首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.  相似文献   

2.
唐友刚  宋凯  王宾 《海洋工程》2015,29(6):835-846
The floating foundation is designed to support a 1.5 MW wind turbine in 30 m water depth. With consideration of the viscous damping of foundation and heave plates, the amplitude-frequency response characteristics of the foundation are studied. By taking into account the elastic effect of blades and tower, the classic quasi-steady blade-element/momentum (BEM) theory is used to calculate the aerodynamic elastic loads. A coupled dynamic model of the turbine-foundation- mooring lines is established to calculate the motion response of floating foundation under Kaimal wind spectrum and regular wave by using the FAST codes. The model experiment is carried out to test damping characteristics and natural motion behaviors of the wind turbine system. The dynamics response is tested by considering only waves and the joint action of wind and waves. It is shown that the wind turbine system can avoid resonances under the action of wind and waves. In addition, the heave motion of the floating foundation is induced by waves and the surge motion is induced by wind. The action of wind and waves is of significance for pitch.  相似文献   

3.
胡志强  刘毅  王晋 《海洋工程》2016,(2):217-230
An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper, and technical issues related to turbine structure modeling and stress combination are also addressed. The NREL-5MW “Hywind” Spar type wind turbine is adopted as study object. Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool, FAST, on the purpose of obtaining the dynamic characteristics of the floating wind turbine, and determining parameters for design load cases of finite element calculation. Then design load cases are identified, and finite element analyses are performed for these design load cases. The structural stresses due to wave-induced loads and wind-induced loads are calculated, and then combined to assess the structural strength of the floating wind turbine. The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.  相似文献   

4.
This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine (OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated.  相似文献   

5.
基于多数专业风机数值模拟软件只可进行一阶波浪荷载计算这一缺点,文中将以AQWA为基础,利用其可进行二次开发的技术优势,通过实时调用风机气动荷载,实现海上TLP浮式风机分析。分析中,浮式风机平台一阶、二阶波浪荷载由AQWA计算,实时调用的气动荷载由动态链接库提供。该动态链接库主要包含了根据叶素动量定理自行编译的气动荷载计算程序。经过与FAST比较,得知该方法能满足分析需求。垂荡、纵摇力的二阶效应尤为明显。仅计算浮式风机平台波浪荷载时,可以不考虑风荷载的影响,但必须考虑平台运动的影响,波浪荷载主要受纵荡、纵摇运动影响,几乎不受垂荡运动的影响;当研究浮式风机平台运动时,必须考虑风荷载和二阶波浪荷载的影响,二阶波浪荷载使得平台响应在整个频率范围内都明显增大。张力筋腱张力受二阶波浪荷载的作用更明显。  相似文献   

6.
This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine (WindStar TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only load cases and combined wind and wave load cases were analyzed separately for the WindStar TLP system to identify the dominant excitation loads. Comparisons between an NREL offshore 5-MW baseline wind turbine installed on land and the WindStar TLP system were performed. Statistics of selected response variables in specified design load cases (DLCs) were obtained and analyzed. It is found that the proposed WindStar TLP system has small dynamic responses to environmental loads and it thus has almost the same mean generator power output under operating conditions as the land-based system. The tension mooring system has a sufficient safety factor, and the minimum tendon tension is always positive in all selected DLCs. The ratio of ultimate load of the tower base fore-aft bending moment for the WindStar TLP system versus the land-based system can be as high as 1.9 in all of the DLCs considered. These results will help elucidate the dynamic characteristics of the proposed WindStar TLP system, identify the difference in load effect between it and land-based systems, and thus make relevant modifications to the initial design for the WindStar TLP system.  相似文献   

7.
Deep-water regions often have winds favorable for offshore wind turbines, and floating turbines currently show the greatest potential to exploit such winds. This work established proper scaling laws for model tests, which were then implemented in the construction of a model wind turbine with optimally designed blades. The aerodynamic, hydrodynamic, and elastic characteristics of the proposed new multi-column tension-leg-type floating wind turbine (WindStar TLP system) were explored in the wave tank testing of a 1:50 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Tests were conducted under conditions of still water, white noise waves, irregular waves, and combined wind, wave, and current loads. The results established the natural periods of the motion, damping, motion response amplitude operators, and tendon tensions of the WindStar TLP system under different environmental conditions, and thus could serve as a reference for further research.  相似文献   

