首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Zinner and Göpel ( 1992 , 2002 ) found clear evidence for the former presence of 26Al in the H4 chondrites Ste. Marguerite and Forest Vale. They assumed that the 26Al‐26Mg systematics of these chondrites date “metamorphic cooling of the H4 parent body.” Plagioclase in these chondrites can have very high Al/Mg ratios and low Mg concentrations, making these ion probe analyses susceptible to ratio bias, which is inversely proportional to the number of counts of the denominator isotope (Ogliore et al. 2011 ). Zinner and Göpel ( 2002 ) used the mean of the ratios to calculate the isotope ratios, which exacerbates this problem. We analyzed the Al/Mg ratios and Mg isotopic compositions of plagioclase grains in thin sections of Ste. Marguerite, Forest Vale, Beaver Creek, and Sena to evaluate the possible influence of ratio bias on the published initial 26Al/27Al ratios for these meteorites. We calculated the isotope ratios using total counts, a less biased method of calculating isotope ratios. The results from our analyses are consistent with those from Zinner and Göpel ( 2002 ), indicating that ratio bias does not significantly affect 26Al‐26Mg results for plagioclase in these chondrites. Ste. Marguerite has a clear isochron with an initial 26Al/27Al ratio indicating that it cooled to below 450 °C 5.2 ± 0.2 Myr after CAIs. The isochrons for Forest Vale and Beaver Creek also show clear evidence that 26Al was alive when they cooled, but the initial 26Al/27Al ratios are not well constrained. Sena does not show evidence that 26Al was alive when it cooled to below the Al‐Mg closure temperature. Given that metallographic cooling rates for Ste. Marguerite, Forest Vale, and Beaver Creek are atypical (>5000 °C/Myr at 500 °C) compared with most H4s, including Sena, which have cooling rates of 10–50 °C/Myr at 500 °C (Scott et al. 2014 ), we conclude that the Al‐Mg systematics for Ste. Marguerite, Forest Vale, and Beaver Creek are the result of impact excavation of these chondrites and cooling at the surface of the parent body, instead of undisturbed cooling at depth in the H chondrite parent body, like many have assumed.  相似文献   

2.
We examined H4 chondrites Beaver Creek, Forest Vale, Quenggouk, Ste. Marguerite, and Sena with the electron backscatter diffraction (EBSD) techniques of Ruzicka and Hugo (2018) to determine if there is evidence for shock metamorphism consistent with the previously inferred histories of their early impact excavation or lack thereof. We find that all samples have EBSD data consistent with a history of synmetamorphic impact shock (i.e., shock during thermal metamorphism), followed by postshock annealing. Petrographic analysis of Sena, Quenggouk, and Ste. Marguerite found exsolved Cu and irregular troilite within Fe metal, features consistent with shock metamorphism. All samples have a spatial variability in grain deformation consistent with shock processes, though Forest Vale, Quenggouk, and Ste. Marguerite may have relict signatures of accretional deformation as indicated by variability in their olivine deformation metrics. Within the context of previous workers' geochemical observations, a more complex history is inferred for each sample. The “slow-cooled” samples, Quenggouk and Sena, were subject to synmetamorphic shock without excavation and annealed at depth. The same is true of the “fast-cooled” samples, Beaver Creek, Forest Vale, and Ste. Marguerite. However, after annealing, these rocks were excavated by a secondary impact or impacts around 5.2–6.5 Ma post-CAI formation and were left to cool rapidly on the surface of the H chondrite parent body. These interpreted histories are best compatible with a model of an impact-battered but intact onion shell for the earliest history of the H parent body. However, the EBSD evidence does not preclude a parent body disruption after 7 Ma post-CAI formation.  相似文献   

