首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman analysis of the vapor phase formed after heating pure water to near critical (355-374 °C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 × 10−11 mol) of methane were produced in the HDAC at 355 °C and 30 MPa over a period of ten minutes. At temperatures of 650 °C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.  相似文献   

2.
Hydrous and anhydrous closed-system pyrolysis experiments were conducted on a sample of Mahogany oil shale (Eocene Green River Formation) containing Type-I kerogen to determine whether the role of water had the same effect on petroleum generation as reported for Type-II kerogen in the Woodford Shale. The experiments were conducted at 330 and 350 °C for 72 h to determine the effects of water during kerogen decomposition to polar-rich bitumen and subsequent bitumen decomposition to hydrocarbon-rich oil. The results showed that the role of water was more significant in bitumen decomposition to oil at 350 °C than in kerogen decomposition to bitumen at 330 °C. At 350 °C, the hydrous experiment generated 29% more total hydrocarbon product and 33% more C15+ hydrocarbons than the anhydrous experiment. This is attributed to water dissolved in the bitumen serving as a source of hydrogen to enhance thermal cracking and facilitate the expulsion of immiscible oil. In the absence of water, cross linking is enhanced in the confines of the rock, resulting in formation of pyrobitumen and molecular hydrogen. These differences are also reflected in the color and texture of the recovered rock. Despite confining liquid-water pressure being 7-9 times greater in the hydrous experiments than the confining vapor pressure in the anhydrous experiments, recovered rock from the former had a lighter color and expansion fractures parallel to the bedding fabric of the rock. The absence of these open tensile fractures in the recovered rock from the anhydrous experiments indicates that water promotes net-volume increase reactions like thermal cracking over net-volume decrease reactions like cross linking, which results in pyrobitumen. The results indicate the role of water in hydrocarbon and petroleum formation from Type-I kerogen is significant, as reported for Type-II kerogen.  相似文献   

3.
Around half of world’s endowment of in-place oil and bitumen experienced biodegradation, which is now believed to be largely an anaerobic methanogenic process. However, the distribution and scale of methanogenic biodegradation in the world’s petroleum accumulations and the significance of its terminal product, secondary microbial methane, in the global gas endowment and carbon cycle are largely unknown. Here, I present geological and geochemical criteria to recognize secondary microbial methane in conventional petroleum reservoirs. These include the presence of biodegraded oil (as pools, legs or shows) in the reservoir or down-dip, the relatively dry (methane dominated) gas containing methane with δ13C values between −55‰ and −35‰ and, most importantly, CO2 with δ13C > +2‰. Based on these criteria, the presence of secondary microbial methane is apparent in 22 basins, probable in 12 basins and possible in six basins worldwide. Reservoirs apparently containing secondary microbial methane are mostly Cenozoic and clastic and occur at depths of 37-1834 m below surface/mudline and temperatures of 12-71 °C. Using the current global endowment of in-place oil and bitumen and reasonable assumptions about conversion of oil into methane during biodegradation, I estimated that ∼65,500 tcf of secondary microbial methane could have been generated in existing worldwide accumulations of oil and bitumen through their geological history. From 1461-2760 tcf in-place (845-1644 tcf recoverable) of secondary microbial methane may be accumulated as free and oil-dissolved gas in petroleum reservoirs. I also updated the inventory of primary microbial methane and estimated that the global primary microbial gas endowment (free and oil-dissolved) is from 676-797 tcf in-place (407-589 tcf recoverable). Secondary microbial methane may account for ∼5-11% of the global conventional recoverable gas endowment and appears more abundant than primary microbial gas (∼3-4% of the global gas endowment). Most of the generated secondary microbial methane probably is aerobically and anaerobically oxidized to CO2 in the overburden above petroleum reservoirs. However, some secondary microbial methane may escape from shallow reservoirs into the atmosphere and affect present and past global climate.  相似文献   

