首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High molecular weight dissolved organic matter (HMW-DOM) represents an important component of dissolved organic carbon (DOC) in seawater and fresh-waters. In this paper, we report measurements of stable carbon (δ13C) isotopic compositions in total lipid, total hydrolyzable amino acid (THAA), total carbohydrate (TCHO) and acid-insoluble “uncharacterized” organic fractions separated from fourteen HMW-DOM samples collected from four U.S. estuaries. In addition, C/N ratio, δ13C and stable nitrogen (δ15N) isotopic compositions were also measured for the bulk HMW-DOM samples. Our results indicate that TCHO and THAA are the dominant organic compound classes, contributing 33-46% and 13-20% of the organic carbon in HMW-DOM while total lipid accounts for only <2% of the organic carbon in the samples. In all samples, a significant fraction (35-49%) of HMW-DOM was included in the acid-insoluble fraction. Distinct differences in isotopic compositions exist among bulk samples, the compound classes and the acid-insoluble fractions. Values of δ13C and δ15N measured for bulk HMW-DOM varied from −22.1 to −30.1‰ and 2.8 to 8.9‰, respectively and varied among the four estuaries studied as well. Among the compound classes, TCHO was more enriched in 13C (δ13C = −18.5 to −22.8‰) compared with THAA (δ13C = −20.0 to −29.6‰) and total lipid (δ13C = −25.7 to −30.7‰). The acid-insoluble organic fractions, in general, had depleted 13C values (δ13C = −23.0 to −34.4‰). Our results indicate that the observed differences in both δ13C and δ15N were mainly due to the differences in sources of organic matter and nitrogen inputs to these estuaries in addition to the microbial processes responsible for isotopic fractionation among the compound classes. Both terrestrial sources and local sewage inputs contribute significantly to the HMW-DOM pool in the estuaries studied and thus had a strong influence on its isotopic signatures.  相似文献   

2.
This study presents the results of TOC/TN (C/N) ratio, δ13C and δ15N analyses of lake sedimentary organic matter (OM) from the Hedong section, western Guangdong Province in south China, with the objective to reveal the history of hydrological and ecological variations in the region influenced by both the Indian summer monsoon (ISM) and East Asian summer monsoon (EASM). Variations in δ13C and δ15N of sedimentary OM may be closely related to past climatic conditions, which results in variations in surface runoff, lake level, allochthonous and autochthonous sources of OM, and lake productivity. Based on the interpretation of these proxies, four periods, i.e. 4370–4100, 3700–2900, 2400–2100 and 1900–900 cal. a BP, are characterized by low lake level, weakened surface runoff and deteriorated status of terrestrial and aquatic ecosystems, whereas the periods 4100–3700, 2900–2400, 2100–1900 and 900–600 cal. a BP are dominated by high lake level, strengthened surface runoff, and flourishing terrestrial and aquatic plants. A remarkable positive correlation between the δ13C values of the section and the ENSO number record obtained from the tropical Pacific implies that the impact of the ISM is greater than that of the EASM in the study area. The abnormal correspondence between the δ13C and solar activity reconstructed from 10Be and 14C records in GRIP ice‐core occurred from 1500–800 and particularly from 4200–4000 cal. a BP, suggesting that these two cool and dry intervals may be caused by stronger volcanic activities that are recorded in the GISP2 and Dome C ice‐cores. This study reveals that changes in solar insolation and solar activity, as well as changes in oceanic–atmospheric circulation (e.g. the ENSO intensity) and intensive volcano eruptions may have exerted influence on late Holocene climate variability in the study area.  相似文献   

3.
Fatty acid (FA) composition and stable isotope (δ13C, δ15N) signatures of four aquatic plants, plankton, sediment, soil and suspended particulate organic matter (SPOM) collected from open floodplain lakes (Várzea) and rivers of the central Brazilian Amazon basin were gathered during high and low water stages in 2009. SPOM from Várzea had a major contribution of autochthonous material from phytoplankton and C3 aquatic plants. As shown from stable isotope composition of SPOM (δ13C −31.3 ± 3.2‰; δ15N 3.6 ± 1.5‰), the C4 aquatic phanerogam (δ13C −13.1 ± 0.5‰; δ15N 4.1 ± 1.7‰) contribution appeared to be weak, although these plants were the most abundant macrophyte in the Várzea. During low water season, increasing concentration of 18:3ω3 was recorded in the SPOM of lakes. This FA, abundant mainly in the Várzea plants (up to 49% of total FAs), was due to the accumulation of their detritus in the ecosystem. This dry season, when connectivity with the river mainstem was restricted, was also characterized by a high concentration in the SPOM of the cyanobacteria marker 16:1ω7 (up to 21% of total FAs). The FA compositions of SPOM from the Amazon River also exhibited significant seasonal differences, in particular a higher concentration of 16:1ω7 and 18:3ω3 during the dry season. This suggests a seasonal contribution of autochthonous material produced in Várzea to the Amazon River SPOM.  相似文献   