3.
Abstract— Here we present the results of a geochemical study of the projectile component in impactmelt rocks from the Lappajärvi impact structure, Finland. Main‐ and trace‐element analyses, including platinum group elements (PGEs), were carried out on twenty impact‐melt rock samples from different locations and on two shocked granite fragments. The results clearly illustrate that all the impact melt rocks are contaminated with an extraterrestrial component. An identification of the projectile type was performed by determining the projectile elemental ratios and comparing the corresponding element ratios in chondrites. The projectile elemental ratios suggest an H chondrite as the most likely projectile type for the Lappajärvi impact structure. The PGE composition of the highly diluted projectile component (?0.05 and 0.7 wt% in the impact‐melt rocks) is similar to the recent meteorite population of H chondrites reaching Earth. The relative abundance of ordinary chondrites, including H, L, and LL chondrites, as projectiles at terrestrial impact structures is most likely related to the position of their parent bodies relative to the main resonance positions. This relative abundance of ordinary chondrites suggests a strong bias of the impactor population toward inner Main Belt objects.  相似文献   

4.
Abstract– Nineteen nonporphyritic pyroxene and pyroxene/olivine chondrules, chondrule fragments, and irregular objects were studied from two equilibrated chondrites, the ordinary (L/LL5) Knyahinya chondrite and the Rumuruti type (R4) Ouzina chondrite. Major element contents for almost all objects in the chondrites are disturbed from their chondritic ratios, most probably during metamorphic re‐equilibration. However, the volatile elements (Na2O + K2O) in Ouzina scatter around the CI line, probably the result of being generated and/or processed in different environments as compared with those for Knyahinya. All studied objects from Knyahinya and Ouzina possess systematically fractionated trace element abundances. Depletion of LREE with respect to HREE and ultra‐refractory HFSE documents variable degrees of LREE transport into an external mineral sink and restricted mobility of most of the HREE and HFSE. Moderately volatile elements preserve volatility‐controlled abundances. Strongly fractionated Rb/Cs ratios (up to 10× CI) in all studied objects suggest restricted mobility of the large Cs ion. All studied objects sampled and preserved Y and Ho in solar proportions, a feature that they share with the nonporphyritic chondrules of unequilibrated ordinary chondrites.  相似文献   

5.
Abstract— The LEW 88774 ureilite is extraordinarily rich in Ca, Al, and Cr, and mineralogically quite different from other ureilites in that it consists mainly of exsolved pyroxene, olivine, Cr-rich spinel, and C. The presence of coarse exsolved pyroxene in LEW 88774 is unique because pyroxene in most other ureilites is not exsolved. The pyroxene has bulk Wo contents of 15–20 mol% and has coarse exsolution lamellae of augite and low-Ca pyroxene, 50 μm in width. The compositions of the exsolved augite (Ca33.7Mg52.8Fe13.5) and host low-Ca pyroxene (Ca4.4Mg75Fe20.6) show that these exsolution lamellae were equilibrated at 1280 °C. A computer simulation of the cooling rate, obtained by solving the diffusion equation for reproducing the diffusion profile of CaO across the lamellae, suggests that the pyroxene was cooled at 0.01 °C/year until the temperature reached 1160 °C. This cooling rate corresponds to a depth of at least 1 km in the parent body, assuming it was covered by a rock-like material. Therefore, LEW 88774 was held at this high temperature for 1.2 × 104years. The proposed cooling history is consistent with that of other ureilites with coarsegrained unexsolved pigeonites. Lewis Cliff 88774 includes abundant Cr-rich spinel in comparison with other ureilites. The range of FeO content of spinels in LEW 88774 is from 1.3 wt% to 21 wt% [Fe/(Fe + Mg) = 0.04–0.6]. The Cr-rich and Fe-poor spinel in LEW 88774 has less Fe (FeO, 1.3 wt%) than spinels in other achondrites. We classify this spinel as an Fe, Al-bearing picrochromite. Most ureilites are depleted in Ca and Al, but this meteorite has high-Ca and Al concentrations. In this respect, as well as mineral assemblage and the presence of coarse exsolution lamellae in pyroxene, LEW 88774 is a unique ureilite. Most differentiated meteorites are poor in volatile elements such as Zn, but the LEW 88774 spinels contain abundant Zn (up to 0.6 wt%). We note that such a high Zn concentration in spinel has been observed in the carbonaceous chondrites and recrystallized chondrites. This unusual ureilite has more primitive characteristics than most other ureilites.  相似文献   