4.
Gas generation in the deep reaches of sedimentary basins is usually considered to take place via the primary cracking of short alkyl groups from overmature kerogen or the secondary cracking of petroleum. Here, we show that recombination reactions ultimately play the dominant role in controlling the timing of late gas generation in source rocks which contain mixtures of terrigeneous and marine organic matter. These reactions, taking place at low levels of maturation, result in the formation of a thermally stable bitumen, which is the major source of methane at very high maturities. The inferences come from pyrolysis experiments performed on samples of the Draupne Formation (liptinitic Type II kerogen) and Heather Formation (mixed marine-terrigeneous Type III kerogen), both Upper Jurassic source rocks stemming from the Norwegian northern North Sea Viking Graben system. Non-isothermal closed system micro scale sealed vessel (MSSV) pyrolysis, non-isothermal open system pyrolysis and Rock Eval type pyrolysis were performed on the solvent extracted, concentrated kerogens of the two immature samples. The decrease of C6+ products in the closed system MSSV pyrolysis provided the basis for the calculation of secondary gas (C1-5) formation. Subtraction of the calculated secondary gas from the total observed gas yields a “remaining” gas. In the case of the Draupne Formation this is equivalent to primary gas cracked directly from the kerogen, as detected by a comparison with multistep open pyrolysis data. For the Heather Formation the calculated remaining gas formation profile is initially attributable to primary gas but there is a second major gas pulse at very high temperature (>550 °C at 5.0 K min−1) that is not primary. This has been explained by a recondensation process where first formed high molecular weight compounds in the closed system yield a macromolecular material that undergoes secondary cracking at elevated temperatures. The experiments provided the input for determination of kinetic parameters of the different gas generation types, which were used for extrapolations to a linear geological heating rate of 10−11 K min−1. Peak generation temperatures for the primary gas generation were found to be higher for Heather Formation (Tmax = 190 °C, equivalent to Ro appr. 1.7%) compared to Draupne Formation (Tmax = 175 °C, equivalent to appr. Ro 1.3%). Secondary gas peak generation temperatures were calculated to be 220 °C for the Heather Formation and 205 to 215 °C for the Draupne Formation, respectively, with equivalent vitrinite reflectance values (Ro) between 2.4% and 2.0%. The high temperature secondary gas formation from cracking of the recombination residue as detected for the Heather Formation is quantitatively important and is suggested to occur at very high temperatures (Tmax approx. 250 °C) for geological heating rates. The prediction of a significant charge of dry gas from the Heather Formation at very high maturity levels has important implications for petroleum exploration in the region, especially to the north of the Viking Graben where Upper Jurassic sediments are sufficiently deep buried to have experienced such a process.  相似文献   

5.
Dissolution of natural hydrate cores was measured using time-lapse photography on the seafloor at Barkley Canyon (850 m depth and 4.17 °C). Two types of hydrate fabrics in close contact with one another were studied: a “yellow” hydrate stained with condensate oil and a “white” hydrate. From thermogenic origins, both fabrics contained methane as well as heavier hydrocarbons. These multi-component hydrates were calculated to be well within p-T stability conditions (<200 m water depth needed at 4.17 °C). While stable in pressure and temperature, the hydrates were bathed in under-saturated seawater, which promoted dissolution. The flux of gas from the shrinking yellow hydrate core was 0.15 ± 0.01 mmol gas/m2 s, while the white hydrate dissolved faster at 0.25 ± 0.02 mmol gas/m2 s. To determine the controlling mechanism for the observed changes in the hydrate cores, experimental results were compared with an engineering correlation for convective mass transfer. Using water velocity as a fitting parameter, the correlation agreed well with results from a previous dissolution experiment on well-characterized synthetic hydrates. Even with a number of other unknowns, when applied to the natural hydrate, the mass transfer correlation predicted the dissolution rate within 20%. This seafloor-based experiment, along with visual observations of seafloor hydrate dissolution over a 3-day period, were used to further understand the fate of natural seafloor hydrates exposed on the seafloor. By showing that mass transfer is the rate-controlling mechanism for dissolution of these natural hydrate outcrops, proper hydrodynamic calculations can be employed to give a refined estimate on hydrate dissolution rates.  相似文献   