4.
Soft corals and black corals are useful proxy tools for paleoceanographic reconstructions. However, most work has focused on deep-water taxa and few studies have used these corals as proxy organisms in shallow water (<200 m). To facilitate the use of stable nitrogen and carbon isotope (δ15N and δ13C) records from shallow-water soft coral and black coral taxa for paleoceanographic reconstructions, quantification of the inherent variability in skeletal isotope values between sites, across depth, and among taxa is needed. Here, skeletal δ15N and δ13C values were measured in multiple colonies from eleven genera of soft corals and two genera of black corals from across a depth transect (5-105 m) at two sites in Palau located in the tropical western Pacific Ocean. Overall, no difference in skeletal δ15N and δ13C values between sites was present. Skeletal δ15N values significantly increased and δ13C values decreased with depth. This is consistent with changes in isotope values of suspended particulate organic matter (POM) across the photic zone, suggesting that the primary food source to these corals is suspended POM and that the stable isotopic composition of POM controls the skeletal isotopic composition of these corals. Thus, to compare the isotope records of corals collected across a depth range in the photic zone, first order depth corrections of −0.013‰ m−1 and +0.023‰ m−1 are recommended for δ15N and δ13C, respectively. Average depth-corrected δ15N values were similar between black corals and soft corals, indicating that corals in these orders feed at a similar trophic level. In contrast, average depth-corrected δ13C values of black corals were significantly lower than that of soft corals, potentially resulting from metabolic processes associated with differing skeletal compositions among the orders (i.e., gorgonin vs. chitin based). Thus, a correction of +1.0‰ is recommended for black corals when comparing their δ13C-based proxy records to soft corals. After correcting for both the depth and order effects, variability in δ15N values among corals within each genera was low (standard deviation (SD) of the mean <±0.5‰), with the exception of Acanthorgorgia. The calculated SD of <±0.5‰ provides a first order guideline for the amount of variability that could be expected in a δ15N record, and suggests that these corals may be useful for δ15N-based paleoceanographic reconstructions. Variability in δ13C values among corals within genera was also low (standard deviation of the mean <±0.5‰) with the exception of Rhipidipathes and Villogorgia. Similar to δ15N, records from the genera studied here with the exception of Rhipidipathes and Villogorgia may be useful for δ13C-based paleoceanographic reconstructions. Overall, using the recommendations developed here, stable isotope records from multiple sites, depths and taxa of these corals can be more rigorously compared.  相似文献   

5.
The stable isotope composition (δ15N and δ18O) of nitrate was measured during Summer 1999 in the anaerobic hypolimnion of eutrophic Lake Lugano (Switzerland). Denitrification was demonstrated by a progressive nitrate depletion coupled to increasing δ15N and δ18O values for residual nitrate. Maximum δ15N and δ18O values amounted to 27.2 and 15.7‰, respectively.15N and 18O enrichment factors for denitrification (ε) were estimated using a closed-system model and a dynamic diffusion-reaction model. Using the Rayleigh equation (closed-system approach), we obtained ε values of −11.2 and −6.6‰ for nitrogen and oxygen, respectively. The average ε values derived using the diffusion-reaction model were determined to be −20.7 ± 3.8 for nitrogen and −11.0 ± 1.7 for oxygen. Both N and O isotope fractionation appeared to be lower when denitrification rates where high, possibly in association with high organic carbon availability. In addition, variations in the isotope effects may be attributed to the variable importance of sedimentary denitrification having only a small isotope effect on the water column. The combined measurement of N and O isotope ratios in nitrate revealed that coupled nitrification-denitrification in the open-water was of minor importance. This is the first study of nitrogen and oxygen isotope effects associated with microbial denitrification in a natural lake. Moreover, this study confirms the high potential of δ18O of nitrate as a valuable biogeochemical tracer in aquatic systems, complementing nitrate δ15N.  相似文献   

