首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Molybdenum (Mo) isotope studies in black shales can provide information about the redox evolution of the Earth’s oceans, provided the isotopic consequences of Mo burial into its major sinks are well understood. Previous applications of the Mo isotope paleo-ocean redox proxy assumed quantitative scavenging of Mo when buried into sulfidic sediments. This paper contains the first complete suite of Mo isotope fractionation observations in a sulfidic water column and sediment system, the meromictic Lake Cadagno, Switzerland, a small alpine lake with a pronounced oxygen-sulfide transition reaching up to H2S ∼ 200 μM in the bottom waters (or about 300 μM total sulfide: ΣS2− = H2S + HS + S2−). We find that Mo behaves conservatively in the oxic zone and non-conservatively in the sulfidic zone, where dissolved Mo concentrations decrease from 14 nM to 2-8 nM across this transition. Dissolved Mo in the upper oxic waters has a δ98Mooxic = 0.9 ± 0.1‰, which matches that of the riverine input, δ98Moriver = 0.9 ± 0.1‰. In the deeper sulfidic waters, a subaquatic source delivers Mo at 1.55 ± 0.1‰, but the dissolved Mo is even heavier at δ98Mosulfidic = 1.8‰. Sediment traps in the sulfidic zone of the lake collect particles increasingly enriched in Mo with depth, with δ98Mo values significantly fractionated at −0.8‰ to −1.2‰ both near the chemocline and in the deepest trap. Suspended particulates in the sulfidic waters carry lighter Mo than the ambient dissolved Mo pool by ∼0.3-1.5‰. Sedimentary Mo concentrations correlate with total organic carbon and yield Mo levels which are two orders of magnitude higher than typical crustal values found in rocks from the catchment area. Solid-phase Mo in the sediment shows a slightly positive δ98Mo trend with depth, from δ98Mo = 1.2‰ to 1.4‰ while the pore waters show dramatic enrichments of Mo (>2000 nM) with a relatively light isotope signature of δ98Mo = 0.9-1.0‰.These data are explained if Mo is converted to particle-reactive oxythiomolybdates in the sulfidic waters and is fractionated during removal from solution onto particles. Isotope fractionation is expressed in the water column, despite the high sulfide concentrations, because the rate of Mo removal is fast compared to the slow reaction kinetics of thiomolybdate formation. However, elemental and isotopic mass balances show that Mo is indeed quantitatively removed to the lake sediments and thus the isotopic composition of the sediments reflects sources to the sulfidic water. This efficient Mo drawdown is expected to occur in settings where H2S is very much in excess over Mo or in a restricted setting where the water renewal rate is slow compared to the Mo burial rate. We present a model for the Mo isotope fractionation in sulfidic systems associated with the slow reaction kinetics and conclude that quantitative removal will occur in highly sulfidic and restricted marine systems.  相似文献   

3.
We investigate the distributions of several key diagenetic reactants (C, S, Fe) and redox-sensitive trace metals (Mo, Cd, Re, U) in sediments from Lake Tanganyika, East Africa. This study includes modern sediments from a chemocline transect, which spans oxygenated shallow waters to sulfidic conditions at depth, as well as ancient sediments from a longer core (∼2 m) taken at ∼900 m water depth. Modern sediments from depths spanning ∼70-335 m are generally characterized by increasing enrichments of C, S, Mo, Cd, and U with increasing water depth but static Fe distributions. It appears that the sedimentary enrichments of these elements are, to varying degrees, influenced by a combination of organic carbon cycling and sulfur cycling. These modern lake characteristics contrast with a period of high total organic carbon (Corg), total sulfur (STot), and trace metal concentrations observed in the 900 m core, a period which follows the most recent deglaciation (∼18-11 ky). This interval is followed abruptly by an interval (∼11-6 ky) that is characterized by lower C, S, U, and Mo. Consistent with other work we suspect that the low concentrations of S, Mo, and U may indicate a period of intense lake mixing, during which time the lake may have been less productive and less reducing as compared to the present. An alternative, but not mutually exclusive, hypothesis is that changes in the lake’s chemical inventory, driven by significant hydrological changes, could be influencing the distribution of sedimentary trace elements through time.  相似文献   