6.
Large volumes of greenhouse gases such as CH4 and CO2 form by contact metamorphism of organic-rich sediments in aureoles around sill intrusions in sedimentary basins. Thermogenic gas generation and dehydration reactions in shale are treated numerically in order to quantify basin-scale devolatilization. We show that aureole thicknesses, defined as the zone of elevated metamorphism relative to the background level, vary within 30-250% of the sill thickness, depending on the temperature of the host-rock and intrusion, besides the sill thickness. In shales with total organic carbon content of >5 wt.%, CH4 is the dominant volatile (85-135 kg/m3) generated through organic cracking, relative to H2O-generation from dehydration reactions (30-110 kg/m3). Even using conservative estimates of melt volumes, extrapolation of our results to the scale of sill complexes in a sedimentary basin indicates that devolatilization can have generated ∼2700-16200 Gt CH4 in the Karoo Basin (South Africa), and ∼600-3500 Gt CH4 in the Vøring and Møre basins (offshore Norway). The generation of volatiles is occurring on a time-scale of 10-1000 years within an aureole of a single sill, which makes the rate of sill emplacement the time-constraining factor on a basin-scale. This study demonstrates that thousands of gigatons of potent greenhouse gases like methane can be generated during emplacement of Large Igneous Provinces in sedimentary basins.  相似文献   

7.
Formation of the Carbon-13 (13C) and deuterium (D) doubly-substituted methane isotopologues (13CH3D) in natural gases is studied utilizing both first-principle quantum mechanism molecular calculation and direct FTIR laboratorial measurements of specifically synthesized high isotope concentration methane gas. For 13CH3D, the symmetrically breathing mode A0 emerges as IR-detectable attributed to the molecular symmetry lowering to C3v from Td of the non-isotopic methane (CH4), along with a large vibrational frequency shift from ∼3000 to ∼2250 cm−1. Our studies also indicate that the concentration of 13CH3D is dependent on the environmental temperature through isotope exchanges among methane isotopologues; and the Gibbs’ Free Energy difference due to Quantum Mechanics Zero-Point vibrational motions has the major contribution to this temperature dependency. Potential geologic applications of the 13CH3D measurement to natural gas exploration and assessments are also discussed. In order to detect the 13CH3D concentration change of each 50 °C in the natural gas system, a 10−9 resolution is desirable. Such a measurement could provide important add-on information to distinguish natural gas origin and distribution.  相似文献   

8.
Temperature-resolved analyses of volatiles from Mid-Ocean-Ridge-Basalt (MORB) and vitreous basaltic rims were carried out to investigate the total volatile contents of basaltic melts and the influence of magma contamination on the degassing behaviour of volcanic rocks.With respect to the sources of methane evolution from the MORB the investigations are taken into consideration, the hydrocarbon (HC) release especially from the melt.The current paper presents data for H2O, CO2, SO2, He, H2, HF, HCl, CO, N2, O2, and HC degassing profiles of samples from the MORB sampling cruise 02.10.1983-11.11.1983 with FS Sonne 28 during the GEMINO-1 project near the Carlsberg Ridge (CR) and the Mid-Indian-Ocean-Ridge (MIOR).It aims to estimate the magnitude and nature of source magma volatiles and contamination (crustal material, seawater, atmospheric gases).The degassing of H2O, CO2, HCs as well as sulphur and chlorine species, or O2 from vitreous specimens shows characteristic differences associated with sample position with respect to the lava surface.From the water release by bubbling and diffusion above 700 °C it must be concluded that any assimilation of sea water in vitreous rim is very low. The water content in the vitreous rim is about 0.1-0.2 wt%. The low interaction of melt with sea water is supported by the missing of a significant release of chlorine species during the heat treatment of the sample up to 1450 °C.Mixed H2O/CO2 bubbles escape between 700 and 800 °C from the vitreous rim. The CO2 release in the temperature range of 1060-1170 °C from the basalt and the vitreous rim is interpreted as an indication for the primary carbon-dioxide content in the melt.Above 1100 °C CO2 and SO2 are evolved by both diffusion and small bubbles. The quantities of CO2 in the vitreous rim and the basalt are similar (between 0.05 and 0.15 wt%), whereas the quantities of SO2 escaping both from the vitreous rim and the crystalline basalt are between 0.013 and 0.024 wt%.Simultaneous with the CO2 release by bubbling, HC species, especially CH fragments, were observed. The fact that the temperature of release maxima are above 1050 °C in both the vitreous rim and in the basalt is an indication for a geogenetic origin of HCs, e.g. methane.A low temperature of release for methane, which is consistent with biogenetic HC, was observed from the gas-release profiles of the basalts only. The maxima of the low-temperature gas releases are between 80 and 200 °C with a high correlation between the fragments m/z 13 and m/z 15. This correlation is a significant indication for a methane release.The oxygen release profiles of vitreous and crystalline basalts give significant indications for oxygen fugacity below the (QMF) of basaltic magma.Secondary minerals, generated by alteration of basaltic rocks, can be characterized by gas release profiles (GRPs) due to their decomposition in the temperature range below 800 °C. Only in the basalt were there observed indications of alteration processes. Small traces of carbonates (<0.0001 wt%) were detected by the gas release during the decomposition.Processes of degassing at temperatures higher than 800 °C are correlated to volatiles in the melt and to fluid inclusions of the minerals. There are no obvious correlations in the degassing characteristics between H2O, CO2 and SO2. The different maxima of the degassing velocity, especially of CO2, and SO2, are indications of the different bonding forces of the site occupancy of the volatiles in the melt and in the glass. A micelle model for bonding sites in the basaltic glass for dissolved volatiles is discussed.  相似文献   

