首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical methods used for determining dissolved Fe(II) often yield inaccurate results in the presence of high Fe(III) concentrations. Accurate analysis of Fe(II) in solution when it is less than 1% of the total dissolved Fe concentration (FeT) is sometimes required in both geochemical and environmental studies. For example, such analysis is imperative for obtaining the ratio Fe(II)/Fe(III) in rocks, soils and sediments, for determining the kinetic constants of Fe(II) oxidation in chemical or biochemical systems operating at low pH, and is also important in environmental engineering projects, e.g. for proper control of the regeneration step (oxidation of Fe(II) into Fe(III)) applied in ferric-based gas desulphurization processes. In this work a method capable of yielding accurate Fe(II) concentrations at Fe(II) to FeT ratios as low as 0.05% is presented. The method is based on a pretreatment procedure designed to separate Fe(II) species from Fe(III) species in solution without changing the original Fe(II) concentration. Once separated, a modified phenanthroline method is used to determine the Fe(II) concentration, in the virtual absence of Fe(III) species. The pretreatment procedure consists of pH elevation to pH 4.2–4.65 using NaHCO3 under N2(g) environment, followed by filtration of the solid ferric oxides formed, and subsequent acidification of the Fe(II)-containing filtrate. Accuracy of Fe(II) analyses obtained for samples (Fe(II)/FeT ratios between 2% and 0.05%) to which the described pretreatment was applied was >95%. Elevating pH to above 4.65 during pretreatment was shown to result in a higher error in Fe(II) determination, likely resulting from adsorption of Fe(II) species and their removal from solution with the ferric oxide precipitate.  相似文献   

2.
Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)aq and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in 56Fe/54Fe approached that expected for equilibrium conditions, assuming an equilibrium Δ56FeFe(OH)3-Fe(II)aq fractionation factor of +3.0‰. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)aq and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)aq by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)aq oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)aq and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of biological and abiological Fe(II) oxidation.  相似文献   

3.
Manganese (oxy)hydroxides (MnOX) play important roles in the oxidation and mobilization of toxic As(III) in natural environments. Abiotic oxidation of Mn(II) to MnOX in the presence of Fe minerals has been proved to be an important pathway in the formation of Mn(III, IV) (oxy)hydroxides. However, interactions between Mn(II) and As(III) in the presence of Fe minerals are still poorly understood. In this study, abiotic oxidation of Mn(II) on lepidocrocite, and its effect on the oxidation and mobilization of As(III) were investigated. The results show that MnOX species are detected on lepidocrocite and their contents increase with increasing pH values ranging from 7.5 to 8.4. After 10 days, an MnOx component, groutite (α-MnOOH) was found on lepidocrocite. During the simultaneous oxidation of Mn(II) and As(III), and the As(III) pre-adsorbed processes, the presence and oxidation of Mn(II) significantly promotes the removal of soluble As(III). In addition, MnOx formed on lepidocrocite also contributes to the oxidation of soluble and adsorbed As(III) to As(V), the latter being subsequently released into solution. In the process where Mn(II) is pre-adsorbed on lepidocrocite, less As(III) is removed, given that the active sites occupied by MnOx inhibit the adsorption of As(III). In all experiments, the removal percentages of As(III) and the release of As(V) are correlated positively with pH values and initial concentrations of Mn(II), although they are not apparent in the Mn(II) pre-adsorbed system.  相似文献   