4.
Pore water and solid phase data for redox-sensitive metals (Mn, Fe, V, Mo and U) were collected on a transect across the Peru upwelling area (11°S) at water depths between 78 and 2025 m and bottom water oxygen concentrations ranging from ∼0 to 93 μM. By comparing authigenic mass accumulation rates and diffusive benthic fluxes, we evaluate the respective mechanisms of trace metal accumulation, retention and remobilization across the oxygen minimum zone (OMZ) and with respect to oxygen fluctuations in the water column related to the El Niño Southern Oscillation (ENSO).Sediments within the permanent OMZ are characterized by diffusive uptake and authigenic fixation of U, V and Mo as well as diffusive loss of Mn and Fe across the benthic boundary. Some of the dissolved Mn and Fe in the water column re-precipitate at the oxycline and shuttle particle-reactive trace metals to the sediment surface at the lower and upper boundary of the OMZ. At the lower boundary, pore waters are not sufficiently sulfidic as to enable an efficient authigenic V and Mo fixation. As a consequence, sediments below the OMZ are preferentially enriched in U which is delivered via both in situ precipitation and lateral supply of U-rich phosphorites from further upslope. Trace metal cycling on the Peruvian shelf is strongly affected by ENSO-related oxygen fluctuations in bottom water. During periods of shelf oxygenation, surface sediments receive particulate V and Mo with metal (oxyhydr)oxides that derive from both terrigenous sources and precipitation at the retreating oxycline. After the recurrence of anoxic conditions, metal (oxyhydr)oxides are reductively dissolved and the hereby liberated V and Mo are authigenically removed. This alternation between supply of particle-reactive trace metals during oxic periods and fixation during anoxic periods leads to a preferential accumulation of V and Mo compared to U on the Peruvian shelf. The decoupling of V, Mo and U accumulation is further accentuated by the varying susceptibility to re-oxidation of the different authigenic metal phases. While authigenic U and V are readily re-oxidized and recycled during periods of shelf oxygenation, the sequestration of Mo by authigenic pyrite is favored by the transient occurrence of oxidizing conditions.Our findings reveal that redox-sensitive trace metals respond in specific manner to short-term oxygen fluctuations in the water column. The relative enrichment patterns identified might be useful for the reconstruction of past OMZ extension and large-scale redox oscillations in the geological record.  相似文献   

5.
There have been many studies devoted to trace metals and their value in assessing the paleoredox conditions of ancient marine deposition. Among them, molybdenum (Mo) is frequently cited as an effective proxy for sediments and sedimentary rocks. Recently, Helz et al. (Helz, G.R., Miller, C.V., Charnock, J.M., Mosselmans, J.L.W., Pattrick, R.A.D., Garner, C.D., Vaughan, D.J., 1996. Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidences. Geochim. Cosmochim. Acta, 60, 3631-3642) and Adelson et al. (Adelson, J. M., Helz, G. R., Miller, C. V., 2001. Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments. Geochim. Cosmochim. Acta, 65, 237-252.) suggested that Mo does not behave conservatively in the water column when H2S reaches a threshold concentration. Above this concentration, a “switch” operates, and Mo is scavenged by forming bonds with metal-rich (notably iron) particles, sulfur-rich organic molecules and pyrite. In this paper, Mo-trapping by sulfur-rich organic matter (OM) in ancient marine deposits is emphasized. The following Mesozoic geological formations were selected for study because of their relatively high concentration of sulfurized OM: the Akkuyu Formation (Turkey), the Calcaires d'Orbagnoux (France) and Kimmeridge Clay (UK) and its timeequivalent in Boulonnais (France), the Kashpir oil shales (Russia), and the La Luna Formation (Venezuela). The sulfur-rich OM is identified by either measured organic-S abundance or kerogen microscope observation. Our results show that Mo is systematically more enriched relative to the other redox-sensitive/sulfide-forming elements studied (U, V, Ni, Cu, Zn, Cr), and Mo enrichment is positively correlated with the amount of sulfurized OM but not with pyrite abundance. These results illuminate the role played by sulfurized OM in geologic-scale Mo capture and retention, but they also underline the role played by reactive iron. Significant OM sulfurization is only possible when reactive iron is limited. Nevertheless, pyrite formation, though limited, could act as an initial Mo trap, prior to Mo uptake by OM that is sulfurized after the pyritization step. In future paleoenvironmental reconstructions, attention must be paid to this enhanced Mo enrichment in the presence of sulfurized organic matter. In such cases, the use of Mo could lead to overestimation of the reducing conditions of the depositional environment.  相似文献   

