共查询到16条相似文献,搜索用时 62 毫秒
1.
融合地磁/WiFi/PDR的自适应粒子滤波室内定位 总被引:1,自引:0,他引:1
随着国民经济的快速发展,人们在室内活动的时间越来越长,室内空间环境也越来越复杂,对室内环境的位置与导航服务的需求也越来越高。由于地磁信号具有稳定性的特点,且Wi Fi技术已得到广泛部署,融合使用地磁和Wi Fi定位具有一定的优势。因此,本文基于Android系统智能手机作为接收设备,融合地磁、Wi Fi及行人航迹推算(PDR)技术,通过自适应粒子滤波模型和随机抽样一致性算法对采集的信号进行处理。试验证明,地磁、Wi Fi、PDR三者融合进行室内定位的方法与其他单类方法相比,实现了将室内定位精度的误差最小降低到1.02 m。 相似文献
2.
针对行人航位推算(PDR)定位存在误差累积和地磁指纹不唯一导致的误匹配问题,本文改进了基于粒子滤波的PDR/地磁指纹室内定位方法.在PDR定位过程中利用地图信息控制粒子权重更新,得到较为准确的位置信息后,利用动态时间规整(DTW)算法在PDR推算位置基础上进行快速序列匹配,获取最优位置估计.试验结果表明,融合定位方法有... 相似文献
4.
5.
利用建筑物中金属结构引起的地磁场扰动可以对室内的行人目标进行定位,而且基于地磁场的定位无需布设任何额外设施,因此可以以低成本实现定位。但仅靠单一的地磁技术无法满足室内定位的精度要求。为了解决磁场数据中单点定位的模糊性问题,本文提出了一种利用粒子滤波算法将PDR与地磁相融合的室内定位方法,并开发了地磁室内导航系统,以智能手机为硬件平台构建磁力计传感器模型,建立匹配轨迹的均方误差准则并实现PDR累积误差实时校正的迭代计算。在68 m×1.8 m的试验区域内,产生的平均定位误差为1.13 m,最大定位误差为2.17 m。本文算法的定位精度比单独PDR算法提升了42%;与单一地磁指纹匹配算法相比,定位精度提高了57%。试验证明,本文提出的融合算法对提高室内定位精度具有显著的作用。 相似文献
6.
由于导航卫星信号在室内被遮挡,室内定位技术逐渐成为泛在导航定位领域的研究热点。行人航迹推算(PDR)和低功耗蓝牙(BLE)定位是惯性定位和射频信号定位的常用定位手段,PDR定位连续稳定但存在累积误差,BLE定位无误差累积但定位精度较差。为此,本文面向室内复杂环境行人自主定位需求,对PDR和BLE的实时融合定位展开了研究。首先针对PDR误差累积问题,提出了BLE临近校正PDR的改进算法;然后针对BLE定位粗差大的的问题,提出了基于扩展卡尔曼滤波(EKF)的自适应抗差PDR+BLE融合定位算法。试验结果表明,相比传统算法,BLE临近校正PDR算法定位精度提高了19%,基于EKF的自适应抗差融合定位精度提高了21%,定位精度和稳定性都有显著提升,在室内定位领域中具有较高的适用性和可扩展性。 相似文献
7.
室内定位需求急剧增加,普及的智能手机带来了解决问题的一种方法。本文提出了一种基于智能手机的粒子滤波室内融合定位方法。利用三轴加速计和三轴罗盘等微机电系统(micro-electromechinical system, MEMS)传感器数据估计目标的运动状态信息,利用WiFi数据更新运动状态,实现融合定位。室内动态环境下实验结果表明,融合定位方法平均定位误差小于2 m,其有效利用智能手机平台获取多种传感器数据,很好地结合了行人航迹推算方法和K加权最近邻方法的优势,在定位精度和稳健性方面均有良好表现。 相似文献
8.
针对单传感器室内定位存在累积误差大、连续性差的问题,本文顾及行人航迹推算(PDR)与低功耗蓝牙信标(BLE Beacon)良好的互补性,研究了基于移动智能终端的融合PDR/iBeacon的室内定位算法:首先,采用电子罗盘和陀螺仪互补修正航向角法降低了PDR的累积误差,其次结合离线指纹库并利用加权K近邻法实现了iBeacon指纹定位,最后基于扩展卡尔曼滤波器(EKF)实现了PDR/iBeacon融合定位。两组实测结果表明,相较于传统的PDR,电子罗盘和陀螺仪互补修正航向角方法有效地抑制了航向误差的累积。室内行人航程为39和60 m时,融合PDR/iBeacon定位的平均误差分别为0.560、1.802 m,相比改进的PDR和iBeacon指纹定位精度提高了11.81%、25.53%和26.66%、11.75%。融合PDR/iBeacon的室内定位能降低PDR的误差累积和iBeacon定位的波动性,满足用户室内定位的需求。 相似文献
9.