4.
Fe(III) solid phases are the products of Fe(II) oxidation by Fe(II)-oxidizing bacteria, but the Fe(III) phases reported to form within growth experiments are, at times, poorly crystalline and therefore difficult to identify, possibly due to the presence of ligands (e.g., phosphate, carbonate) that complex iron and disrupt iron (hydr)oxide precipitation. The scope of this study was to investigate the influences of geochemical solution conditions (pH, carbonate, phosphate, humic acids) on the Fe(II) oxidation rate and Fe(III) mineralogy. Fe(III) mineral characterization was performed using 57Fe-Mössbauer spectroscopy and μ-X-ray diffraction after oxidation of dissolved Fe(II) within Mops-buffered cell suspensions of Acidovorax sp. BoFeN1, a nitrate-reducing, Fe(II)-oxidizing bacterium. Lepidocrocite (γ-FeOOH) (90%), which also forms after chemical oxidation of Fe(II) by dissolved O2, and goethite (α-FeOOH) (10%) were produced at pH 7.0 in the absence of any strongly complexing ligands. Higher solution pH, increasing concentrations of carbonate species, and increasing concentrations of humic acids promoted goethite formation and caused little or no changes in Fe(II) oxidation rates. Phosphate species resulted in Fe(III) solids unidentifiable to our methods and significantly slowed Fe(II) oxidation rates. Our results suggest that Fe(III) mineralogy formed by bacterial Fe(II) oxidation is strongly influenced by solution chemistry, and the geochemical conditions studied here suggest lepidocrocite and goethite may coexist in aquatic environments where nitrate-reducing, Fe(II)-oxidizing bacteria are active.  相似文献   

5.
The geochemical evolution of two acid mine effluents in Tharsis and La Zarza-Perrunal mines (Iberian Pyrite Belt, Huelva, Spain) has been investigated. In origin, these waters present a low pH (2.2 and 3.1) and high concentrations of dissolved sulphate and metals (Fe, Al, Mn, Cu, Zn, As, Cd, Co, Cr, Ni). However, the natural evolution of these acidic waters (which includes the bacterial oxidation of Fe(II) and the subsequent precipitation of Fe(III) minerals) represents an efficient mechanism of attenuation. This self-mitigating process is evidenced by the formation of schwertmannite, which retains most of the iron load and, by sorption, toxic trace elements like As. The later mixing with pristine waters rises the pH and favours the total precipitation of Fe(III) at pH 3.5 and, subsequently, Al compounds at pH 4.5, along with the sorption of trace metals (Mn, Zn, Cu, Cd, Co, Ni) until chemical equilibrium at circumneutral conditions is achieved.  相似文献   

6.
A combination of flow-injection analysis and kinetic analysis was used to examine the speciation of iron(II) and iron(III) in fulvic acid solutions as a function of pH, ionic strength, and time. This methodology was used to follow a shift in iron speciation from faster to slower reacting species over a timescale of several days. This speciation data shows that both iron(II) and iron(III)-fulvic acid complexes are important iron species in humic-containing natural waters and that their amounts and their rates of transformation to colloidal iron are controlled primarily by the kinetics of thermal (dark) reduction and iron(II) oxidation. The kinetic analysis methodology also yielded the rate constants for the thermal reduction of iron by the fulvic acid. These rate constants decrease with increasing pH and are independent of ionic strength. While thermal reduction was found to be too slow to produce large amounts of steady state iron(II) at circumneutral pH, it does provide a mechanism for iron redox cycling in the absence of photochemical or biochemical processes.  相似文献   

7.
Fe(II)-Fe(III) redox behavior has been studied in the presence of catechol under different pH, ionic media, and organic compound concentrations. Catechol undergoes oxidation in oxic conditions producing semiquinone and quinone and reduces Fe(III) in natural solutions including seawater (SW). It is a pH-dependent process. Under darkness, the amount of Fe(II) generated is smaller and is related to less oxidation of catechol. The Fe(II) regeneration is higher at lower pH values both in SW with log k = 1.86 (M−1 s−1) at pH 7.3 and 0.26 (M−1 s−1) at pH 8.0, and in NaCl solutions with log k of 1.54 (M−1 s−1) at pH 7.3 and 0.57 (M−1 s−1) at pH 8.0. At higher pH values, rate constants are higher in NaCl solutions than in SW. This is due to the complexation of Mg(II) present in the media with the semiquinone that inhibits the formation of a second Fe(II) through the reaction of this intermediate with other center Fe(Cat)+.  相似文献   