6.
Acid mine drainage (AMD) from the Zn–Pb(–Ag–Bi–Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of ∼1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO3, 4330 mg/L Fe and 29,250 mg/L SO4. Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO4). The variations in the H and O isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI ∼ 0.25) and anglesite (SI ∼ 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI ∼ 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI ∼ −0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (∼90 wt.% water) of pH ∼1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3–7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb ≈ Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu, and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn; all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks.  相似文献   

7.
A study of the 140–100 ka interval in core T90-9P from the North Atlantic (45° N, 25° W), based on analysis of oxygen and carbon isotope records from planktonic and benthonic foraminifera, and from the bulk sediment fine fraction facilitates a detailed paleoceanographic reconstruction of the penultimate deglaciation (Termination II), and of the Eemian interglacial (δ18O stage 5e). The first step of Termination II was characterised by low productivity and a mixed water column, which was a remnant of glacial conditions. A 3 ka period of relatively stable conditions, with a stratified water column (‘Termination II pause’), occurred half-way through Termination II, and preceeded a second and more rapid climatic shift. The end of the deglaciation (Eemian maximum, i.e. isotopic event 5.53) initiated the establishment of strong, seasonal, water column stratification. North Atlantic Deep Water (NADW) production remained low during the complete glacial–interglacial transition. After the Eemian maximum, NADW prodution was restored, and bottom waters remained quite stable during the course of the Eemian, while surface waters gradually cooled in the second half of the stage. A short surface water cooling event accompanied by a reduced seasonal water column stratification and nutrient instability occurred at approximately 117 ka BP.  相似文献   

8.
The continental shelf benthic iron flux and its isotope composition   总被引:1,自引:0,他引:1  
Benthic iron fluxes from sites along the Oregon-California continental shelf determined using in situ benthic chambers, range from less than 10 μmol m−2 d−1 to values in excess of ∼300 μmol m−2 d−1. These fluxes are generally greater than previously published iron fluxes for continental shelves contiguous with the open ocean (as opposed to marginal seas, bays, or estuaries) with the highest fluxes measured in the regions around the high-sediment discharge Eel River and the Umpqua River. These benthic iron fluxes do not covary with organic carbon oxidation rates in any systematic fashion, but rather seem to respond to variations in bottom water oxygen and benthic oxygen demand. We hypothesize that the highest rates of benthic iron efflux are driven, in part, by the greater availability of reactive iron deposited along these river systems as compared to other more typical continental margin settings. Bioirrigation likely plays an important role in the benthic Fe flux in these systems as well. However, the influence of bottom water oxygen concentrations on the iron flux is significant, and there appears to be a threshold in dissolved oxygen (∼60-80 μM), below which sediment-ocean iron exchange is enhanced. The isotope composition of this shelf-derived benthic iron is enriched in the lighter isotopes, and appears to change by ∼3‰ (δ56Fe) during the course of a benthic chamber experiment with a mean isotope composition of −2.7 ± 1.1‰ (2 SD, n = 9) by the end of the experiment. This average value is slightly heavier than those from two high benthic Fe flux restricted basins from the California Borderland region where δ56Fe is −3.4 ± 0.4‰ (2 SD, n = 3). These light iron isotope compositions support previous ideas, based on sediment porewater analyses, suggesting that sedimentary iron reduction fractionates iron isotopes and produces an isotopically light iron pool that is transferred to the ocean water column. In sum, our data suggest that continental shelves may export a higher efflux of iron than previously hypothesized, with the likelihood that along river-dominated margins, the benthic iron flux could well be orders of magnitude larger than non-river dominated shelves. The close proximity of the continental shelf benthos to the productive surface ocean means that this flux is likely to be essential for maintaining ecosystem micronutrient supply.  相似文献   