6.
Abstract— Platinum‐group element (PGE) concentrations and ratios obtained from samples of the Clearwater East impact melt have been used along with other siderophile element ratios to classify the impacting projectile as a carbonaceous chondrite. This is at odds with recent chromium isotope analyses that suggest ordinary chondrite‐type material is present. The present study reviews and reinterprets the available PGE data in the light of new PGE data from meteorites and concludes that the PGE ratios in the impact melt are most consistent with ordinary (possibly type‐L) chondrite source material, not carbonaceous chondrites. Therefore the structure was most probably formed by the impact of an asteroid composed of material similar to ordinary chondrites.  相似文献   

7.
The CB (Bencubbin-like) metal-rich carbonaceous chondrites are subdivided into the CBa and CBb subgroups. The CBa chondrites are composed predominantly of ~cm-sized skeletal olivine chondrules and unzoned Fe,Ni-metal ± troilite nodules. The CBb chondrites are finer grained than the CBas and consist of chemically zoned and unzoned Fe,Ni-metal grains, Fe,Ni-metal ± troilite nodules, cryptocrystalline and skeletal olivine chondrules, and rare refractory inclusions. Both subgroups contain exceptionally rare porphyritic chondrules and no interchondrule fine-grained matrix, and are interpreted as the products of a gas–melt impact plume formed by a high-velocity collision between differentiated planetesimals about 4562 Ma. The anomalous metal-rich carbonaceous chondrites, Fountain Hills and Sierra Gorda 013 (SG 013), have bulk oxygen isotopic compositions similar to those of other CBs but contain coarse-grained igneous clasts/porphyritic chondrule-like objects composed of olivine, low-Ca-pyroxene, and minor plagioclase and high-Ca pyroxene as well as barred olivine and skeletal olivine chondrules. Cryptocrystalline chondrules, zoned Fe,Ni-metal grains, and interchondrule fine-grained matrix are absent. In SG 013, Fe,Ni-metal (~80 vol%) occurs as several mm-sized nodules; magnesiochromite (Mg-chromite) is accessory; daubréelite and schreibersite are minor; troilite is absent. In Fountain Hills, Fe,Ni-metal (~25 vol%) is dispersed between chondrules and silicate clasts; chromite and sulfides are absent. In addition to a dominant chondritic lithology, SG 013 contains a chondrule-free lithology composed of Fe,Ni-metal nodules (~25 vol%), coarse-grained olivine and low-Ca pyroxene, interstitial high-Ca pyroxene and anorthitic plagioclase, and Mg-chromite. Here, we report on oxygen isotopic compositions of olivine, low-Ca pyroxene, and ±Mg-chromite in Fountain Hills and both lithologies of SG 013 measured in situ using an ion microprobe. Oxygen isotope compositions of olivine, low-Ca pyroxene, and Mg-chromite in these meteorites are similar to those of magnesian non-porphyritic chondrules in CBa and CBb chondrites: on a three-isotope oxygen diagram (δ17O vs. δ18O), they plot close to a slope-1 (primitive chondrule mineral) line and have a very narrow range of Δ17O (=δ17O–0.52 × δ18O) values, −2.5 ± 0.9‰ (avr ± 2SD). No isotopically distinct relict grains have been identified in porphyritic chondrule-like objects. We suggest that magnesian non-porphyritic (barred olivine, skeletal olivine, cryptocrystalline) chondrules in the CBas, CBbs, and porphyritic chondrule-like objects in SG 013 and Fountain Hills formed in different zones of the CB impact plume characterized by variable pressure, temperature, cooling rates, and redox conditions. The achondritic lithology in SG 013 represents fragments of one of the colliding bodies and therefore one of the CB chondrule precursors. Fountain Hills was subsequently modified by impact melting; Fe,Ni-metal and sulfides were partially lost during this process.  相似文献   