8.
Cell-Fe(III) mineral aggregates produced by anoxygenic Fe(II)-oxidizing photoautotrophic microorganisms (photoferrotrophs) may be influential in the modern Fe cycle and were likely an integral part of ancient biogeochemical cycles on early Earth. While studies have focused on the environmental conditions under which modern photoferrotrophs grow and the kinetics, physiology and mechanism of Fe(II) oxidation, no systematic analyses of the physico-chemical characteristics of those aggregates, such as shape, size, density and chemical composition, have as yet been conducted. Herein, experimental results show most aggregates are bulbous or ragged in shape, with an average particle size of 10-40 μm, and densities that typically range between 2.0 and 2.4 g/cm3; the cell fraction of the aggregates increased and their density decreased with initial Fe(II) concentration. The mineralogy of the ferric iron phase depended on the composition of the medium: goethite formed in cultures grown by oxidation of dissolved Fe(II) medium in the presence of low phosphate concentrations, while poorly ordered ferrihydrite (or Fe(III) phosphates) formed when amorphous Fe(II) minerals (Fe(II)-phosphates) and high concentrations of phosphate were initially present. Importantly, in all experiments, a fraction of the photoautotrophic cells remained planktonic, demonstrating a constant stoichiometric excess of Fe(III) compared to the autotrophically fixed carbon in the biogenic precipitate. These results not only have an important bearing on nutrient and trace element cycling in the modern water column, but the size, shape and composition of the aggregates can be used to estimate aggregate reactivity during sediment diagenesis over short and geologic time scales.  相似文献   

9.
The oxidation of Fe(II) with H2O2 at nanomolar levels in seawater have been studied using an UV-Vis spectrophotometric system equipped with a long liquid waveguide capillary flow cell. The effect of pH (6.5 to 8.2), H2O2 (7.2 × 10−8 M to 5.2 × 10−7 M), HCO3 (2.05 mM to 4.05 mM) and Fe(II) (5 nM to 500 nM) as a function of temperature (3 to 35 °C) on the oxidation of Fe(II) are presented. The oxidation rate is linearly related to the pH with a slope of 0.89 ± 0.01 independent of the concentration of HCO3. A kinetic model for the reaction has been developed to consider the interactions of Fe(II) with the major ions in seawater. The model has been used to examine the effect of pH, concentrations of Fe(II), H2O2 and HCO3 as a function of temperature. FeOH+ is the most important contributing species to the overall rate of oxidation from pH 6 to pH 8. At a pH higher than 8, the Fe(OH)2 and Fe(CO3)22− species contribute over 20% to the rates. Model results show that when the concentration of O2 is two orders of magnitude higher than the concentration of H2O2, the oxidation with O2 also needs to be considered. The rate constants for the five most kinetically active species (Fe2+, FeOH+, Fe(OH)2, FeCO3, Fe(CO3)22−) in seawater as a function of temperature have been determined. The kinetic model is also valid in pure water with different concentrations of HCO3 and the conditions found in fresh waters.  相似文献   

10.
Rates of aqueous, abiotic pyrite oxidation were measured in oxygen-saturated and anaerobic Fe(III)-saturated solutions with initial pH from 2 to 9. These studies included analyses of sulfite, thiosulfate, polythionates and sulfate and procedures for cleaning oxidation products from pyrite surfaces were evaluated. Pyrite oxidation in oxygen-saturated solutions produced (1) rates that were only slightly dependent on initial pH, (2) linear increases in sulfoxy anions and (3) thiosulfate and polythionates at pH > 3.9. Intermediate sulfoxy anions were observed only at high stirring rates. In anaerobic Fe(III)-saturated solutions, no intermediates were observed except traces of sulfite at pH 9. The faster rate of oxidation in Fe(III)-saturated solutions supports a reaction mechanism in which Fe(III) is the direct oxidant of pyrite in both aerobic and anaerobic systems. The proposal of this mechanism is also supported by theoretical considerations regarding the low probability of a direct reaction between paramagnetic molecular oxygen and diamagnetic pyrite. Results from a study of sphalerite oxidation support the hypothesis that thiosulfate is a key intermediate in sulfate production, regardless of the bonding structure of the sulfide mineral.  相似文献   