9.
A unique dataset from paired low- and high-temperature vents at 9°50′N East Pacific Rise provides insight into the microbiological activity in low-temperature diffuse fluids. The stable carbon isotopic composition of CH4 and CO2 in 9°50′N hydrothermal fluids indicates microbial methane production, perhaps coupled with microbial methane consumption. Diffuse fluids are depleted in 13C by ∼10‰ in values of δ13C of CH4, and by ∼0.55‰ in values of δ13C of CO2, relative to the values of the high-temperature source fluid (δ13C of CH4 =−20.1 ± 1.2‰, δ13C of CO2 =−4.08 ± 0.15‰). Mixing of seawater or thermogenic sources cannot account for the depletions in 13C of both CH4 and CO2 at diffuse vents relative to adjacent high-temperature vents. The substrate utilization and 13C fractionation associated with the microbiological processes of methanogenesis and methane oxidation can explain observed steady-state CH4 and CO2 concentrations and carbon isotopic compositions. A mass-isotope numerical box model of these paired vent systems is consistent with the hypothesis that microbial methane cycling is active at diffuse vents at 9°50′N. The detectable 13C modification of fluid geochemistry by microbial metabolisms may provide a useful tool for detecting active methanogenesis.  相似文献   

10.
This study examined the molecular and isotopic compositions of gases generated from different kerogen types (i.e., Types I/II, II, IIS and III) in Menilite Shales by sequential hydrous pyrolysis experiments. The experiments were designed to simulate gas generation from source rocks at pre-oil-cracking thermal maturities. Initially, rock samples were heated in the presence of liquid water at 330 °C for 72 h to simulate early gas generation dominated by the overall reaction of kerogen decomposition to bitumen. Generated gas and oil were quantitatively collected at the completion of the experiments and the reactor with its rock and water was resealed and heated at 355 °C for 72 h. This condition simulates late petroleum generation in which the dominant overall reaction is bitumen decomposition to oil. This final heating equates to a cumulative thermal maturity of 1.6% Rr, which represents pre-oil-cracking conditions. In addition to the generated gases from these two experiments being characterized individually, they are also summed to characterize a cumulative gas product. These results are compared with natural gases produced from sandstone reservoirs within or directly overlying the Menilite Shales. The experimentally generated gases show no molecular compositions that are distinct for the different kerogen types, but on a total organic carbon (TOC) basis, oil prone kerogens (i.e., Types I/II, II and IIS) generate more hydrocarbon gas than gas prone Type III kerogen. Although the proportionality of methane to ethane in the experimental gases is lower than that observed in the natural gases, the proportionality of ethane to propane and i-butane to n-butane are similar to those observed for the natural gases. δ13C values of the experimentally generated methane, ethane and propane show distinctions among the kerogen types. This distinction is related to the δ13C of the original kerogen, with 13C enriched kerogen generating more 13C enriched hydrocarbon gases than kerogen less enriched in 13C. The typically assumed linear trend for δ13C of methane, ethane and propane versus their reciprocal carbon number for a single sourced natural gas is not observed in the experimental gases. Instead, the so-called “dogleg” trend, exemplified by relatively 13C depleted methane and enriched propane as compared to ethane, is observed for all the kerogen types and at both experimental conditions. Three of the natural gases from the same thrust unit had similar “dogleg” trends indicative of Menilite source rocks with Type III kerogen. These natural gases also contained varying amounts of a microbial gas component that was approximated using the Δδ13C for methane and propane determined from the experiments. These approximations gave microbial methane components that ranged from 13–84%. The high input of microbial gas was reflected in the higher gas:oil ratios for Outer Carpathian production (115–1568 Nm3/t) compared with those determined from the experiments (65–302 Nm3/t). Two natural gas samples in the far western part of the study area had more linear trends that suggest a different organic facies of the Menilite Shales or a completely different source. This situation emphasizes the importance of conducting hydrous pyrolysis on samples representing the complete stratigraphic and lateral extent of potential source rocks in determining specific genetic gas correlations.  相似文献   