8.
Sixteen nonporphyritic chondrules and chondrule fragments were studied in polished thin and thick sections in two enstatite chondrites (ECs): twelve objects from unequilibrated EH3 Sahara 97158 and four objects from equilibrated EH4 Indarch. Bulk major element analyses, obtained with electron microprobe analysis (EMPA) and analytical scanning electron microscopy (ASEM), as well as bulk lithophile trace element analyses, determined by laser ablation inductively coupled plasma–mass spectrometry (LA‐ICP‐MS), show that volatile components (K2O + Na2O versus Al2O3) scatter roughly around the CI line, indicating equilibration with the chondritic reservoir. All lithophile trace element abundances in the chondrules from Sahara 97158 and Indarch are within the range of previous analyses of nonporphyritic chondrules in unequilibrated ordinary chondrites (UOCs). The unfractionated (solar‐like) Yb/Ce ratio of the studied objects and the mostly unfractionated refractory lithophile trace element (RLTE) abundance patterns indicate an origin by direct condensation. However, the objects possess subchondritic CaO/Al2O3 ratios; superchondritic (Sahara 97158) and subchondritic (Indarch) Yb/Sc ratios; and chondritic‐normalized deficits in Nb, Ti, V, and Mn relative to RLTEs. This suggests a unique nebular process for the origin of these ECs, involving elemental fractionation of the solar gas by the removal of oldhamite, niningerite, and/or another phase prior to chondrule condensation. A layered chondrule in Sahara 97158 is strongly depleted in Nb in the core compared to the rim, suggesting that the solar gas was heterogeneous on the time scales of chondrule formation. Late stage metasomatic events produced the compositional diversity of the studied objects by addition of moderately volatile and volatile elements. In the equilibrated Indarch chondrules, this late process has been further disturbed, possibly by a postaccretional process (diffusion?) that preferentially mobilized Rb with respect to Cs in the studied objects.  相似文献   

9.
We studied 149 pyroxenes from 69 pyroxene-bearing micrometeorites collected from deep-sea sediments of the Indian Ocean and South Pole Water Well at Antarctica, Amundsen-Scott South Pole station. The minor elements in pyroxenes from micrometeorites are present in the ranges as follows: MnO ~0.0–0.4 wt%, Al2O3 ~0.0–1.5 wt%, CaO ~0.0–1.0 wt%, Cr2O3 ~0.3–0.9 wt%, and FeO ~0.5–4 wt%. Their chemical compositions suggest that pyroxene-bearing micrometeorites are mostly related to precursors from carbonaceous chondrites rather than ordinary chondrites. The Fe/(Fe+Mg) ratio of the pyroxenes and olivines in micrometeorites shows similarities to carbonaceous chondrites with values lying between 0 and 0.2, and those with values beyond this range are dominated by ordinary chondrites. Atmospheric entry of the pyroxene-bearing micrometeorites is expected to have a relatively low entry velocity of <16 km s−1 and high zenith angle (70–90°) to preserve their chemical compositions. In addition, similarities in the pyroxene and olivine mineralogical compositions between carbonaceous chondrites and cometary particles suggest that dust in the solar system is populated by materials from different sources that are chemically similar to each other. Our results on pyroxene chemical compositions reveal significant differences with those from ordinary chondrites. The narrow range in olivine and pyroxene chemical compositions are similar to those from carbonaceous chondrites, and a small proportion to ordinary chondrites indicates that dust is largely sourced from carbonaceous chondrite-type bodies.  相似文献   