8.
随着海上浮式风机的大型化发展,针对漂浮式风机的一体化耦合分析越来越重要。本文利用Simo-Riflex-Aerodyn 仿真工具建立OC4-Deepcwind 漂浮式风机一体化耦合模型,分析计算时间步长、初始截断时间、弹性结构单元离散数等计算参数对模拟结果的影响,包括浮式基础运动、系缆张力、叶片受力等。结果表明:当计算时间步长为0.005 s、0.01 s、0.02 s 时,浮式风机的响应结果差别较小,而计算消耗时间相差较大,0.01 s、0.02 s 的计算时间分别是0.005 s的70%、37%。相同工况下,不同参量响应达到稳定所需时间不同,纵荡需要的时间较长,最长达200 s;不同工况下,同一参量达到稳定所需时间也不相同,切出工况需要的时间最短,较额定工况快约60 s。结构单元离散数对塔柱受力影响较小,对叶片变形影响相对明显,当叶片离散数目减小时,响应值增大12%。实际中应根据具体工况选择合理的计算时间步长、初始截断时间和弹性结构单元离散数量。  相似文献   

9.
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring (SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP (Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms (GA), Artificial Immune System (AIS), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine (TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.  相似文献   

10.
海上风电作为一种清洁能源,其开发利用越来越受到世界各沿海国家的重视.吸力锚基础是海洋工程中的一种新型基础型式,广泛应用于海洋平台、海洋浮动式结构等.近年来,也被作为海上风电工程塔架的基础,此海上风电塔架的基础部分是整个工程结构的重要组成部分,它涉及到整个风电结构的安全性,是工程可靠运行的前提.在深入研究已有塔架的基础上...  相似文献   

11.
DING Qin-wei  LI Chun 《海洋工程》2017,31(2):131-140
The stability of platform structure is the paramount guarantee of the safe operation of the offshore floating wind turbine. The NREL 5MW floating wind turbine is established based on the OC3-Hywind Spar Buoy platform with the supplement of helical strakes for the purpose to analyze the impact of helical strakes on the dynamic response of the floating wind turbine Spar platform. The dynamic response of floating wind turbine Spar platform under wind, wave and current loading from the impact of number, height and pitch ratio of the helical strakes is analysed by the radiation and diffraction theory, the finite element method and orthogonal design method. The result reveals that the helical strakes can effectively inhibit the dynamic response of the platform but enlarge the wave exciting force; the best parameter combination is two pieces of helical strakes with the height of 15%D (D is the diameter of the platform) and the pitch ratio of 5; the height of the helical strake and its pitch ratio have significant influence on pitch response.  相似文献   

12.
Determining the ultimate capacity of suction caissons in response to combined vertical, horizontal, and moment loading is essential for their design as foundations for offshore wind turbines. However, the method implemented for stability analysis is quite limited. Numerical limit analysis has an advantage over traditional limit equilibrium methods and nonlinear finite element methods in this case because upper and lower bounds can be achieved to ensure that the exact ultimate capacity of the caisson falls within the appropriate range. This article presents theories related to numerical limit analysis. Simulations are conducted for centrifuge model tests, the findings of which reveal the ability of numerical limit analysis to deal with the inclined pullout capacity of suction caissons. Finally, this article proposes an estimation of the ultimate capacity of a 3.5 MW offshore wind turbine foundation on normally consolidated clay based on the typical environmental parameters of Bothkennar, Scotland. Undrained failure envelopes and safety factors are obtained for suction caissons with different embedment ratios. Failure mechanisms, plastic zones, clay stress distributions, and the influence of the skin friction coefficients of caissons are discussed in detail.  相似文献   

13.
ZHANG Li-wei  LI Xin 《海洋工程》2017,31(5):559-566
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile–soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.  相似文献   