11.
The idea that natural gas is the thermal product of organic decomposition has persisted for over half a century. Crude oil is thought to be an important source of gas, cracking to wet gas above 150°C, and dry gas above 200°C. But there is little evidence to support this view. For example, crude oil is proving to be more stable than previously thought and projected to remain intact over geologic time at typical reservoir temperatures. Moreover, when oil does crack, the products do not resemble natural gas. Oil to gas could be catalytic, however, promoted by the transition metals in carbonaceous sediments. This would explain the low temperatures at which natural gas forms, and the high amounts of methane. This idea gained support recently when the natural progression of oil to dry gas was duplicated in the laboratory catalytically. We report here the isotopic composition of catalytic gas generated from crude oil and pure hydrocarbons between 150 and 200°C. δ13C for C1 through C5 was linear with 1/n (n = carbon number) in accordance with theory and typically seen in natural gases. Over extended reaction, isobutane and isopentane remained lighter than their respective normal isomers and the isotopic differentials were constant as all isomers became heavier over time. Catalytic methane, initially −51.87‰ (oil = −22.5‰), progressed to a final composition of −26.94‰, similar to the maturity trend seen in natural gases: −50‰ to −20‰. Catalytic gas is thus identical to natural gas in molecular and isotopic composition adding further support to the view that catalysis by transition metals may be a significant source of natural gas.  相似文献   

12.
Carbon isotope fractionation factors associated with the aerobic consumption of methane (C1), ethane (C2), propane (C3), and n-butane (C4) were determined from incubations of marine sediment collected from the Coal Oil Point hydrocarbon seep field, located offshore Santa Barbara, CA. Hydrogen isotope fractionation factors for C1, C2 and C3 were determined concurrently. Fresh sediment samples from two seep areas were each slurried with sea water and treated with C1, C2, C3 or C4, or with mixtures of all four gases. Triplicate samples were incubated aerobically at 15 °C, and the stable isotope composition and headspace levels of C1-C4 were monitored over the course of the experiment. Oxidation was observed for all C1-C4 gases, with an apparent preference for C3 and C4 over C1 and C2 in the mixed-gas treatments. Fractionation factors were calculated using a Rayleigh model by comparing the δ13C and δD of the residual C1-C4 gases to their headspace levels. Carbon isotope fractionation factors (reported in ε or (α-1) × 1000 notation) were consistent between seep areas and were −26.5‰ ± 3.9 for C1, −8.0‰ ± 1.7 for C2, −4.8‰ ± 0.9 for C3 and −2.9‰ ± 0.9 for C4. Fractionation factors determined from mixed gas incubations were similar to those determined from individual gas incubations, though greater variability was observed during C1 consumption. In the case of C1 and C3 consumption, carbon isotope fractionation appears to decrease as substrate becomes limiting. Hydrogen isotope fractionation factors determined from the two seep areas differed for C1 oxidation but were similar for C2 and C3. Hydrogen isotope fractionation factors ranged from −319.9‰ to −156.4‰ for C1 incubations, and averaged −61.9‰ ± 8.3 for C2 incubations and −15.1‰ ± 1.9 for C3 incubations. The fractionation factors presented here may be applied to estimate the extent of C1-C4 oxidation in natural gas samples, and should prove useful in further studying the microbial oxidation of these compounds in the natural environment.  相似文献   