9.
In this study, redox-dependent phosphorus (P) recycling and burial at 6 sites in the Baltic Sea is investigated using a combination of porewater and sediment analyses and sediment age dating (210Pb and 137Cs). We focus on sites in the Kattegat, Danish Straits and Baltic Proper where present-day bottom water redox conditions range from fully oxygenated and seasonally hypoxic to almost permanently anoxic and sulfidic. Strong surface enrichments of Fe-oxide bound P are observed at oxic and seasonally hypoxic sites but not in the anoxic basins. Reductive dissolution of Fe-oxides and release of the associated P supports higher sediment-water exchange of PO4 at hypoxic sites (up to ∼800 μmol P m−2 d−1) than in the anoxic basins. This confirms that Fe-bound P in surface sediments in the Baltic acts as a major internal source of P during seasonal hypoxia, as suggested previously from water column studies. Most burial of P takes place as organic P. We find no evidence for significant authigenic Ca-P formation or biogenic Ca-P burial. The lack of major inorganic P burial sinks makes the Baltic Sea very sensitive to the feedback loop between increased hypoxia, enhanced regeneration of P and increased primary productivity. Historical records of bottom water oxygen at two sites (Bornholm, Northern Gotland) show a decline over the past century and are accompanied by a rise in values for typical sediment proxies for anoxia (total sulfur, molybdenum and organic C/P ratios). While sediment reactive P concentrations in anoxic basins are equal to or higher than at oxic sites, burial rates of P at hypoxic and anoxic sites are up to 20 times lower because of lower sedimentation rates. Nevertheless, burial of reactive P in both hypoxic and anoxic areas is significant because of their large surface area and should be accounted for in budgets and models for the Baltic Sea.  相似文献   

10.
Recent findings on the distribution of methylated mercury (MeHgT) in waters have highlighted the importance of organic carbon remineralization on the production of these compounds in the open ocean. Here, we present the first time-series (20 monthly samplings between July 2007 and May 2009) of high-resolution vertical profiles (10-12 depths in a 2350 m water column) of MeHgT distributions in an open ocean environment, the Ligurian Sea (North-western Mediterranean Sea). Concentrations varied within the sub-picomolar range (general mean: 0.30 ± 0.17 pmol L−1, n = 214) with the lowest values at the surface, increasing with depth up to the oxygen minimum zone, and decreasing slowly at greater depth. Concentrations in the surface waters never exceeded 0.15 pmol L−1, while the highest concentrations (up to 0.82 pmol L−1) were associated to the hypoxycline during the autumn bloom. A detailed vertical MeHgT profile reveals a “double-peak” pattern, coincidental with the two microbial layers described by Tanaka and Rassoulzadegan (2002), the so-called “microbial food web” in the euphotic zone (<100 m) and the “microbial loop” in the aphotic zone (>100 m). Temporal variations in the MeHgT abundance and distribution in the water column were linked to seasonality. The highest MeHgT concentrations were found in the oxygen minimum zone during the period of stratification, and coincide with the greatest abundance of nano- and picophytoplankton (cyanobacteria, nanoflagellates, etc.) in the euphotic layer. None of our deep MeHgT measurements (∼100 m above the sea bottom) revealed a significant sedimentary source of MeHgT. We explored the correlation between MeHgT concentrations and the apparent oxygen utilization, a proxy of organic matter remineralization, over the study period. Results of this study strengthen the hypothesis that net mercury methylation in the open ocean occurs in the water column, is linked to organic matter regeneration, and is promoted by the presence of small-sized nano- and picophytoplankton, that dominate under oligotrophic conditions.  相似文献   