6.
Pollen grains from grasses using the C3 and C4 photosynthetic pathways have distinct ranges of δ13C values that may be used to estimate their relative abundance in paleorecords. We evaluated a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer (SWiM-IRMS) for δ13C analysis of individual grass-pollen grains. Pollen from four C3 and four C4 grass species was isolated through micromanipulation and analyzed as single grains suspended in water. A carbon yield greater than the 2σ range of the carbon content of blanks containing only water was used to distinguish samples containing pollen (“pollen present”) from those not containing pollen. This criterion resulted in the exclusion of ∼45% of the 946 samples applied to the wire. The average δ13C values (±1σ) of the remaining samples were −26.9‰ (±6.3‰) and −11.5‰ (±9.6‰) for C3 grasses and C4 grasses, respectively, after blank-correcting the δ13C data. These results suggest that the SWiM-IRMS system can be used to distinguish C3 from C4 grass pollen. The high variability in measured δ13C values is likely caused by a combination of factors. These include natural isotopic variability among individual pollen grains; the relatively poor precision that can be obtained when determining δ13C values of such small samples; and the uncertainty in the magnitude, isotopic composition, and stability of the analytical blank. Nonetheless, high percentages of individual pollen grains were correctly classified as being of either C3 or C4 origin. On average, 90% (range = 78-100%) of pollen grains from C3 grasses had δ13C values more negative than the cutoff threshold of −19.2‰; while 84% (range = 77-90%) of pollen grains from C4 grasses had δ13C values more positive than −19.2‰. Compared with analysis using an elemental analyzer interfaced with an IRMS (EA-IRMS), the number of pollen grains required for δ13C-based evaluation of C3/C4 grass composition is many times lower with the SWiM-IRMS. Additionally, δ13C data from the SWiM-IRMS does not need to be incorporated into a mixing model to derive estimates of the abundance of C3 and C4 grass pollen. Carbon-isotopic analysis of individual grass-pollen grains using the SWiM-IRMS system may help improve our understanding of the evolutionary and ecological significance of grass taxa in the paleorecord.  相似文献   

7.
The oxygen and hydrogen isotopic composition of Eocene and Miocene freshwater cherts in the western United States records regional climatic variation in the Cenozoic. Here, we present isotopic measurements of 47 freshwater cherts of Eocene and Miocene age from the Great Basin of the western United States at two different sites and interpret them in light of regional climatic and tectonic history. The large range of δ18O of terrestrial cherts measured in this study, from 11.2‰ to 31.2‰ (SMOW: Standard Mean Ocean), is shown to be primarily the result of variations in δ18O of surface water. The following trends and patterns are recognized within this range of δ18O values. First, in Cenozoic rocks of northern Nevada, chert δ18O records the same shift observed in authigenic calcite between the Eocene and Miocene that has been attributed to regional surface uplift. The consistent covariation of proxies suggests that chert reliably records and retains a signal of ancient meteoric water isotopic composition, even though our analyses show that chert formed from warmer waters (40°C) than coexisting calcite (20°C). Second, there is a strong positive correlation between δ18O and δD in Eocene age chert from Elko, Nevada and Salina, Utah that suggests large changes in lake water isotopic composition due to evaporation. Evaporative effects on lake water isotopic composition, rather than surface temperature, exert the primary control on the isotopic composition of chert, accounting for 10‰ of the 16‰ range in δ18O measured in Eocene cherts. From authigenic mineral data, we calculate a range in isotopic composition of Eocene precipitation in the north-central Great Basin of −10 to −14‰ for δ18O and −70 to −100‰ for δD, which is in agreement with previous estimates for Eocene basins of the western United States. Due to its resistance to alteration and record of variations in both δ18O and δD of water, chert has the potential to corroborate and constrain the cause of variations in isotope stratigraphies.  相似文献   

8.
The Callovian-Oxfordian (COx) clayey unit is being studied in the Eastern part of the Paris Basin at depths between 400 and 500 m depth to assess of its suitability for nuclear waste disposal. The present study combines new mineralogical and isotopic data to describe the sedimentary history of the COx unit. Petrologic study provided evidence of the following diagenetic mineral sequence: (1) framboidal pyrite and micritic calcite, (2) iron-rich euhedral carbonates (ankerite, sideroplesite) and glauconite (3) limpid calcite and dolomite and celestite infilling residual porosity in bioclasts and cracks, (4) chalcedony, (5) quartz/calcite. Pyrite in bioturbations shows a wide range of δ34S (−38‰ to +34.5‰), providing evidence of bacterial sulphate reduction processes in changing sedimentation conditions. The most negative values (−38‰ to −22‰), measured in the lower part of the COx unit indicate precipitation of pyrite in a marine environment with a continuous sulphate supply. The most positive pyrite δ34S values (−14‰ up to +34.5‰) in the upper part of the COx unit indicate pyrite precipitation in a closed system. Celestite δ34S values reflect the last evolutionary stage of the system when bacterial activity ended; however its deposition cannot be possible without sulphate supply due to carbonate bioclast dissolution. The 87Sr/86Sr ratio of celestite (0.706872-0.707040) is consistent with deposition from Jurassic marine-derived waters. Carbon and oxygen isotopic compositions of bulk calcite and dolomite are consistent with marine carbonates. Siderite, only present in the maximum clay zone, has chemical composition and δ18O consistent with a marine environment. Its δ13C is however lower than those of marine carbonates, suggesting a contribution of 13C-depleted carbon from degradation of organic matter. δ18O values of diagenetic chalcedony range between +27‰ and +31‰, suggesting precipitation from marine-derived pore waters. Late calcite crosscutting a vein filled with chalcedony and celestite, and late euhedral quartz in a limestone from the top of the formation have lower δ18O values (∼+19‰), suggesting that they precipitated from meteoric fluids, isotopically close to present-day pore waters of the formation. Finally, the study illustrates the transition from very active, biotic diagenesis to abiotic diagenesis. This transition appears to be driven by compaction of the sediment, which inhibited movement of bacterial cells by reduction of porosity and pore sizes, rather than a lack of inorganic carbon or sulphates.  相似文献   

