. The disturbance to the Rb‐Sr system may be due to a thermal event recorded by bulk‐rock K‐Ar ages of 1.56 Ga and U‐Pb ages of phosphates at about 1.35–1.5 Ga, which suggest partial resetting from an unknown thermal event(s), possibly accompanying breccia formation. The NWA 7034 bulk rock is LREE enriched and similar to KREEP‐rich lunar rocks, which indicates that the earliest Martian crust was geochemically enriched. This enrichment supports the idea that the crust is one of the enriched geochemical reservoirs on Mars that have been detected in studies of other Martian meteorites.  相似文献   

15.
Abstract– Fragments of magnesian anorthositic granulite are found in the lunar highlands meteorites Allan Hills (ALH) A81005 and Dhofar (Dho) 309. Five analyzed clasts of meteoritic magnesian anorthositic granulite have Mg′ [molar Mg/(Mg + Fe)] = 81–87; FeO ≈ 5% wt; Al2O3 ≈ 22% wt; rare earth elements abundances ≈ 0.5–2 × CI (except Eu ≈ 10 × CI); and low Ni and Co in a non‐chondritic ratio. The clasts have nearly identical chemical compositions, even though their host meteorites formed at different places on the Moon. These magnesian anorthositic granulites are distinct from other highlands materials in their unique combination of mineral proportions, Mg′, REE abundances and patterns, Ti/Sm ratio, and Sc/Sm ratio. Their Mg′ is too high for a close relationship to ferroan anorthosites, or to have formed as flotation cumulates from the lunar magma ocean. Compositions of these magnesian anorthositic granulites cannot be modeled as mixtures of, or fractionates from, known lunar rocks. However, compositions of lunar highlands meteorites can be represented as mixtures of magnesian anorthositic granulite, ferroan anorthosite, mare basalt, and KREEP. Meteoritic magnesian anorthositic granulite is a good candidate for the magnesian highlands component inferred from Apollo highland impactites: magnesian, feldspathic, and REE‐poor. Bulk compositions of meteorite magnesian anorthositic granulites are comparable to those inferred for parts of the lunar farside (the Feldspathic Highlands Terrane): ~4.5 wt% FeO; ~28 wt% Al2O3; and Th <1 ppm. Thus, magnesian anorthositic granulite may be a widespread and abundant component of the lunar highlands.  相似文献   

16.
The Northwest Africa (NWA) 2996 meteorite is a lunar regolith breccia with a “mingled” bulk composition and slightly elevated incompatible element content. NWA 2996 is dominated by clasts of coarse‐grained noritic and troctolitic anorthosite containing calcic plagioclase (An#~98) and magnesian mafic minerals (Mg#~75), distinguishing it from Apollo ferroan anorthosites and magnesian‐suite rocks. This meteorite lacks basalt, and owes its mingled composition to a significant proportion of coarse‐grained mafic clasts. One group of mafic clasts has pyroxenes similar to anorthosites, but contains more sodic plagioclase (An#~94) distinguishing it as a separate lithology. Another group contains Mg‐rich, very low‐titanium pyroxenes, and could represent an intrusion parental to regional basalts. Other clasts include granophyric K‐feldspar, disaggregated phosphate‐bearing quartz monzodiorites, and alkali‐suite fragments (An#~65). These evolved lithics are a minor component, but contain minerals rich in incompatible elements. Several anorthosite clasts contain clusters of apatite, suggesting that the anorthosites either assimilated evolved rocks or were metasomatized by a liquid rich in incompatible elements. We used Lunar Prospector gamma‐ray spectrometer remote sensing data to show that NWA 2996 is most similar to regoliths in and around the South Pole Aitken (SPA) basin, peripheral regions of eastern mare, Nectaris, Crisium, and southern areas of Mare Humorum. However, the mineralogy of NWA 2996 is distinctive compared with Apollo and Luna mission samples, and is likely consistent with an origin near the SPA basin: anorthosite clasts could represent local crustal material, mafic clasts could represent intrusions beneath basalt flows, and apatite‐bearing rocks could carry the SPA KREEP signature.  相似文献   

17.
Northwest Africa (NWA) 4734 is an unbrecciated basaltic lunar meteorite that is nearly identical in chemical composition to basaltic lunar meteorites NWA 032 and LaPaz Icefield (LAP) 02205. We have conducted a geochemical, petrologic, mineralogic, and Sm‐Nd, Rb‐Sr, and Ar‐Ar isotopic study of these meteorites to constrain their petrologic relationships and the origin of young mare basalts. NWA 4734 is a low‐Ti mare basalt with a low Mg* (36.5) and elevated abundances of incompatible trace elements (e.g., 2.00 ppm Th). The Sm‐Nd isotope system dates NWA 4734 with an isochron age of 3024 ± 27 Ma, an initial εNd of +0.88 ± 0.20, and a source region 147Sm/144Nd of 0.201 ± 0.001. The crystallization age of NWA 4734 is concordant with those of LAP 02205 and NWA 032. NWA 4734 and LAP 02205 have very similar bulk compositions, mineral compositions, textures, and ages. Their source region 147Sm/144Nd values indicate that they are derived from similar, but distinct, source materials. They probably do not sample the same lava flow, but rather are similarly sourced, but isotopically distinct, lavas that probably originate from the same volcanic complex. They may have experienced slightly different assimilation histories in route to eruption, but can be source‐crater paired. NWA 032 remains enigmatic, as its source region 147Sm/144Nd definitively precludes a simple relationship with NWA 4734 and LAP 02205, despite a similar bulk composition. Their high Ti/Sm, low (La/Yb)N, and Cl‐poor apatite compositions rule out the direct involvement of KREEP. Rather, they are consistent with low‐degree partial melting of late‐formed LMO cumulates, and indicate that the geochemical characteristics attributed to urKREEP are not unique to that reservoir. These and other basaltic meteorites indicate that the youngest mare basalts originate from multiple sources, and suggest that KREEP is not a prerequisite for the most recent known melting in the Moon.  相似文献   