13.
林俊峰  胡海燕  黎祺 《地球科学》2017,42(7):1124-1133
焦石坝地区五峰组-龙马溪组页岩富集有大量的天然气,但针对页岩气地球化学特征研究还较薄弱,其蕴含的地质意义不甚明确.通过页岩气组分及其碳同位素特征和页岩干酪根的碳同位素特征分析,讨论了页岩气的来源、成因类型和完全倒转的碳同位素分布特征.五峰组-龙马溪组页岩具有很好的生烃能力、有机质丰度与含气量的关系有明显的正相关性、甲烷与干酪根相似的碳同位素特征、地层的超压特征等,综合表明研究区天然气应为页岩自生自储的页岩气;页岩气的甲烷含量均超过98%,其碳同位素平均为-29.93‰,反映了成熟度已经达到过成熟干气阶段;相对稳定的ln(C1/C2)和快速增大的ln(C2/C3)揭示其成因主要为二次裂解气;页岩气碳同位素完全倒转的分布特征主要受到在相对封闭环境中的原油裂解生气作用的影响,其完全倒转的碳同位素分布特征也反映了研究区良好的页岩气保存、富集条件.   相似文献   

14.
Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas). Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen) in a Mississippian marine shale decomposed to gas (C1–C5). The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour), nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock) than at 350°C by thermal cracking (12 μg C1–C5/g rock). The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible.  相似文献   

15.
Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.  相似文献   

16.
We investigate the degassing of volatile heavy metals from natural basalt and dacite and synthetic rhyolite melts doped with Bi, Pb, Tl, Au, Re, Sb, Sn, Cd, Mo, As, Cu in Pt capsules over a range of temperatures (1200-1430 °C) exposed to air at 0.1 MPa. We also investigated the effects of ligands on degassing by adding known concentrations of Cl and S. During the experiments concentration gradients normal to the melt/gas interface arose for the trace metals Au, Tl, As, Cd, Re, Bi and Pb, as shown by measurements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on the quenched glasses. In contrast, erratic concentration gradients occurred for Cu, Mo, Sn, Sb due to the development of compositional cords in the glass for those elements. The diffusivities for Au, Tl, As, Cd, Re, Bi and Pb (in decreasing order of volatility) followed an Arrhenius relationship with log D at 1260 °C varying from −12 to −17. The addition of Cl and S were shown to increase by two-to five-fold the volatilities of all metals, with S having a more profound effect. Diffusivities from the experiments were applied in a bubble growth model to examine the behavior of Tl and Pb in volcanic gases. The Tl/Pb ratio in gases shows much greater variation than can be explained by partitioning and magma composition alone, with diffusion serving to drastically enrich or deplete the Tl/Pb of gases to values significantly different from that of the melt.  相似文献   

17.
Microbial methane in sedimentary basins comprises approximately 20% of global natural gas resources, yet little is known about the environmental requirements and metabolic rates of these subsurface microbial communities. The Illinois Basin, located in the midcontinent of the United States, is an ideal location to investigate hydrogeochemical factors controlling methanogenesis as microbial methane accumulations occur: (1) in three organic-rich reservoirs of different geologic ages and organic matter types - Upper Devonian New Albany Shale (up to 900 m depth), Pennsylvanian coals (up to 600 m depth), and Quaternary glacial sediments (shallow aquifers); (2) across steep salinity gradients; and (3) with variable concentrations of . For all three organic-rich reservoirs aqueous geochemical conditions are favorable for microbial methanogenesis, with near neutral pH, concentrations <2 mM, and Cl concentrations <3 M. Also, carbon isotopic fractionation of CH4, CO2, and DIC is consistent with microbial methanogenesis, and increased carbon isotopic fractionation with average reservoir depth corresponds to a decrease of groundwater flushing rates with average depth of reservoir. Plots of stable isotopes of water and Cl show mixing between a brine endmember and freshwater, suggesting that meteoric groundwater recharge has affected all microbial methanogenic systems. Additionally, similar methanogenic communities are present in all three reservoirs with comparable cell counts (8.69E3-2.58E6 cells/mL). TRFLP results show low numbers of archaea species with only two dominant groups of base pairs in coals, shale, and limestone aquifers. These results compare favorably with other methanogen-containing deep subsurface environments. Individual hydrogeochemical parameters that have a Spearman correlation coefficient greater than 0.3 to variations in methanogenic species include stable isotopes of water (δ18O and δD), type of substrate (i.e. coals versus shale), pH, and Cl concentration. The matching of variations between methanogenic TRFLP data and conservative tracers suggests that deep circulation of meteoric waters influenced archaeal communities in the Illinois Basin. In addition, coalification and burial estimates suggest that in the study area, coals and shale reservoirs were previously sterilized (>80 °C in nutrient poor environments), necessitating the re-introduction of microbes into the subsurface via groundwater transport.  相似文献   