9.
The isotopic compositions of commercially available herbicides were analyzed to determine their respective 15N, 13C and 37Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between δ37Cl = −4.55‰ and +3.40‰, whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between −2.00‰ and +1.00‰. Nitrogen stable isotope values varied widely from δ15N = −10.86‰ to +1.44‰ and carbon stable isotope analysis gave an observed range between δ13C = −37.13‰ and −21.35‰ for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.  相似文献   

10.
Nitrogen and carbon isotopic compositions, together with mineralogy and trace element geochemistry, were studied in a few kerogen-rich Paleoarchean cherts, a barite and a dolomitic stromatolite belonging to the eastern (Dixon Island Formation) and western (Dresser and Strelley Pool Chert Formations; North Pole Dome and Marble Bar) terranes of Pilbara Craton, Western Australia. The aim of the study was to search for 15N-depleted isotopic signatures, often found in kerogens of this period, and explain the origin of these anomalies. Trace elements suggest silica precipitation by hydrothermal fluids as the main process of chert formation with a contamination from volcanoclastic detritus. This is supported by the occurrence of hydrothermal-derived minerals in the studied samples indicating precipitation temperatures up to 350 °C. Only a dolomitic stromatolite from Strelley Pool shows a superchondritic Y/Ho ratio of 72 and a positive Eu/Eu* anomaly of 1.8, characteristic of chemical precipitates from the Archean seawater. The bulk δ13C vs. δ15N values measured in the cherts show a roughly positive co-variation, except for one sample from the North Pole (PI-85-00). The progressive enrichment in 15N and 13C from a pristine source having δ13C ? −36‰ and δ15N ? −4‰ is correlated with a progressive depletion in N content and to variations in Ba/La and Co/As ratios. These trends have been interpreted as a progressive hydrothermal alteration of the cherts by metamorphic fluids. Isotopic exchange at 350 °C between NH4+(rock) and N2(fluid) may explain the isotopic and elemental composition of N in the studied cherts. However, we need to assume isotopic exchange at 350 °C between carbonate C and graphite to explain the large 13C enrichment recorded. Only sample PI-85-00 shows a large N loss (90%) with a positive δ15N value (+11‰), while C (up to 120 ppm and δ13C −38‰) seems to be unaffected. This pattern has been interpreted as the result of devolatilization and alteration (oxidation) of graphite by low-temperature fluids. The 15N-13C-depleted pristine source has δ 15N values from −7‰ to −4‰ and 40Ar/36Ar ratios from 30,000 to 60,000, compatible with an inorganic mantle N source, although the elemental abundance ratios N/C and 40Ar/C are not exactly the same with the mantle source. The component alternatively could be explained by elemental fractionation from metabolic activity of chemolithoautotrophs and methanogens at the proximity to the hydrothermal vents. However, ambiguities between mantle vs organic sources of N subsist and need further experimental work to be fully elucidated.  相似文献   

11.
Organic carbon (OC) and total nitrogen (TN) concentrations and stable isotope ratios (δ13C, δ15N) of fine (<50 μm) size fractions of deep-sea sediments from the central North Atlantic were employed to identify changes in sources of organic matter over the past 50 ka BP. Ambient glacial sediments are characterised by values that reflect mixtures of marine and terrestrial inputs (averages ± 1σ: OC/TN = 7.6 ± 0.8; δ13C = −22.8 ± 1.0‰; δ15N = 5.5 ± 0.6‰). δ13C, OC, and TN concentrations shift to higher values during the Holocene, indicating a gradual decrease of fine terrigenous supply to the North Atlantic. The unchanged δ15N record between last glacial and Holocene stages indicates that the central North Atlantic region remained oligotrophic at least during the past 50 ka BP, but additional studies are required to support this result in terms of nitrogen oceanic budget. During the phases of enhanced ice-rafted detrital supply corresponding to prominent Heinrich events (HL1, HL2, HL4, and HL5), fine-sized sedimentary organic matter has lower OC and TN concentrations, contrasting sharply with those of ambient glacial sediments. Lower δ13C (down to −28‰) and δ15N (down to 1.6‰) values and high OC:TN ratios (up to 14.7 ± 1.1) are found for HL1, HL2, and with lesser extent for HL4. These values reflect enhanced detrital supply originating from poorly differentiated soil horizons that characterise periglacial climate conditions and from organic matter-bearing rock sources of the underlying geological basement. During HL5, only the δ13C offset records the input of fine size ice-rafted organic matter. Gradually changing soil development conditions during the time interval covering HL5 to HL1 (marine isotope stages 5 to 2), as well as varying erosion levels, have been hypothesized on the basis of constant δ13C, increasing OC/TN and decreasing δ15N values.  相似文献   