18.
Abstract— Dhofar 287 (Dho 287), a recently found lunar meteorite, consists in large part (95%) of low‐Ti mare basalt (Dho 287A) and a minor, attached portion (?5%) of regolith breccia (Dho 287B). The present study is directed mainly at the breccia portion of this meteorite. This breccia consists of a variety of lithic clasts and mineral fragments set in a fine‐grained matrix and minor impact melt. The majority of clasts and minerals appear to have been mainly derived from the low‐Ti basalt suite, similar to that of Dho 287A. Very low‐Ti (VLT) basalts are a minor lithology of the breccia. These are significantly lower in Mg# and slightly higher in Ti compared to Luna 24 and Apollo 17 VLT basalts. Picritic glasses constitute another minor component of the breccia and are compositionally similar to Apollo 15 green glasses. Dho 287B also contains abundant fragments of Mg‐rich pyroxene and anorthite‐rich plagioclase grains that are absent in the lithic clasts. Such fragments appear to have been derived from a coarse‐grained, Mg#‐rich, Na‐poor lithology. A KREEP component is apparent in chemistry, but no highlands lithologies were identified. The Dho 287 basaltic lithologies cannot be explained by near‐surface fractionation of a single parental magma. Instead, magma compositions are represented by a picritic glass; a low‐Ti, Na‐poor glass; and a low‐Ti, Na‐enriched source (similar to the Dho 287A parental melt). Compositional differences among parent melts could reflect inhomogeneity of the lunar mantle. Alternatively, the low‐Ti, Na‐poor, and Dho 287A parent melts could be of hybrid compositions, resulting from assimilation of KREEP by picritic magma. Thus, the Dho 287B breccia contains lithologies from multiple magmatic eruptions, which differed in composition, formational conditions, and cooling histories. Based on this study, the Dho 287 is inferred to have been ejected from a region located distal to highlands terrains, possibly from the western limb of the lunar nearside, dominated by mare basalts and KREEP‐rich lithologies.  相似文献   

19.
Data obtained from Sm‐Nd and Rb‐Sr isotopic measurements of lunar highlands’ samples are renormalized to common standard values and then used to define ages with a common isochron regression algorithm. The reliability of these ages is evaluated using five criteria that include whether: (1) the ages are defined by multiple isotopic systems, (2) the data demonstrate limited scatter outside uncertainty, (3) initial isotopic compositions are consistent with the petrogenesis of the samples, (4) the ages are defined by an isotopic system that is resistant to disturbance by impact metamorphism, and (5) the rare‐earth element abundances determined by isotope dilution of bulk of mineral fractions match those measured by in situ analyses. From this analysis, it is apparent that the oldest highlands’ rock ages are some of the least reliable, and that there is little support for crustal ages older than approximately 4.40 Ga. A model age for ur‐KREEP formation calculated using the most reliable Mg‐suite Sm‐Nd isotopic systematics, in conjunction with Sm‐Nd analyses of KREEP basalts, is 4389 ± 45 Ma. This age is a good match to the Lu‐Hf model age of 4353 ± 37 Ma determined using a subset of this sample suite, the average model age of 4353 ± 25 Ma determined on mare basalts with the 146Sm‐142Nd isotopic system, with a peak in Pb‐Pb ages observed in lunar zircons of approximately 4340 ± 20 Ma, and the oldest terrestrial zircon age of 4374 ± 6 Ma. The preponderance of ages between 4.34 and 4.37 Ga reflect either primordial solidification of a lunar magma ocean or a widespread secondary magmatic event on the lunar nearside. The first scenario is not consistent with the oldest ages reported for lunar zircons, whereas the second scenario does not account for concordance between ages of crustal rocks and mantle reservoirs.  相似文献   

20.
Northwest Africa (NWA) 10986 is a new mingled lunar meteorite found in 2015 in Western Sahara. This impact melt breccia contains abundant impact melt glass and clasts as large as 0.75 mm. Clasts are predominantly plagioclase and pyroxene‐rich and represent both highland and basalt lithologies. Highland lithologies include troctolites, gabbronorites, anorthositic norites, and troctolitic anorthosites. Basalt lithologies include crystalline clasts with large zoned pyroxenes representing very low titanium to low titanium basalts. In situ geochemical analysis of minerals within clasts indicates that they represent ferroan anorthosite, Mg‐suite, and gabbronorite lithologies as defined by the Apollo sample collection. Clasts representing magnesian anorthosite, or “gap” lithologies, are prevalent in this meteorite. Whole rock and in situ impact glass measurements indicate low incompatible trace element concentrations. Basalt clasts also have low incompatible trace element concentrations and lack evolved KREEP mineralogy although pyroxferroite grains are present. The juxtaposition of evolved, basaltic clasts without KREEP signatures and highland lithologies suggests that these basaltic clasts may represent cryptomare. The lithologies found in NWA 10986 offer a unique and possibly a complete cross section view of the Moon sourced outside of the Procellarum KREEP Terrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号