11.
《Geochimica et cosmochimica acta》1999,63(19-20):3171-3182
The oxidation rate of pyrite at pH 7, 25°C and at constant partial pressure of oxygen (0.21 and 0.177 atm) was measured in the presence of the Fe(III)-chelators NTA, oxalate, leucine, EDTA, citrate, IDA and the Fe(III)-reductant ascorbic acid. With the exception of leucine and EDTA, non-reducing Fe(III)-chelators increased the oxidation rate relative to the reference state of formation of the Fe(OH)2+ complex at pH 7. The rate increase was proportional to the logarithm of the conditional stability constant of the ligands for the complexation of Fe3+. No effect on the oxidation rate was observed in the presence of EDTA, which shifted the redox potential of the redox couple Fe2+/Fe3+ to a value below that in the absence of any ligand at pH 7. Ascorbic acid decreased the pyrite oxidation rate by a factor of 5 at ascorbic acid concentrations between 10−4 and 10−2 mol L−1. Comparison of the rate constants for the oxidation of ascorbic acid by surface bound Fe(III) in the absence and presence of pyrite shows that the pyrite surface accelerates this reaction by a factor of 10. The oxidation of both pyrite and ascorbic acid is of fractional order with respect to ascorbic acid (HAsc): rpy=0.55 c(HAsc)−0.35 rHAsc=3.6 c(HAsc)0.59. Both the results from experiments with Fe(III)-chelating ligands and the Fe(III)-reductant, suggest a very efficient interference in the electron cycling between Fe(II) and Fe(III) at the pyrite surface. The interference seems to be mainly related to the reductive side of the iron cycling. It is therefore concluded that the electron transfer between ferric iron and pyritic sulfur limits the pyrite oxidation rate at pH 7.  相似文献   

12.
《Applied Geochemistry》1999,14(4):511-530
The oxidation of Fe(II) is apparently the rate-limiting step in passive treatment of coal mine drainage. Little work has been done to determine the kinetics of oxidation in such field systems, and no models of passive treatment systems explicitly consider iron oxidation kinetics. A Stella II model using Fe(II)init concentration, pH, temperature, Thiobacillus ferrooxidans and O2 concentration, flow rate, and pond volume is used to predict Fe(II) oxidation rates and concentrations in seventeen ponds under a wide range of conditions (pH 2.8 to 6.8 with Fe(II) concentrations of less than 240 mg L−1) from 6 passive treatment facilities. The oxidation rate is modeled based on the combination of published abiotic and biological laboratory rate laws. Although many other variables have been observed to influence Fe(II) oxidation rates, the 7 variables above allow field systems to be modeled reasonably accurately for conditions in this study.Measured T. ferrooxidans concentrations were approximately 107 times lower than concentrations required in the model to accurately predict field Fe(II) concentrations. This result suggests that either 1) the most probable number enumeration method underestimated the bacterial concentrations, or 2) the biological rate law employed underestimated the influence of bacteria, or both. Due to this discrepancy, bacterial concentrations used in the model for pH values of less than 5 are treated as fit parameters rather than empirically measured values.Predicted Fe(II) concentrations in ponds agree well with measured Fe(II) concentrations, and predicted oxidation rates also agree well with field-measured rates. From pH 2.8 to approximately pH 5, Fe(II) oxidation rates are negatively correlated with pH and catalyzed by T. ferrooxidans. From pH 5 to 6.4, Fe(II) oxidation appears to be primarily abiotic and is positively correlated with pH. Above pH 6.4, oxidation appears to be independent of pH. Above pH 5, treatment efficiency is affected most by changing design parameters in the following order: pH>temperature≈influent Fe(II)>pond volume≈O2. Little to no increase in Fe(II) oxidation rate occurs due to pH increases above pH 6.4. Failure to consider Fe(II) oxidation rates in treatment system design may result in insufficient Fe removal.  相似文献   