12.
Various aquatic plants from Lake Qinghai, the largest inland saline lake in China, and terrestrial plants from the surrounding area were investigated for the distribution of n-alkanes and their δD values. The n-alkanes in the samples range from C15 to C33 with C preference index (CPI) values of 4.0–29.7. The n-C23 or n-C25 alkane is the dominant compound in the aquatic submerged plants. The aquatic emergent and terrestrial plants have an abundance maximum at n-C27, n-C29 or n-C31. The average chain length (ACL) values, ranging from 26.0 to 29.6, are closely related to the plant species. The n-alkanes from the aquatic plants have mean δD values of −169‰ to −121‰ and those from the terrestrial plants values of −173‰ to −109‰. The H isotopic composition (δD) and fractionation differ significantly among the plants studied. Comparison shows that additional evaporative enrichment of the lake water associated with saline lakes and humidity influence the δD values of the n-alkanes in aquatic and terrestrial plants, respectively. The mean δD values of n-alkanes in the plants decrease with increasing ACL value. The n-alkanes from the different types of plants are more depleted in D relative to environmental water and those from aquatic plants (with a mean value of −143‰) have a greater isotopic fractionation than terrestrial plants (mean value −113‰).  相似文献   

13.
Pedogenic goethites in each of two Early Permian paleosols appear to record mixing of two isotopically distinct CO2 components—atmospheric CO2 and CO2 from in situ oxidation of organic matter. The δ13C values measured for the Fe(CO3)OH component in solid solution in these Permian goethites are −13.5‰ for the Lower Leonardian (∼283 Ma BP) paleosol (MCGoeth) and −13.9‰ for the Upper Leonardian (∼270 Ma BP) paleosol (SAP). These goethites contain the most 13C-rich Fe(CO3)OH measured to date for pedogenic goethites crystallized in soils exhibiting mixing of the two aforementioned CO2 components. δ13C measured for 43 organic matter samples in the Lower Leonardian (Waggoner Ranch Fm.) has an average value of −20.3 ± 1.1‰ (1s). The average value yields a calculated Early Permian atmospheric Pco2 value of about 1 × PAL, but the scatter in the measured δ13C values of organic matter permits a calculated maximum Pco2 of 11 × PAL (PAL = present atmospheric level). Measured values of the mole fraction of Fe(CO3)OH in MCGoeth and SAP correspond to soil CO2 concentrations in the Early Permian paleosol profiles of 54,000 and 50,000 ppmV, respectively. Such high soil CO2 concentrations are similar to modern soils in warm, wet environments.The average δ13C values of pedogenic calcite from 9 paleosol profiles stratigraphically associated with MCGoeth (Waggoner Ranch Fm.) range from −6.5‰ to −4.4‰, with a mean δ13C value for all profiles of −5.4‰. Thus, the value of Δ13C between the pedogenic calcite data set and MCGoeth is 8.1 (±0.9)‰, which is in reasonable accord with the value of 7.7‰ expected if atmospheric Pco2 and organic matter δ13C values were the same for both paleosol types. Furthermore, the atmospheric Pco2 calculated for the Early Permian from the average measured carbon isotopic compositions of the paleosol calcite and organic matter is also analytically indistinguishable from 1 × PAL, with a maximum calculated atmospheric Pco2 (permitted by one standard deviation of the organic matter δ13C value) of ∼5 × PAL.If, however, measured average δ13C values of the plant organic matter are more positive than the original soil organic matter as a result of diagenetic loss of 13C-depleted, labile organic compounds, calculated Permian atmospheric Pco2 using these 13C-enriched organic values would underestimate the actual atmospheric Pco2 using either goethite or calcite. This is the first stratigraphically constrained, intrabasinal study to compare ancient atmospheric CO2 concentrations calculated from pedogenic goethite and calcite. These results demonstrate that the two different proxies record the same information about atmospheric CO2.The Fe(CO3)OH component in pedogenic goethite from a Triassic paleosol in Utah is significantly enriched in 13C relative to Fe(CO3)OH in goethites from soils in which there are mixtures of two isotopic CO2 components. Field-relationships and the δ13C value (−1.9‰) of the Triassic goethite indicate that this ancient paleosol profile experienced mixing of three isotopically distinct CO2 components at the time of goethite crystallization. The three components were probably atmospheric CO2, CO2 from in situ oxidation of organic matter and CO2 from in situ dissolution of preexisting calcite. Although mixing of three isotopically distinct CO2 components, as recorded by Fe(CO3)OH in goethite, has been described in modern soil, this is the first example from a documented paleosol. Its preservation affirms the need for careful, case-by-case assessment of ancient paleosols to establish that goethite in any particular soil is likely to be a valid proxy of atmospheric Pco2.  相似文献   