11.
In this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ∼ 135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ∼ 340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (∼ 400 ± 30 m below MSL). At ∼ 120 and ∼ 85 ka, Lake Samra rose to ∼ 320 m below MSL while it dropped to levels lower than ∼ 380 m below MSL at ∼ 135 and ∼ 75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.  相似文献   

12.
Oxidizing conditions normally prevail in surface waters and near-surface groundwaters, but there is usually a change to reducing conditions in groundwater at greater depth. Dissolved O2 originally present is consumed through biogenic and inorganic reactions along the flow paths. Fracture minerals participate in these reactions and the fracture mineralogy and geochemistry can be used to trace the redox front. An important task in the safety assessment of a potential repository for the disposal of nuclear waste in crystalline bedrock, at an approximate depth of 500 m in Sweden, is to demonstrate that reducing conditions can be maintained for a long period of time. Oxygen may damage the Cu canisters that host nuclear waste; additionally, in the event of a canister failure, oxidizing conditions may increase the mobility of some radionuclides. The present study of the near-surface redox front is based on mineralogical (redox-sensitive minerals), geochemical (redox-sensitive elements) and U-series disequilibrium investigations of mineral coatings along open fractures. The fractures have been sampled along drill cores from closely spaced, 100 m deep boreholes, which were drilled during the site investigation work in the Laxemar area, south-eastern Sweden, carried out by the Swedish Nuclear Fuel and Waste Management Co. (SKB). The distribution of the redox-sensitive minerals pyrite and goethite in open fractures shows that the redox front (switch from mainly goethite to mainly pyrite in the fractures) generally occurs at about 15–20 m depth. Calcite leaching by recharging water is indicated in the upper 20–30 m and positive Ce-anomalies suggest oxidation of Ce down to 20 m depth. The U-series radionuclides show disequilibrium in most of the samples, indicating mobility of U during the last 1 Ma. In the upper 20 m, U is mainly removed (due to oxidation) or has experienced complex removal and/or deposition. At depths of 35–55 m, both deposition and removal of U are indicated. Below 55 m, recent deposition of U is generally indicated which suggests removal of U near surface (oxidation) and deposition of U below the redox front. Scattered goethite occurrences below the general redox front (down to ca 80 m) and signs of U removal at 35–55 m mostly correlate with sections of high transmissivity (and/or high fracture frequencies). This shows that highly transmissive fractures are generally required to allow oxygenated groundwaters at depth greater than ca 30 m. Removal of U (oxidation) below 55 m within the last 300 ka is not observed. Although penetration of glacial waters to great depths has been confirmed in the study area, their potential O2 load seems to have been reduced near the surface.  相似文献   

13.
Late Pleistocene glaciers around Darhad Basin advanced to near their maximum positions at least three times, twice during the Zyrianka glaciation (at ∼ 17-19 ka and ∼ 35-53 ka), and at least once earlier. The Zyrianka glaciers were smaller than their predecessors, but the equilibrium-line altitude (ELA) difference was < 75 m. End moraines of the Zyrianka glaciers were ∼ 1600 m asl; ELAs were 2100-2400 m asl. 14C and luminescence dating of lake sediments confirm the existence of paleolake highstands in Darhad Basin before ∼ 35 ka. Geologic evidence and 10Be cosmic-ray exposure dating of drift suggests that at ∼ 17-19 ka the basin was filled at least briefly by a glacier-dammed lake ∼ 140 m deep. However, lake sediments from that time have not yet been recognized in the region. A shallower paleolake briefly occupied the basin at ∼ 11 ka, but between ∼ 11 and 17 ka and after ∼ 10 ka the basin was probably largely dry. The timing of maximum glacier advances in Darhad appears to be approximately synchronous across northern Mongolia, but different from Siberia and western Central Asia, supporting the inference that paleoclimate in Central Asia differed among regions.  相似文献   