10.
The petrologic and oxygen isotopic characteristics of calcium‐aluminum‐rich inclusions (CAIs) in CO chondrites were further constrained by studying CAIs from six primitive CO3.0‐3.1 chondrites, including two Antarctic meteorites (DOM 08006 and MIL 090010), three hot desert meteorites (NWA 10493, NWA 10498, and NWA 7892), and the Colony meteorite. The CAIs can be divided into hibonite‐bearing inclusions (spinel‐hibonite spherules, monomineralic grains, hibonite‐pyroxene microspherules, and irregular/nodular objects), grossite‐bearing inclusions (monomineralic grains, grossite‐melilite microspherules, and irregular/nodular objects), melilite‐rich inclusions (fluffy Type A, compact type A, monomineralic grains, and igneous fragments), spinel‐pyroxene inclusions (fluffy objects resembling fine‐grained spinel‐rich inclusions in CV chondrites and nodular/banded objects resembling those in CM chondrites), and pyroxene‐anorthite inclusions. They are typically small (98.4 ± 54.4 µm, 1SD) and comprise 1.54 ± 0.43 (1SD) area% of the host chondrites. Melilite in the hot desert and Colony meteorites was extensively replaced by a hydrated Ca‐Al‐silicate during terrestrial weathering and converted melilite‐rich inclusions into spinel‐pyroxene inclusions. The CAI populations of the weathered COs are very similar to those in CM chondrites, suggesting that complete replacement of melilite by terrestrial weathering, and possibly parent body aqueous alteration, would make the CO CAIs CM‐like, supporting the hypothesis that CO and CM chondrites derive from similar nebular materials. Within the CO3.0‐3.1 chondrites, asteroidal alteration significantly resets oxygen isotopic compositions of CAIs in CO3.1 chondrites (?17O: ?25 to ?2‰) but left those in CO3.0‐3.05 chondrites mostly unchanged (?17O: ?25 to ?20‰), further supporting the model whereby thermal metamorphism became evident in CO chondrites of petrologic type ≥3.1. The resistance of CAI minerals to oxygen isotope exchange during thermal metamorphism follows in the order: melilite + grossite < hibonite + anorthite < spinel + diopside + forsterite. Meanwhile, terrestrial weathering destroys melilite without changing the chemical and isotopic compositions of melilite and other CAI minerals.  相似文献   

11.
Near-Earth Asteroids (NEAs) offer insight into a size range of objects that are not easily observed in the main asteroid belt. Previous studies on the diversity of the NEA population have relied primarily on modeling and statistical analysis to determine asteroid compositions. Olivine and pyroxene, the dominant minerals in most asteroids, have characteristic absorption features in the visible and near-infrared (VISNIR) wavelengths that can be used to determine their compositions and abundances. However, formulas previously used for deriving compositions do not work very well for ordinary chondrite assemblages. Because two-thirds of NEAs have ordinary chondrite-like spectral parameters, it is essential to determine accurate mineralogies. Here we determine the band area ratios and Band I centers of 72 NEAs with visible and near-infrared spectra and use new calibrations to derive the mineralogies 47 of these NEAs with ordinary chondrite-like spectral parameters. Our results indicate that the majority of NEAs have LL-chondrite mineralogies. This is consistent with results from previous studies but continues to be in conflict with the population of recovered ordinary chondrites, of which H chondrites are the most abundant. To look for potential correlations between asteroid size, composition, and source region, we use a dynamical model to determine the most probable source region of each NEA. Model results indicate that NEAs with LL chondrite mineralogies appear to be preferentially derived from the ν6 secular resonance. This supports the hypothesis that the Flora family, which lies near the ν6 resonance, is the source of the LL chondrites. With the exception of basaltic achondrites, NEAs with non-chondrite spectral parameters are slightly less likely to be derived from the ν6 resonance than NEAs with chondrite-like mineralogies. The population of NEAs with H, L, and LL chondrite mineralogies does not appear to be influenced by size, which would suggest that ordinary chondrites are not preferentially sourced from meter-sized objects due to Yarkovsky effect.  相似文献   

12.
Abstract There are two types of glass-rich chondrules in unequilibrated ordinary chondrites (OC): (1) porphyritic chondrules containing 55–85 vol% glass or microcrystalline mesostasis and (2) nonporphyritic chondrules, containing 90–99 vol% glass. These two types are similar in mineralogy and bulk composition to previously described Al-rich chondrules in OC. In addition to Si-, Al- and Na-rich glass or Ca-Al-rich microcrystalline mesostasis, glass-rich chondrules contain dendritic and skeletal crystals of olivine, Al2O3-rich low-Ca pyroxene and fassaite. Some chondrules contain relict grains of forsterite ± Mg-Al spinel. We suggest that glass-rich chondrules were formed early in nebular history by melting fine-grained precursor materials rich in refractory (Ca, Al, Ti) and moderately volatile (Na, K) components (possibly related to Ca-Al-rich inclusions) admixed with coarse relict forsterite and spinel grains derived from previously disrupted type-I chondrules.  相似文献   