14.
Applications of speleothem calcite geochemistry in climate change studies require the evaluation of the accuracy and sensitivity of speleothem proxies to correctly infer paleoclimatic information. The present study of Harrison’s Cave, Barbados, uses the analysis of the modern climatology and groundwater system to evaluate controls on the C and O isotopic composition of modern speleothems. This new approach directly compares the δ18O and δ13C values of modern speleothems with the values for their corresponding drip waters in order to assess the degree to which isotopic equilibrium is achieved during calcite precipitation. If modern speleothems can be demonstrated to precipitate in isotopic equilibrium, then ancient speleothems, suitable for paleoclimatic studies, from the same cave environment may also have been precipitated in isotopic equilibrium. If modern speleothems are precipitated out of isotopic equilibrium, then the magnitude and direction of the C and O isotopic offsets may allow specific kinetic and/or equilibrium isotopic fractionation mechanisms to be identified.Carbon isotope values for the majority of modern speleothem samples from Harrison’s Cave fall within the range of equilibrium values predicted from the combined use of (1) calcite-water fractionation factors from the literature, (2) measured temperatures, and (3) measured δ13C values of the dissolved inorganic carbon of drip waters. Calcite samples range from ∼0.8‰ higher to ∼1.1‰ lower than predicted values. The 13C depletions are likely caused by kinetically driven departures in the fractionation between HCO3 (aq) and CaCO3 from equilibrium conditions, caused by rapid calcite growth. 13C enrichments can be accounted for by Rayleigh distillation of the HCO3 (aq) reservoir during degassing of 13C-depleted CO2.Modern speleothems from Harrison’s Cave are not in O isotopic equilibrium with their corresponding drip waters and are 0.2‰ to 2.3‰ enriched in 18O relative to equilibrium values. δ18O variations in modern calcite are likely controlled by kinetically driven changes in the fractionation between HCO3 (aq) and CaCO3 from equilibrium conditions to nonequilibrium conditions, consistent with rapid calcite growth. In contrast to δ13C, δ18O values of modern calcite may not be affected by Rayleigh distillation during degassing because CO2 hydration and hydroxylation reactions will buffer the O isotopic composition of the HCO3 (aq) reservoir. If the effects of Rayleigh distillation manifest themselves in the O isotopic system, they will result in 18O enrichment in the HCO3 (aq) reservoir and ultimately in the precipitated CaCO3.  相似文献   

15.
Active and inactive carbonate chimneys from the Lost City Hydrothermal Field contain up to 0.6% organic carbon with diverse lipid assemblages. The δ13C values of total organic carbon range from −21.5‰ vs. VPDB at an extinct carbonate chimney to −2.8‰ at a 70 °C, actively venting carbonate chimney. Samples collected at locations with total organic carbon with δ13C > −15‰ also contained high abundances of isoprenoidal and nonisoprenoidal diether lipids. Samples with TOC more depleted in 13C lacked or contained lower amounts of these diethers.Isoprenoidal diethers, including sn-2 hydroxyarchaeol, sn-3 hydroxyarchaeol, and putative dihydroxyarchaeol, are likely to derive from methanogenic archaea. These compounds have δ13C values ranging from −2.9 to +6.7‰ vs. VPDB. Nonisoprenoidal diethers and monoethers are presumably derived from bacteria, and have structures similar to those produced by sulfate-reducing bacteria in culture and at cold seeps. In samples that also contained abundant hydroxyarchaeols, these diethers have δ13C values between −11.8 and +3.6‰. In samples without abundant hydroxyarchaeols, the nonisoprenoidal diethers were typically more depleted in 13C, with δ13C as low as −28.7‰ in chimneys and −45‰ in fissures.The diethers at Lost City are probably derived from hydrogen-consuming methanogens and bacteria. High hydrogen concentrations favor methanogenesis over methanotrophy and allow the concurrent growth of methanogens and sulfate-reducing bacteria. The unusual enrichment of 13C in lipids can be attributed to nearly complete consumption of bioavailable carbon in vent fluids. Under carbon-limited conditions, the isotope effects that usually lead to 13C-depletion in organic material cannot be expressed. Consequently, metabolic products such as lipids and methane have δ13C values typical of abiotic carbon.  相似文献   