14.
We measured U in sediments (both pore waters and solid phase) from three locations on the middle Atlantic Bight (MAB) from the eastern margin of the United States: a northern location on the continental shelf off Massachusetts (OC426, 75 m water depth), and two southern locations off North Carolina (EN433-1, 647 m water depth and EN433-2, 2648 m water depth). These sediments underlie high oxygen bottom waters (250-270 μM), but become reducing below the sediment-water interface due to the relatively high organic carbon oxidation rates in sediments (EN433-1: 212 μmol C/cm2/y; OC426: 120 ± 10 μmol C/cm2/y; EN433-2: 33 μmol C/cm2/y). Pore water oxygen goes to zero by 1.4-1.5 cm at EN433-1 and OC426 and slightly deeper oxygen penetration depths were measured at EN433-2 (∼4 cm).All of the pore water profiles show removal of U from pore waters. Calculated pore water fluxes are greatest at EN433-1 (0.66 ± 0.08 nmol/cm2/y) and less at EN433-2 and OC426 (0.24 ± 0.05 and 0.13 ± 0.05 nmol/cm2/y, respectively). Solid phase profiles show authigenic U enrichment in sediments from all three locations. The average authigenic U concentrations are greater at EN433-1 and OC426 (5.8 ± 0.7 nmol/g and 5.4 ± 0.2 nmol/g, respectively) relative to EN433-2 (4.1 ± 0.8 nmol/g). This progression is consistent with their relative ordering of ‘reduction intensity’, with greatest reducing conditions in sediments from EN433-1, less at OC426 and least at EN433-2. The authigenic U accumulation rate is largest at EN433-1 (0.47 ± 0.05 nmol/cm2/y), but the average among the three sites on the MAB is ∼0.2 nmol/cm2/y. Pore water profiles suggest diffusive fluxes across the sediment-water interface that are 1.4-1.7 times greater than authigenic accumulation rates at EN433-1 and EN433-2. These differences are consistent with oxidation and loss of U from the solid phase via irrigation and/or bioturbation, which may compromise the sequestration of U in continental margin sediments that underlie bottom waters with high oxygen concentrations.Previous literature compilations that include data exclusively from locations where [O2]bw < 150 μM suggest compelling correlations between authigenic U accumulation and organic carbon flux to sediments or organic carbon burial rate. Sediments that underlie waters with high [O2]bw have lower authigenic U accumulation rates than would be predicted from relationships developed from results that include locations where [O2]bw < 150 μM.  相似文献   

15.
Solid phase and pore water chemical data collected in a sediment of the Haringvliet Lake are interpreted using a multi-component reactive transport model. This freshwater lake, which was formed as the result of a river impoundment along the southwestern coast of the Netherlands, is currently targeted for restoration of estuarine conditions. The model is used to assess the present-day biogeochemical dynamics in the sediment, and to forecast possible changes in organic carbon mineralization pathways and associated redox reactions upon salinization of the bottom waters. Model results indicate that oxic degradation (55%), denitrification (21%), and sulfate reduction (17%) are currently the main organic carbon degradation pathways in the upper 30 cm of sediment. Unlike in many other freshwater sediments, methanogenesis is a relatively minor carbon mineralization pathway (5%), because of significant supply of soluble electron acceptors from the well-mixed bottom waters. Although ascorbate-reducible Fe(III) mineral phases are present throughout the upper 30 cm of sediment, the contribution of dissimilatory iron reduction to overall sediment metabolism is negligible. Sensitivity analyses show that bioirrigation and bioturbation are important processes controlling the distribution of organic carbon degradation over the different pathways. Model simulations indicate that sulfate reduction would rapidly suppress methanogenesis upon seawater intrusion in the Haringvliet, and could lead to significant changes in the sediment’s solid-state iron speciation. The changes in Fe speciation would take place on time-scales of 20-100 years.  相似文献   