13.
Abstract— The recent discovery of the importance of Sun-grazing phenomena dramatically changed our understanding of the dynamics of objects emerging from the asteroid belt via resonant phenomena. The typical lifetimes of such objects are now expected to be <10 Ma, thus demanding a reassessment of our general picture of the meteorite delivery process. By analysing direct numerical integrations of ~2000 test particles beginning in the v6, 3:1, and 5:2 resonances in the main belt, we have reexamined the orbital and temporal distribution of meteoroids that journey to Earth. Comparing the results with fireball data, we find that the orbital distribution of Earth-impacting chondrites is consistent with a steady-state injection of meteoroids into the 3:1 and v6, resonances. Because this is the most complete and unbiased data set concerning Earth-impacting meteoroids, the agreement leads us to believe that our model is accurate. The simulations predict a P.M. fall ratio for chondrites ~14% lower than the observed value of ~68%, which argues for a moderate bias being present in this statistic. Most interestingly, the typical meteorite transfer times predicted by our models are several factors lower than the typical chondrite exposure ages, which implies that these meteorites acquired most of their exposure in the main belt before entering the resonances. We discuss some processes that would allow such preexposure. The case of achondrites and iron meteorites is also briefly discussed.  相似文献   

14.
The EH and EL enstatite chondrites are the most reduced chondrite groups, having formed in nebular regions where the gas may have had high C/O and/or pH2/pH2O ratios. Enstatite chondrites (particularly EH) have higher CI- and Mg-normalized abundances of halogens (especially F and Cl) and nitrogen than ordinary chondrites and most groups of carbonaceous chondrites. Even relative to CI chondrites, EH and EL chondrites are enriched in F. We have found that literature values for the halogen abundance ratios in EH and EL chondrites are strongly correlated with the electronegativities of the individual halogens. We suggest that the most reactive halogens were the most efficient at forming compounds (e.g., halides) that were incorporated into EH-chondrite precursor materials. It seems plausible that, under the more-oxidizing conditions pertaining to the other chondrite groups, a larger fraction of the halogens remained in the gas. Nitrogen may have been incorporated into the enstatite chondrites as simple nitrides that did not condense under the more-oxidizing conditions in the regions where other chondrite groups formed. Literature data show that unequilibrated enstatite chondrites have light bulk N (δ 15N ≈ −20‰) compared to most ordinary (−5 to +20‰) and carbonaceous (+20 to +190‰) chondrites; this may reflect the contribution in enstatite chondrites of nitride condensates with δ15 N values close to the proposed nebular mean (~−400‰). In contrast, N in carbonaceous chondrites is mainly contained within 15N-rich organic matter. The major carrier of N in ordinary chondrites is unknown.  相似文献   

15.
Abstract— During a petrological study of the previously unclassified ordinary chondrite Los Martínez, we discovered a highly unusual Cr-rich inclusion which we believe is unique in both extraterrestrial and terrestrial mineralogy. The inclusion is highly zoned both compositionally and optically, with a Ca-Al rich, cloudy core and an opaque, Cr-Na-rich rim (up to 24 wt.% Cr2O3). Detailed SEM and TEM studies show that the inclusion now consists of a highly zoned, single crystal of plagioclase intergrown with chromium-rich spinel. The spinel has a well-developed crystallographic orientation relationship with the host plagioclase, which indicates that it is the product of exsolution. Although superficially similar to a plagioclase feldspar in composition, in detail the inclusion is Si-deficient and Al-enriched relative to a stoichiometric feldspar. We have not been able to identify a viable precursor mineral phase to the plagioclase-chromite intergrowth and suggest that it may be an unknown metastable phase. The Cr-rich precursors of the inclusion probably have close affinities to the chromite-plagioclase chondrules observed by Ramdohr (1967) in several ordinary chondrites. Based on the zoning in the inclusion, we suggest that it is the product of fractional crystallization from a melt, which may have formed as a liquid condensate, or by melting of solid condensates, in the solar nebula. Subsequent cooling of this melt condensate resulted in crystallization of the, as yet, unidentified phase. After crystallization, the inclusion was probably incorporated into a parent body where it underwent metamorphism and was probably shocked to some degree. During this period of parent body metamorphism, exsolution and decomposition of the unknown precursor occurred to produce the observed intergrowth of plagioclase and chromite. Finally, we have classified Los Martínez as an L6 ordinary chondrite breccia.  相似文献   