16.
Diamonds from high- and low-MgO groups of eclogite xenoliths from the Jericho kimberlite, Slave Craton, Canada were analyzed for carbon isotope compositions and nitrogen contents. Diamonds extracted from the two groups show remarkably different nitrogen abundances and δ13C values. While diamonds from high-MgO eclogites have low nitrogen contents (5-82 ppm) and extremely low δ13C values clustering at ∼−40‰, diamonds from the low-MgO eclogites have high nitrogen contents (>1200 ppm) and δ13C values from −3.5‰ to −5.3‰.Coupled cathodoluminescence (CL) imaging and SIMS analysis of the Jericho diamonds provides insight into diamond growth processes. Diamonds from the high-MgO eclogites display little CL structure and generally have constant δ13C values and nitrogen contents. Some of these diamonds have secondary rims with increasing δ13C values from −40‰ to ∼−34‰, which suggests secondary diamond growth occurred from an oxidized growth medium. The extreme negative δ13C values of the high-MgO eclogite diamonds cannot be produced by Rayleigh isotopic fractionation of average mantle-derived carbon (−5‰) or carbon derived from typical organic matter (∼−25‰). However, excursions in δ13C values to −60‰ are known in the organic sedimentary record at ca. 2.7 and 2.0 Ga, such that diamonds from the high-MgO eclogites could have formed from similar organic matter brought into the Slave lithospheric mantle by subduction.SIMS analyses of a diamond from a low-MgO eclogite show an outer core with systematic rimwards increases in δ13C values coupled with decreases in nitrogen contents, and a rim with pronounced alternating growth zones. The coupled δ13C-nitrogen data suggest that the diamond precipitated during fractional crystallization from an oxidized fluid/melt from which nitrogen was progressively depleted during growth. Model calculations of the co-variation of δ13C-N yielded a partition coefficient (KN) value of 5, indicating that nitrogen is strongly compatible in diamond relative to the growth medium. δ13C values of diamond cores (−4‰) dictate the growth medium had higher δ13C values than primary mantle-derived carbon. Therefore, possible carbon sources for the low-MgO eclogite diamonds include oxidized mantle-derived (e.g. protokimberlite or carbonatite) fluids/melts that underwent some fractionation during migration or, devolatilized subducted carbonates.  相似文献   

17.
Coral proxy records of sea surface temperature (SST) and hydrological balance have become important tools in the field of tropical paleoclimatology. However, coral aragonite is subject to post-depositional diagenetic alteration in both the marine and vadose environments. To understand the impact of diagenesis on coral climate proxies, two mid-Holocene Porites corals from raised reefs on Muschu Island, Papua New Guinea, were analysed for Sr/Ca, δ18O, and δ13C along transects from 100% aragonite to 100% calcite. Thin-section analysis showed a characteristic vadose zone diagenetic sequence, beginning with leaching of primary aragonite and fine calcite overgrowths, transitional to calcite void filling and neomorphic, fabric selective replacement of the coral skeleton. Average calcite Sr/Ca and δ18O values were lower than those for coral aragonite, decreasing from 0.0088 to 0.0021 and −5.2 to −8.1‰, respectively. The relatively low Sr/Ca of the secondary calcite reflects the Sr/Ca of dissolving phases and the large difference between aragonite and calcite Sr/Ca partition coefficients. The decrease in δ18O of calcite relative to coral aragonite is a function of the δ18O of precipitation. Carbon-isotope ratios in secondary calcite are variable, though generally lower relative to aragonite, ranging from −2.5 to −10.4%. The variability of δ13C in secondary calcite reflects the amount of soil CO2 contributing 13C-depleted carbon to the precipitating fluids. Diagenesis has a greater impact on Sr/Ca than on δ18O; the calcite compositions reported here convert to SST anomalies of 115°C and 14°C, respectively. Based on calcite Sr/Ca compositions in this study and in the literature, the sensitivity of coral Sr/Ca-SST to vadose-zone calcite diagenesis is 1.1 to 1.5°C per percent calcite. In contrast, the rate of change in coral δ18O-SST is relatively small (−0.2 to 0.2°C per percent calcite). We show that large shifts in δ18O, reported for mid-Holocene and Last Interglacial corals with warmer than present Sr/Ca-SSTs, cannot be caused by calcite diagenesis. Low-level calcite diagenesis can be detected through X-ray diffraction techniques, thin section analysis, and high spatial resolution sampling of the coral skeleton and thus should not impede the production of accurate coral paleoclimate reconstructions.  相似文献   