18.
The Western Slope of the Songliao Basin is rich in heavy oil resources (>70 × 108 bbl), around which there are shallow gas reservoirs (∼1.0 × 1012 m3). The gas is dominated by methane with a dryness over 0.99, and the non-hydrocarbon component being overwelmingly nitrogen. Carbon isotope composition of methane and its homologs is depleted in 13C, with δ13C1 values being in the range of −55‰ to −75‰, δ13C2 being in the range of −40‰ to −53‰ and δ13C3 being in the range of −30‰ to −42‰, respectively. These values differ significantly from those solution gases source in the Daqing oilfield. This study concludes that heavy oils along the Western Slope were derived from mature source rocks in the Qijia-Gulong Depression, that were biodegraded. The low reservoir temperature (30–50 °C) and low salinity of formation water with neutral to alkaline pH (NaHCO3) appeared ideal for microbial activity and thus biodegradation. Natural gas along the Western Slope appears mainly to have originated from biodegradation and the formation of heavy oil. This origin is suggested by the heavy δ13C of CO2 (−18.78‰ to 0.95‰) which suggests that the methane was produced via fermentation as the terminal decomposition stage of the oil.  相似文献   

19.
A suite of natural gases from the northern Songliao Basin in NE China were characterized for their molecular and carbon isotopic composition. Gases from shallow reservoirs display clear geochemical evidence of alteration by biodegradation, with very high dryness (C1/C2+ > 100), high C2/C3 and i-C4/n-C4 ratios, high nitrogen content and variable carbon dioxide content. Isotopic values show wide range variations (δ13CCH4 from −79.5‰ to −45.0‰, δ13CC2H6 from −53.7‰ to −32.2‰, δ13CC3H8 from −36.5‰ to −20.1‰, δ13CnC4H10 from −32.7‰ to −24.5‰, and δ13CCO2 from −21.6‰ to +10.5‰). A variety of genetic types can be recognized on the basis of chemical and isotopic composition together with their geological occurrence. Secondary microbial gas generation was masked by primary microbial gas and the mixing of newly generated methane with thermogenic methane already in place in the reservoir can cause very complicated isotopic signatures. System openness also was considered for shallow biodegraded gas accumulations. Gases from the Daqing Anticline are relatively wet with 13C enriched methane and 13C depleted CO2, representing typically thermogenic origin. Gases within the Longhupao-Da’an Terrace have variable dryness, 13C enriched methane and variable δ13C of CO2, suggesting dominant thermogenic origin and minor secondary microbial methane augment. The Puqian-Ao’nan Uplift contains relatively dry gas with 13C depleted methane and 13C enriched CO2, typical for secondary microbial gas with a minor part of thermogenic methane. Gas accumulations in the Western Slope are very dry with low carbon dioxide concentrations. Some gases contain 13C depleted methane, ethane and propane, indicating low maturity/primary microbial origin. Recognition of varying genetic gas types in the Songliao Basin helps explain the observed dominance of gas in the shallow reservoir and could serve as an analogue for other similar shallow gas systems.  相似文献   

20.
Aqueous alteration of primitive meteorites was among the earliest geological processes during the evolution of our solar system. ‘Clumped-isotope’ thermometry of carbonates in the CM chondrites, Cold Bokkeveld, Murray, and Murchison, demonstrates that they underwent aqueous alteration at 20-71 °C from a fluid with δ18OVSMOW of 2.0‰ to 8.1‰ and δ17OVSMOW of −0.1‰ to 3.0‰. The δ13CVPDB values of these carbonates exhibit a negative correlation with the δ18OVSMOW of their formation waters, consistent with formation and escape of 13C-depleted CH4 during aqueous alteration. Methane generation under these conditions implies that the alteration fluid was characterized by an Eh ? −0.67 and pH ? 12.5 (or lower at the highest alteration temperatures). Our findings suggest that methane generation may have been a widespread consequence of planetesimal and planetary aqueous alteration, perhaps explaining the occurrence of methane on Titan, Triton, Pluto, and other Kuiper-belt objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号