16.
This paper aims to provide insight into human occupation and landscape change during the Pleistocene in a central area of the Lower Tejo basin (Portugal). Detailed geomorphological mapping, coupled with lithostratigraphy, sedimentology and luminescence dating, supports the identification of a complete terrace staircase sequence. It consists of six gravely terraces located below the culminant (Pliocene) basin unit. A chronological framework for the sedimentary sequences and associated human industries is proposed and correlated with marine oxygen isotope stages (MIS): T1 terrace, not dated; T2, not dated; T3, >300 ka; T4, ∼300-160 ka (MIS8, MIS7 and MIS6); T5, ∼136-75 ka (MIS5); T6, ∼62-30 ka (MIS3); colluvium and aeolian sands, ∼30-14 ka (MIS2); valley fill deposits, ∼14 ka to present (MIS1). The oldest artefacts were found at the base of the T4 terrace, with the local stratigraphic level dated to ≥175 ± 6 ka (Middle Pleistocene). The lithic assemblages collected from distinct stratigraphic levels (T4, T5 top, T6 terraces and colluvium) are characterized by the predominance of opportunistic technological choices, a feature that can be attributed partly to the preferential exploitation of the available raw material, dominated by local-sourced quartzites and quartz pebbles. The adaptation to local raw material (texture and volume), together with subsistence patterns and behaviours, could explain the rarity of Acheulian types (handaxes and cleavers) and picks in the T4 terraces of the Tejo tributaries; this is in contrast to the same terrace of the Tejo valley, in which these types are found. Interpretation of the environmental conditions (controlled by climate and glacio-eustatic sea-level changes) affecting the hunter-gatherer human groups is also presented.  相似文献   

17.
This study examined the removal of U, Mo, and Re from seawater by sedimentary processes at a shallow-water site with near-saturation bottom water O2 levels (240-380 μmol O2/L), very high organic matter oxidation rates (annually averaged rate is 880 μmol C/cm2/y), and shallow oxygen penetration depths (4 mm or less throughout the year). Under these conditions, U, Mo, and Re were removed rapidly to asymptotic pore water concentrations of 2.2-3.3 nmol/kg (U), 7-13 nmol/kg (Mo), and 11-14 pmol/kg (Re). The depth order in which the three metals were removed, determined by fitting a diffusion-reaction model to measured profiles, was Re < U < Mo. Model fits also suggest that the Mo profiles clearly showed the presence of a near-interface layer in which Mo was added to pore waters by remineralization of a solid phase. The importance of this solid phase source of pore water Mo increased from January to October as the organic matter oxidation rate increased, bottom water O2 decreased, and the O2 penetration depth decreased. Experiments with in situ benthic flux chambers generally showed fluxes of U and Mo into the sediments. However, when the overlying water O2 concentration in the chambers was allowed to drop to very low levels, Mn and Fe were released to the overlying water along with the simultaneous release of Mo and U. These experiments suggest that remineralization of Mn and/or Fe oxides may be a source of Mo and perhaps U to pore waters, and may complicate the accumulation of U and Mo in bioturbated sediments with high organic matter oxidation rates and shallow O2 penetration depths.Benthic chamber experiments including the nonreactive solute tracer, Br, indicated that sediment irrigation was very important to solute exchange at the study site. The enhancement of sediment-seawater exchange due to irrigation was determined for the nonreactive tracer (Br), TCO2, , U and Mo. The comparisons between these solutes showed that reactions within and around the burrows were very important for modulating the Mo flux, but less important for U. The effect of these reactions on Mo exchange was highly variable, enhancing Mo (and, to a lesser extent, U) uptake at times of relatively modest irrigation, but inhibiting exchange when irrigation rates were faster. These results reinforce the observation that Mo can be released to and removed from pore waters via sedimentary reactions.The removal rate of U and Mo from seawater by sedimentary reactions was found to agree with the rate of accumulation of authigenic U and Mo in the solid phase. The fluxes of U and Mo determined by in situ benthic flux chamber measurements were the largest that have been measured to date. These results confirm that removal of redox-sensitive metals from continental margin sediments underlying oxic bottom water is important, and suggest that continental margin sediments play a key role in the marine budgets of these metals.  相似文献   