16.
Abstract— Amoeboid olivine aggregates (AOAs) from the reduced CV chondrites Efremovka, Leoville and Vigarano are irregularly‐shaped objects, up to 5 mm in size, composed of forsteritic olivine (Fa<10) and a refractory, Ca, Al‐rich component. The AOAs are depleted in moderately volatile elements (Mn, Cr, Na, K), Fe, Ni‐metal and sulfides and contain no low‐Ca pyroxene. The refractory component consists of fine‐grained calcium‐aluminum‐rich inclusions (CAIs) composed of Al‐diopside, anorthite (An100), and magnesium‐rich spinel (~1 wt% FeO) or fine‐grained intergrowths of these minerals; secondary nepheline and sodalite are very minor. This indicates that AOAs from the reduced CV chondrites are more pristine than those from the oxidized CV chondrites Allende and Mokoia. Although AOAs from the reduced CV chondrites show evidence for high‐temperature nebular annealing (e.g., forsterite grain boundaries form 120° triple junctions) and possibly a minor degree of melting of Al‐diopside‐anorthite materials, none of the AOAs studied appear to have experienced extensive (>50%) melting. We infer that AOAs are aggregates of high‐temperature nebular condensates, which formed in CAI‐forming regions, and that they were absent from chondrule‐forming regions at the time of chondrule formation. The absence of low‐Ca pyroxene and depletion in moderately volatile elements (Mn, Cr, Na, K) suggest that AOAs were either removed from CAI‐forming regions prior to condensation of these elements and low‐Ca pyroxene or gas‐solid condensation of low‐Ca‐pyroxene was kinetically inhibited.  相似文献   

17.
Abstract— CK carbonaceous chondrites contain rare (~0.1 vol%) magnetite-sulfide chondrules. These objects range from ~240 to 500 μm in apparent diameter and have ellipsoidal to spheroidal morphologies, granular textures and concentric layering. They are very similar in size, shape, texture, mineralogy and mineral composition to the magnetite-sulfide nodules which occur inside mafic silicate chondrules in CK chondrites. It seems likely that the magnetite-sulfide chondrules constitute the subset of magnetite-sulfide nodules that escaped as immiscible droplets from their molten silicate chondrule hosts during chondrule formation. The intactness of the magnetite-sulfide chondrules and nodules implies that oxidation of CK metal occurred before agglomeration; otherwise, the factor of two increase in molar volume associated with the conversion of metallic Fe-Ni into magnetite would have disrupted the objects and destroyed their concentrically layered textures. Hence, the pervasive silicate darkening of CK chondrites documented previously was caused by the shock mobilization of magnetite and sulfide, not metallic Fe-Ni and sulfide as in shock-darkened ordinary chondrites.  相似文献   