13.
《Applied Geochemistry》2004,19(7):995-1009
Published literature on preservation procedures for stabilizing aqueous inorganic As(III/V) redox species contains discrepancies. This study critically evaluates published reports on As redox preservation and explains discrepancies in the literature. Synthetic laboratory preservation experiments and time stability experiments were conducted for natural water samples from several field sites. Any field collection procedure that filters out microorganisms, adds a reagent that prevents dissolved Fe and Mn oxidation and precipitation, and isolates the sample from solar radiation will preserve the As(III/V) ratio. Reagents that prevent Fe and Mn oxidation and precipitation include HCl, H2SO4, and EDTA, although extremely high concentrations of EDTA are necessary for some water samples high in Fe. Photo-catalyzed Fe(III) reduction causes As(III) oxidation; however, storing the sample in the dark prevents photochemical reactions. Furthermore, the presence of Fe(II) or SO4 inhibits the oxidation of As(III) by Fe(III) because of complexation reactions and competing reactions with free radicals. Consequently, fast abiotic As(III) oxidation reactions observed in the laboratory are not observed in natural water samples for one or more of the following reasons: (1) the As redox species have already stabilized, (2) most natural waters contain very low dissolved Fe(III) concentrations, (3) the As(III) oxidation caused by Fe(III) photoreduction is inhibited by Fe(II) or SO4.  相似文献   

14.
Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by magnetite formation, potentially a result of lower Fe(III) activity. Conversely, the presence of lower initial Fe(II) concentrations followed by higher concentrations promotes goethite accumulation and inhibits magnetite precipitation even when Fe(II) concentrations later increase, thus revealing the importance of both the rate of Fe(II) generation and flow-induced Fe(II) profiles. As such, the operating secondary mineralization pathways following reductive dissolution of ferrihydrite at a given pH are governed principally by flow-regulated Fe(II) concentration, which drives mineral precipitation kinetics and selection of competing mineral pathways.  相似文献   

15.
The determination of electrophoretic mobility and zeta potential was used as a diagnostic tool, alongside kinetic experiments, to delineate between three plausible mechanisms for the heterogeneous oxidation of Fe(II) by dissolved oxygen. One of these mechanisms is dependant on the positive surface charge that exists on Fe(III) (oxy)hydroxide surfaces at pH values below the Iso-Electric Point (IEP). However, this mechanism can be disputed as catalysis is observed on Fe(III) (oxy)hydroxide surfaces above the IEP despite a negative zeta potential. As well as an IEP shift an overall reduction of the magnitude of the zeta potential is observed in samples of field Fe(III) (oxy)hydroxide collected from the Taff Merthyr mine water treatment site in South Wales, UK. Low zeta potentials determined in mine water treatment systems will have beneficial effects for particle coagulation and settling in passive mine water treatment systems.  相似文献   

16.
Neutrophilic iron oxidizing bacteria (FeOB) must actively compete with rapid abiotic processes governing Fe(II) oxidation and as a result have adapted to primarily inhabit low-O2 environments where they can more successfully compete with abiotic Fe(II) oxidation. The spatial distribution of these microorganisms can be observed through the chemical gradients they affect, as measured using in situ voltammetric analysis for dissolved Fe(II), Fe(III), O2, and FeS(aq). Field and laboratory determination of the chemical environments inhabited by the FeOB were coupled with detailed kinetic competition studies for abiotic and biotic oxidation processes using a pure culture of FeOB to quantify the geochemical niche these organisms inhabit. In gradient culture tubes, the maximum oxygen levels, which were associated with growth bands of Sideroxydans lithotrophicus (ES-1, a novel FeOB), were 15-50 μM. Kinetic measurements made on S. lithotrophicus compared biotic/abiotic (killed control) Fe oxidation rates. The biotic rate can be a significant and measurable fraction of the total Fe oxidation rate below O2 concentrations of approximately 50 μM, but biotic Fe(II) oxidation (via the biotic/abiotic rate comparison) becomes difficult to detect at higher O2 levels. These results are further supported by observations of conditions supporting FeOB communities in field settings. Variablity in cell densities and cellular activity as well as variations in hydrous ferrous oxide mineral quantities significantly affect the laboratory kinetic rates. The microbial habitat (or geochemical niche) where FeOB are active is thus largely controlled by the competition between abiotic and biotic kinetics, which are dependent on Fe(II) concentration, PO2, temperature and pH in addition to the surface area of hydrous ferric oxide minerals and the cell density/activity of FeOB. Additional field and lab culture observations suggest a potentially important role for the iron-sulfide aqueous molecular cluster, FeS(aq), in the overall cycling of iron associated with the environments these microorganisms inhabit.  相似文献   