提出了一种基于互补滤波融合Wi Fi和PDR的行人室内定位方法。首先改善Wi Fi位置指纹定位的KNN算法,通过阈值的设定,排除相似度高但实际上不可能的点,获取动态K值;然后通过行人航位推算(PDR)初始化算法,动态轨迹概率计算,确定PDR初始位置;最后在改进的Wi Fi和PDR的定位基础上,基于互补滤波原理,根据Wi Fi和PDR定位的不同特性,利用各自的定位优点,使用Wi Fi定位修正PDR的定位结果,通过相应权重参数的调整,输出最终融合定位结果。试验过程中,选取3种不同的室内环境区域,试验结果证明了该算法可大大提高室内定位的精度和稳定性。 相似文献
10.
11.
近年来,随着科技的进步和创新,对室内定位的研究正朝着多技术互补融合的方向发展,将导航技术与室内定位相融合成为目前的研究热点。行人航位推算(PDR)和超宽带(UWB)技术以其独特的定位优势和精确度等众多优点成为室内定位的主流技术,但PDR由于其累积误差的影响只适用于短时间内高精度室内导航需求,而超宽带在复杂环境中,时间信息可能会严重失真,导致定位信息缺失。因此,本文利用扩展卡尔曼滤波(EKF)对两者进行融合改进,以此发挥各自技术优势。试验结果表明,定位解算的终点误差最大为0.819 5 m,最小为0.144 3 m,平均误差为0.347 8 m,位置平均误差为0.475 0 m,有效提升了室内定位的精度。 相似文献
12.
13.
14.
针对现有基于信号强度的质心算法定位精度不能满足特定场景下对高精度室内定位需求的问题,该文提出了一种改进的接收信号强度(RSSI)室内加权质心定位算法。该算法通过RSSI测距得出4个已知锚节点到待测点的距离,以相应的锚节点为圆心画圆弧,得到由4段圆弧相交的四边形,其任取3个顶点可以组成一个三角形,然后以距离平方倒数之和作为权值计算4个三角形质心坐标,再以4个三角形质心坐标作为初始值以信号强度之和作为权值求解待测点坐标。实验结果表明:该算法最大误差值为1.02m,最小误差值为0.21m,平均误差值为0.68m;该算法室内定位精度比基于RSSI的质心算法最大提高24cm,最小提高12cm,平均提高了18cm;比加权质心算法最大提高10cm,最小提高3cm,平均提高了8cm。 相似文献
15.
针对室内WiFi指纹位置定位中取RSS的平均值作为其定位特征值在室内环境的复杂性和动态性不能准确地反映RSS信号真值的问题,以及卡尔曼滤波和粒子滤波算法等用于RSS信号的提取只针对线性噪声或非线性噪声中的一种,在室内动态多变、干扰复杂多样的环境下鲁棒性不理想的问题,结合卡尔曼滤波和粒子滤波,提出一种用于RSS提取的改进的粒子滤波算法。给出了算法实现的步骤,并且在不同地点不同环境条件(静态环境和动态环境)下分别进行了指纹定位在线端的数据采集实验。实验结果表明:基于改进粒子滤波的RSS提取算法的定位精度和鲁棒性均优于均值算法、卡尔曼滤波算法、粒子滤波算法等已有算法。 相似文献
16.
针对目前大多数基于位置指纹的WiFi定位算法都是以统计数学理论为依托,而且很少涉足定位精度在空间分布上的研究这一问题,该文在总结K近邻、加权K近邻以及最大似然模型的WiFi室内定位基础上,提出了一种结合模糊数学理论的WiFi定位算法。从平均误差、最小误差、最大误差、变异程度、定位时间这几个角度,将该算法与其他传统算法进行比较分析。基于真实场地的实验测试结果表明,该算法定位精度高,定位速度快。最后对定位误差进行空间插值分析,结果表明4种模型的定位精度均与WiFi信号源的分布位置有很强的相关性。 相似文献