14.
为提高基础利用率增加海上风电设施的可行性,对楔形单桩基础竖向承载力特性进行研究分析。采用PLAXIS 3D 有限元软件建立楔形单桩基础模型,从桩侧摩阻力、桩侧法应力及土体位移对比分析楔形单桩基础与等截面单桩竖向承载特性差异,并探讨内摩擦角、楔角及楔高对承载力的影响。研究表明:楔形单桩基础竖向承载力高于等截面单桩基础,且承载力随着楔角、楔高的增大而增大,提高率最大达24.786%。倾斜侧壁的引入改变了桩侧摩阻力的传递规律;倾斜侧壁挤密桩周土体,桩侧摩阻力与法向应力增大,从而有效提高单桩基础的竖向承载力。研究成果可为今后海上风电单桩基础截面型式的设计提供参考。  相似文献   

15.
The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.  相似文献   

16.
This study aims to investigate a hybrid gravity base foundation to support offshore wind tower. A new hybrid gravity base foundation considered in this study has five component piles, referred to as ‘piled gravity base foundation’. The three-dimensional finite element analyses were carried out for the piled gravity base foundation subjected to a combined load with a lateral load and overturning moment. The parametric analyses were undertaken varying the loading height and direction, the rigidity of the piled gravity base foundation, the field soil layers, and the clay strength. Overall, the response of the piled gravity base foundation was significantly influenced by the interaction between the cone base piles and the surrounding soil. The increased strength of the soil led to a significant reduction of the pile and gravity base foundation responses, in terms of the bending moments, axial forces, lateral displacements, and rotations.  相似文献   

17.
-Based on the calculation model for the floating laying of the offshore oil pipeline, this paper analyses in detail the internal force, and deformation of the pipeline under a definite structural form (pipeline and buoy) and the way of pulling. The obtained results can be used for the buoy deployment, structure design, and the determination of pulling parameters (the pulling force of the cable and its length, etc.), providing an effective analysis method for floating pipeline-laying. A calculation example is given to show the related calculation process and the main results are analyzed and discussed.  相似文献   

18.
At present,more and more offshore wind farms have been built and numerous projects are on the drawing tables.Therefore,the study on the safety of collision between ships and offshore wind turbines (OWT) is of great practical significance.The present study takes the advantage of the famous LS-DYNA explicit code to simulate the dynamic process of the collision between a typical 3MW offshore wind turbine model with monopile foundation and a simplified 2000t-class ship model.In the simulation,the added mass eff...  相似文献   

19.
提出1种适用于海上风力发电支撑结构的模态振型扩阶方法。该方法无需借助转换矩阵实现振型扩阶,而是依靠实测模态并通过修正有限元模型对应振型在未测试自由度的振型值而获得空间完备的模态振型,并且所发展的方法在一定程度上可以忽略有限元模型存在的建模误差,是1种直接的估算方法,计算效率相对较高。文中采用三桩导管架式海上风力发电支撑结构验证提出方法的正确性以及在低阶模态振型扩阶上的优越性。数值结果表明,该方法对传感器位置、数量依赖程度低,尤其对于海上风电结构,仅在结构的水深较浅部位布置少数传感器即可比较精确的实现低阶模态振型扩阶,具有良好的工程应用前景。  相似文献   

20.
风机基础作为海上风机整体结构的重要组成部分,承受着上部风机所受到的风浪流荷载,并且对风机的安全性及可靠性至关重要。吸力式桶形基础由于其安装简单和可重复利用等优点,在海洋平台基础中得到了广泛应用,并逐步应用于海上风机基础中。但由于海上风机与海洋平台在海洋环境中的荷载工况有一定的差别,仍需要通过对其承载特性研究现状进行全面认识,以实现吸力式桶形基础在海上风机基础中的可靠应用。文中通过总结和评价现有研究对桶形基础在不同土体条件以及荷载条件下进行试验及数值模拟分析得到的研究结果,综述了静荷载和循环荷载作用下砂土和黏土中的吸力式桶形基础的承载特性研究现状,以及海上风机吸力式桶形基础的相关研究。文章展望了目前应用于海上风机基础的桶形基础仍缺乏的研究,为海上风机吸力式桶形基础的可靠应用及后续研究提供重要参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号