17.
《Applied Geochemistry》2006,21(3):437-445
Oxidation of FeS2 in mine waste releases SO42-, Fe(II) and H+, resulting in acid mine drainage (AMD). Subsequent oxidation and precipitation of Fe produces different Fe(III) phases where the mineralogical composition depends on pH and the ambient concentrations of metal ions and complexing ligands. The oxidation and precipitation of Fe in AMD has been studied under various conditions with the intent of understanding the role these processes play in the natural attenuation of metal contaminants in the AMD. The combined process of Fe oxidation and precipitation in AMD from the Kristineberg mine, northern Sweden, has been investigated with pH-stat experiments at pH 5.5 and 7 at 10 and 25 °C. The precipitates formed have been characterised in terms of mineralogy and surface area. Similar phases formed at both temperatures, while the oxidation and precipitation occurred more readily at the higher temperature and higher pH. At pH 7, mainly lepidocrocite (γ-FeOOH) was precipitated while at a lower pH of 5.5, a mixture of schwertmannite, goethite, ferrihydrite and lepidocrocite formed. The ambient Zn(II) concentration was immediately reduced to acceptable levels (according to Swedish EPA) at pH 7 whereas a 2–3 weeks ageing period was necessary to achieve the same effect at pH 5.5. The presence of natural organic matter (NOM) reduced the attenuating effect at pH 5.5 after ageing but increased it slightly at pH 7. Addition of Zn(II) at pH 8 resulted in a mixed Fe(III)–Zn(II) precipitate of unknown composition with some Zn(II) adsorbed at the surface. The Fe(III) precipitates formed are potentially useful for the natural attenuation of metal contaminants in AMD although based on these investigations, the degree of success depends upon pH and NOM concentration.  相似文献   

18.
We studied the local coordination and structure of Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water (buffered to pH 7 by 8 mM bicarbonate) using synchrotron-based X-ray absorption spectroscopy (XAS) at the K-edges of Fe, P, Ca, and As. Dissolved phosphate, silicate, and Ca at different ratios relative to each other and to Fe affect the forming Fe(III)-phases in a complex manner. The high affinity of phosphate for Fe(III) results in the predominant precipitation of Fe(III)-phosphate as long as dissolved phosphate is present, with Fe(III) polymerization limited to small oligomers. In Ca-containing solution, Ca uptake by Fe(III)-Ca-phosphate involves the linkage and coagulation of negatively charged Fe(III)-phosphate oligomers via Ca-O-P bonds. In the absence of phosphate, dissolved silicate at Si/Fe ratios above ∼0.5 results in the formation of hydrous ferric oxide (HFO) with mainly edge-sharing Fe-Fe linkage. At lower Si/Fe ratios of ∼0.5-0.1, mainly 2-line ferrihydrite (2L-Fh) with both edge- and corner-sharing Fe-Fe linkage forms. Only in the absence of phosphate at low Si/Fe ratio, lepidocrocite (Lp) forms. In solutions containing sufficient Fe(II), aeration results in the sequential precipitation of Fe(III)-(Ca-)phosphate, HFO or 2L-Fh (depending on solution Si/Fe), and finally Lp. The amount and oxidation state of As co-precipitated with Fe(III) are controlled by the co-oxidation of As(III) with Fe(II), which increases with initial Fe/As ratio, and the competitive uptake of phosphate, As(V) and less strongly sorbing silicate and As(III). This study demonstrates that the diversity and sequence of short-range-ordered Fe(III)-precipitates forming by Fe(II) oxidation in near-neutral natural waters depend on water chemistry. Because differences in the colloidal stability and biogeochemical reactivity of these phases will affect the fate of associated major and trace elements, the different Fe(III)-precipitates and their specific biogeochemical properties must be taken into account when addressing nutrient and contaminant dynamics at redox boundaries in natural and engineered systems.  相似文献   