18.
Brazil has extensive sugar cane monocultures, which significantly alter hydrogeochemical material fluxes. We studied dissolved organic matter (OM) fluxes in the Manguaba lagoon-estuary system, which drains a sugar cane monoculture-dominated hinterland and discharges into the Atlantic coastal ocean. The OM fluxes into the lagoon originate from baseflow, field runoff and sugar cane factory effluents. In the study, dissolved organic carbon (DOC) concentration, δ13C DOC and UV absorbance were analysed along a freshwater-seawater salinity gradient that encompasses river (DOC 9-11 mg l−1, δ13C −22.2‰ to −25.5‰); lagoon (4-11 mg l−1, −20.5‰ to −24.8‰); estuary (3-9 mg l−1, −22.6‰ to −25.3‰) and coastal waters (1.64 mg l−1, −21‰) with different intra-seasonal runoff conditions. We used the carbon isotope data to quantify the sugar cane derived DOC. Where river water meets brackish lagoon water, substantial loss of DOC occurs during rainy conditions, when suspended sediment from eroded fields in the river is very high. During dry weather, at much lower suspension levels, DOC increases, however, presumably from addition of photolysed resuspended sedimentary OM. In the estuary, mixing of DOC is strictly conservative. Ca. 1/3 of riverine DOM discharged into the lagoon has a sugar cane source. Within the lagoon on avg. 20% of the bulk DOM is comprised of sugar cane DOM, whereas during heavy rainfall the amount increases to 31%, due to intensified drainage flow and soil erosion. In the estuary, 14-26% is of sugar cane origin. The sugar cane-derived component follows the mixing patterns of bulk DOM.  相似文献   

19.
Isotopic and geochemical evidence of paleoclimates, especially for the last glaciation, has been obtained from deep confined groundwaters of southern India. The δ13C, δ18O, chloride, and deuterium analyses of groundwaters show distinct excursions inferred to be related to climatic variations. The arid climatic episode associated with the last glaciation (18,000 ± 2000 yr B.P.) is conspicuously identified by signatures of relatively enriched δ13C (−10 to −12‰ PDB) and δ18O (−5.3 to −4.8‰ SMOW) values, and high chloride concentration (80 to 160 mg/l). The transition from an arid to humid period ca. 12,000–8000 yr B.P. is shown by a decreasing trend in the δ13C (−9.5 to −17‰) and δ18O (−4.5 to −6.3‰) contents of groundwaters. The late Holocene (since 4000 yr B.P.), marked by a more humid but unstable climate, is identified by further depletion of δ13C (−13 to −20‰) and δ18O (−5.2 to −6.3‰). Similar variation between δ18O and chloride values in confined groundwaters further demonstrates two distinct climatic excursions (arid and humid) governed by the “amount effect.” This is the first time that isotopic and geochemical signatures related to changing paleoclimates have been identified in the confined groundwaters of the southern Indian landmass.  相似文献   

20.
The well-studied Paleozoic Cooma metamorphic complex in southeastern Australia is characterized by a uniform siliciclastic protolith, of uniform age, with a continuous range of metamorphic grade from subgreenschist- to upper amphibolite-facies, and migmatite-grade in an annular pattern around the Cooma granodiorite. Those conditions are optimal for investigating variations of N concentrations and δ15N values during progressive metamorphism. Nitrogen concentrations decrease and δ15N increases with increasing metamorphic grade (sub-chlorite zone: 120 ppm N, δ15N = 2.3‰; chlorite zone: 110 ppm N, δ15N = 3.0‰; biotite and andalusite zone: 85 ppm N, δ15N = 3.8 ‰; sillimanite and migmatite zones: 40 ppm N, δ15N = 10.7‰). Covariation of K and N contents is consistent with N substituting for K as NH4+ in micas. Observed trends of increasing δ15N values with decreasing nitrogen concentrations can be explained by a continuous release of nitrogen depleted in 15N with progressive metamorphism, which causes an enrichment of 15N in the residual nitrogen of the rock. Equilibrium models for Rayleigh distillation and batch volatilisation for data of the greenschist and amphibolite facies metasedimentary rocks can be explained by N2-NH4+ exchange at temperatures of 300-600 °C, whereas observed large fractionations for the upper amphibolite-facies and melt products in the migmatite-grade samples may be interpreted as NH3-NH4+ exchanges at temperature of 650-730 °C. Lower values in the highest grade zones may also stem in part from input of 15N-depleted fluids from the granodiorite.The magnitude of isotope fractionation of nitrogen is about 1-2‰ during progressive metamorphism of metasedimentary rocks from sub-chlorite zone to biotite-andalusite zone, which is consistent with previous studies. Consequently, the large spread of δ15N values in Archean greenschist-facies metasedimentary rocks of −6‰ to 30‰ can be accounted for by variable mixtures of mantle plume-dominated volatiles with a δ15N of −5‰, and a 15N-enriched marine sedimentary kerogen component inherited from a CI chondrite veneer having δ15N of 30‰ to 42‰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号