18.
The elemental geochemistry of Late Pleistocene and Holocene sediments of the Black Sea, recovered in box cores from the basin margins and a 5-m gravity core from the central abyssal region of the basin, identifies two terrigenous sediment sources over the last 20 kyrs. One source region includes Anatolia and the southern Caucasus; the second region is the area drained by rivers entering the Black Sea from Eastern Europe. Alkali metal:Al and heavy:light rare-earth element ratios reveal that the relative contribution of the two sources shifted abruptly every few thousand years during the late glacial and early Holocene lacustrine phase of the basin. The shifts in source were coeval with changes in the lake level as determined from the distribution of quartz and the heavy mineral-hosted trace elements Ti and Zr.The geochemistry of the abyssal sediments further recorded a sequence of changes to the geochemistry of the water column following the lacustrine phase, when high salinity Mediterranean water entered the basin beginning 9.3 kyrs BP. Bottom water that had been oxic throughout the lake phase became anoxic at approximately 8.4 kyrs BP, as recorded by the accumulation from the water column of several redox-sensitive trace metals (Mo, Re, U). The accumulation of organic carbon and several trace nutrients (Cd, Cu, Ni, Zn) increased sharply ca. 0.4 kyrs later, at 8.0 kyrs BP, reflecting an increase of primary productivity. Its increase was coeval with a shift in the dinoflagellate ecology from stenohaline to euryhaline assemblages. During this profound environmental change from the lacustrine to the marine phase, the accumulation rate of the lithogenous sediment fraction decreased as much as 10-fold in response to the rise of the water level in the basin from a low stand ca. 9.3 ka to its current level.  相似文献   

19.
Dating and geomorphology of shoreline features in the Qinghai Lake basin of northwestern China suggest that, contrary to previous interpretations, the lake likely did not reach levels 66-140 m above modern within the past ∼ 90,000 yr. Maximum highstands of ∼ 20-66 m above modern probably date to Marine Isotope Stage (MIS) 5. MIS 3 highstands are undated and uncertain but may have been at or below post-glacial highs. The lake probably reached ∼ 3202-3206 m (+ 8-12 m) during the early Holocene but stayed below ∼ 3202 m after ∼ 8.4 ka. This shoreline history implies significantly different hydrologic balances in the Qinghai Lake basin before ∼ 90 ka and after ∼ 45 ka, possibly the result of a more expansive Asian monsoon in MIS 5.  相似文献   

20.
Cosmogenic isotope (36Cl) surface exposure dating of four of the erratic boulders at Norber in the Yorkshire Dales National Park, northwest England, yielded mean ages of ∼22.2 ± 2.0 ka BP and ∼18.0 ± 1.6 ka BP for their emplacement. These two mean values derive from different 36Cl production rates used for exposure age calculation. The ages are uncorrected for temporal variations in production rates and may underestimate the true ages by 5-7%. The former age, although implying early deglaciation for this area of the British ice sheet, is not incompatible with minimum deglaciation ages from other contexts and locations in northwest England. However, the latter age is more consistent with the same minimum deglaciation ages and geochronological evidence for ice-free conditions in parts of the northern sector of the Irish Sea. Within uncertainties, the younger of the mean ages from Norber may indicate that boulder emplacement was associated with North Atlantic Heinrich event 1. The limited spatial (downvalley) extent of the Norber boulders implies that at the time of their deposition the ice margin was coincident with the distal margin of the erratic train. Loss of ice cover at Norber was followed by persistent stadial conditions until the abrupt opening of the Lateglacial Interstadial when large carnivorous mammals colonised the area. The 36Cl ages are between ∼3.0 ka and ∼13.0 ka older than previous estimates based on rates of limestone dissolution derived from the heights of pedestals beneath the erratics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号