19.
Oxidation of As(III) by natural manganese (hydr)oxides is an important geochemical reaction mediating the transformation of highly concentrated As(III) in the acidic environment such as acid mine drainage (AMD) and industrial As-contaminated wastewater, however, little is known regarding the presence of dissolved Fe(II) on the oxidation process. In this study, oxidation of As(III) in the absence and presence of Fe(II) by MnO2 under acidic conditions was investigated. Kinetic results showed that the presence of Fe(II) significantly inhibited the removal of As(III) (including oxidation and sorption) by MnO2 in As(III)-Fe(II) simultaneous oxidation system even at the molar ratio of Fe(II):As(III) = 1/64:1, and the inhibitory effects increased with the increasing ratios of Fe(II):As(III). Such an inhibition could be attributed to the formation of Fe(III) compounds covering the surface of MnO2 and thus preventing the oxidizing sites available to As(III). On the other hand, the produced Fe(III) compounds adsorbed more As(III) and the oxidized As(V) on the MnO2 surface with an increasing ratio of Fe(II):As(III) as demonstrated in kinetic and XPS results. TEM and EDX results confirmed the formation of Fe compounds around MnO2 particles or separated in solution in Fe(II) individual oxidation system, Fe(II) pre-treated and simultaneous oxidation processes, and schwertmannite was detected in Fe(II) individual and Fe pre-treated oxidation processes, while a new kind of mineral, probably amorphous FeOHAs or FeAsO4 particles were detected in Fe(II)-As(III) simultaneous oxidation process. This suggests that the mechanisms are different in Fe pre-treated and simultaneous oxidation processes. In the Fe pre-treated and MnO2-mediated oxidation pathway, As(III) diffused through a schwertmannite coating formed around MnO2 particles to be oxidized. The newly formed As(V) was adsorbed onto the schwertmannite coating until its sorption capacity was exceeded. Arsenic(V) then diffused out of the coating and was released into the bulk solution. The diffusion into the schwertmannite coating and the oxidation of As(III) and sorption of both As(V) and As(III) onto the coating contributed to the removal of total As from the solution phase. In the simultaneous oxidation pathway, the competitive oxidation of Fe(II) and As(III) on MnO2 occurred first, followed by the formation of FeOHAs or FeAsO4 around MnO2 particles, and these poorly crystalline particles of FeOHAs and FeAsO4 remained suspended in the bulk solution to adsorb As(III) and As(V). The present study reveals that the formation of Fe(III) compounds on mineral surfaces play an important role in the sorption and oxidation of As(III) by MnO2 under acidic conditions in natural environments, and the mechanisms involved in the oxidation of As(III) depend upon how Fe(II) is introduced into the As(III)-MnO2 system.  相似文献   

20.
The distribution of arsenic (As(III), As(V)) and iron (Fe(II), Fe(III)) species was monitored during 1 year in a borehole drilled in the Carnoulès tailings impoundment which contains As-rich pyrite. The concentrations of total As and Fe in subsurface waters exhibited strong variations over one year, which were controlled by dissolved oxygen concentrations. At high oxygen levels, extremely high As (up to 162 mM) and Fe (up to 364 mM) concentrations were reached in the borehole, with the oxidised species predominant. As and Fe concentrations decreased 10-fold under oxygen-deficient conditions, as a result of pH increase and subsequent precipitation of As(V) and Fe(III). From drill core sections, it appeared that at low dissolved oxygen levels, As(III) was primarily released into water by the oxidation of As-rich pyrite in the unsaturated zone. Subsequent As and Fe precipitation was promoted during transport to the saturated zone; this reaction resulted in As enrichments in the sediment below the water table compared to the original content in pyrite, together with the formation of As-rich (up to 35 wt% As) ferruginous material in the unsaturated zone. High amounts of As(V) were released from these secondary phases during leaching experiments with oxygenated acid sulfate-rich waters; this process is believed to contribute to As(V) enrichment in the subsurface waters of the Carnoulès tailings during periods of high dissolved oxygen level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号