18.
Platinum group element (PGE) concentrations have been determined in situ in ordinary chondrite kamacite and taenite grains via laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS). Results demonstrate that PGE concentrations in ordinary chondrite metal (kamacite and taenite) are similar among the three ordinary chondrite groups, in contrast to previous bulk metal studies in which PGE concentrations vary in the order H < L < LL. PGE concentrations are higher in taenite than kamacite, consistent with preferential PGE partitioning into taenite. PGE concentrations vary between and within metal grains, although average concentrations in kamacite broadly agree with results from bulk studies. The variability of PGE concentrations in metal decreases with increasing petrologic type; however, variability is still evident in most type six ordinary chondrites, suggesting that equilibration of PGEs does not occur between metal grains, but rather within individual metal grains via self‐diffusion during metamorphism. The constant average PGE concentrations within metal grains across different ordinary chondrite groups are consistent with the formation of metal via nebular condensation prior to the accretion of ordinary chondrite parent bodies. Post‐condensation effects, including heating during chondrule‐formation events, may have affected some element ratios, but have not significantly affected average metal PGE concentrations.  相似文献   

19.
Abstract— Calcium, aluminum-rich inclusions (CAIs) are characteristic components in carbonaceous chondrites. Their mineralogy is dominated by refractory oxides and silicates like corundum, perovskite, spinel, hibonite, melilite, and Ca-pyroxene, which are predicted to be the first phases to have condensed from the cooling solar nebula. Allowing insights into processes occurring in the early solar system, CAIs in carbonaceous and ordinary chondrites were studied in great detail, whereas only a few refractory inclusions were found and studied in stratospheric interplanetary dust particles (IDPs) and micrometeorites. This study gives a summary of all previous studies on refractory inclusions in stratospheric IDPs and micrometeorites and will present new data on two Antarctic micrometeorites. The main results are summarized as follows: (a) Eight stratospheric IDPs and six micrometeorites contain Ca, Al-rich inclusions or refractory minerals. The constituent minerals include spinel, perovskite, fassaite, hibonite, melilite, corundum, diopside and anorthite. (b) Four of the seven obtained rare-earth-element (REE) patterns from refractory objects in stratospheric IDPs and micrometeorites are related to Group III patterns known from refractory inclusions from carbonaceous chondrites. A Group II related pattern was found for spinel and perovskite in two micrometeorites. The seventh REE pattern for an orthopyroxene is unique and can be explained by fractionation of Gd, Lu, and Tb at highly reducing conditions. (c) The O-isotopic compositions of most refractory objects in stratospheric IDPs and micrometeorites are similar to those of constituents from carbonaceous chondrites and fall on the carbonaceous chondrites anhydrous minerals mixing line. In fact, in most cases, in terms of mineralogy, REE pattern and O-isotopic composition of refractory inclusions in stratospheric IDPs and micrometeorites are in good agreement with a suggested genetic relation of dust particles and carbonaceous chondrites. Only in the case of one Antarctic micrometeorite does the REE pattern obtained for an orthopyroxene point to a link of this particle to enstatite chondrites.  相似文献   

20.
Abstract— To constrain the metamorphic history of the H‐chondrite parent body, we dated phosphates and chondrules from four H6 chondritic meteorites using U‐Pb systematics. Reconnaissance analyses revealed that only Estacado had a sufficiently high 206Pb/204Pb ratio suitable for our purposes. The Pb‐Pb isochron date for Estacado phosphates is measured to be 4492 ± 15 Ma. The internal residue‐second leachate isochron for Estacado chondrules yielded the chondrule date of 4546 ± 18 Ma. An alternative age estimate for Estacado chondrules of 4527.6 ± 6.3 Ma is obtained from an isochron including two chondrules, two magnetically separated fractions, and four bulk chondrite analyses. This isochron date might represent the age of termination of Pb diffusion from the chondrules to the matrix. From these dates and previously established closure temperatures for Pb diffusion in phosphates and chondrules, we estimate an average cooling rate for Estacado between 5.5 ± 3.2 Myr/°C and 8.3 ± 5.0 Myr/°C. Using previously published results for Ste. Marguerite (H4) and Richardton (H5), our data reveal that the cooling rates of H chondrites decrease markedly with increasing metamorphic grade, in agreement with the predictions of the “onion‐shell” asteroid model. Several issues, however, need to be addressed before confirming this model for the H‐chondrite parent body: the discrepancies between peak metamorphic temperatures established by various mineral thermometers need to be resolved, diffusion and other mechanisms of element migration in polycrystalline solids must be better understood, and dating techniques should be further improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号