首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissolution of the fluorite (1 1 1) cleavage surface was investigated by means of in situ atomic force microscopy (AFM) and ex situ vertical scanning interferometry (VSI) experiments at pH range 1-3 in HCl solutions. Surface retreat was quantified at different pH values, yielding dissolution rates that were used to derive an empirical rate law for fluorite dissolution:
  相似文献   

2.
Steady-state talc dissolution rates, at far-from-equilibrium conditions, were measured as a function of aqueous silica and magnesium activity, pH from 1 to 10.6, and temperature from 25 to 150 °C. All rates were measured in mixed flow reactors and exhibited stoichiometric or close to stoichiometric dissolution. All measured rates at pH > 2 obtained at a fixed ionic strength of 0.02 M can be described to within experimental uncertainty using
  相似文献   

3.
The steady state dissolution rate of San Carlos olivine [Mg1.82Fe0.18 SiO4] in dilute aqueous solutions was measured at 90, 120, and 150 °C and pH ranging from 2 to 12.5. Dissolution experiments were performed in a stirred flow-through reactor, under either a nitrogen or carbon dioxide atmosphere at pressures between 15 and 180 bar. Low pH values were achieved either by adding HCl to the solution or by pressurising the reactor with CO2, whereas high pH values were achieved by adding LiOH. Dissolution was stoichiometric for almost all experiments except for a brief start-up period. At all three temperatures, the dissolution rate decreases with increasing pH at acidic to neutral conditions with a slope of close to 0.5; by regressing all data for 2 ? pH ? 8.5 and 90 °C ? T ? 150 °C together, the following correlation for the dissolution rate in CO2-free solutions is obtained:
  相似文献   

4.
Dissolution and precipitation rates of low defect Georgia kaolinite (KGa-1b) as a function of Gibbs free energy of reaction (or reaction affinity) were measured at 22 °C and pH 4 in continuously stirred flowthrough reactors. Steady state dissolution experiments showed slightly incongruent dissolution, with a Si/Al ratio of about 1.12 that is attributed to the re-adsorption of Al on to the kaolinite surface. No inhibition of the kaolinite dissolution rate was apparent when dissolved aluminum was varied from 0 and 60 μM. The relationship between dissolution rates and the reaction affinity can be described well by a Transition State Theory (TST) rate formulation with a Temkin coefficient of 2
  相似文献   

5.
The effect of pH on the kinetics of smectite (K-montmorillonite) dissolution was investigated at 25 °C in batch and stirred flow-through reactors over the pH range of 1-13.5, in KNO3 solutions. Dissolution rates were obtained based on the release of Si and Al at steady-state under far from equilibrium conditions. Dissolution was non-stoichiometric between pH 5 and 10, due to adsorption/precipitation of Al. Dissolution rates computed from batch and flow-through experiments were consistent, irrespective of the Si and Al concentrations. Sample pre-treatment and the interlayer cation do not affect the steady-state dissolution rate or stoichiometry of cation release. The rate dependence on pH can be described by:
  相似文献   

6.
Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of “soil” phytoliths ( at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pHIEP = 1.2 ± 0.1 and 2.5 ± 0.2 for “soil” (native) and “heated” (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-pK surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ? pH ? 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation:
  相似文献   

7.
Potentiometric measurements of the stoichiometric constants for the dissociation of carbonic acid in NaCl solutions ( and ) have been made as a function of molality (0-6 m) and temperature (0-50 °C). The results have been fitted to the equations
  相似文献   

8.
In light of recent work on the reactivity of specific sites on large (hydr)oxo-molecules and the evolution of surface topography during dissolution, we examined the ability to extract molecular-scale reaction pathways from macroscopic dissolution and surface charge measurements of powdered minerals using an approach that involved regression of multiple datasets and statistical graphical analysis of model fits. The test case (far-from-equilibrium quartz dissolution from 25 to 300 °C, pH 1-12, in solutions with [Na+] ? 0.5 M) avoids the objections to this goal raised in these recent studies. The strategy was used to assess several mechanistic rate laws, and was more powerful in distinguishing between models than the statistical approaches employed previously. The best-fit model included three mechanisms—two involving hydrolysis of Si centers by H2O next to neutral (>Si-OH0) and deprotonated (>Si-O) silanol groups, and one involving hydrolysis of Si centers by OH. The model rate law is
  相似文献   

9.
Gypsum precipitation kinetics were examined from a wide range of chemical compositions , ionic strengths (4.75-10 m) and saturation state with respect to gypsum (1.16-1.74) in seeded batch experiments of mixtures of Ca2+-rich Dead Sea brine and -rich seawater. Despite the variability in the experimental solutions, a single general rate law was formulated to describe the heterogeneous precipitation rate of gypsum from these mixtures:
  相似文献   

10.
The composition of carbonate minerals formed in past and present oceans is assumed to be significantly controlled by temperature and seawater composition. To determine if and how temperature is kinetically responsible for the amount of Mg incorporated in calcite, we quantified the influence of temperature and specific dissolved components on the complex mechanism of calcite precipitation in seawater. A kinetic study was carried out in artificial seawater and NaCl-CaCl2 solutions, each having a total ionic strength of 0.7 M. The constant addition technique was used to maintain [Ca2+] at 10.5 mmol kg−1 while [] was varied to isolate the role of this variable on the precipitation rate of calcite.Our results show that the overall reaction of calcite precipitation in both seawater and NaCl-CaCl2 solutions is dominated by the following reaction:
  相似文献   

11.
The stability of yttrium-acetate (Y-Ac) complexes in aqueous solution was determined potentiometrically at temperatures 25-175 °C (at Ps) and pressures 1-1000 bar (at 25 and 75 °C). Measurements were performed using glass H+-selective electrodes in potentiometric cells with a liquid junction. The species YAc2+ and were found to dominate yttrium aqueous speciation in experimental solutions at 25-100 °C (log [Ac] < −1.5, pH < 5.2), whereas at 125, 150 and 175 °C introduction of into the Y-Ac speciation model was necessary. The overall stability constants βn were determined for the reaction
  相似文献   

12.
The ultraviolet spectra of dilute, aqueous arsenic (III)-containing solutions have been measured from 25 to 300 °C at the saturated vapour pressure. From these measurements, the equilibrium constant was obtained for the reaction
  相似文献   

13.
Solubility and dissolution rate of silica in acid fluoride solutions   总被引:1,自引:0,他引:1  
We performed 57 batch reactor experiments in acidic fluoride solutions to measure the dissolution rate of quartz. These rate data along with rate data from published studies were fit using multiple linear regression to produce the following non-unique rate law for quartz
where 10−5.13 < aHF < 101.60, −0.28 < pH < 7.18, and 298 < T < 373 K. Similarly, 97 amorphous silica dissolution rate data from published studies were fit by multiple linear regression to produce the following non-unique rate law for amorphous silica
where 10−2.37 < aHF < 101.61, −0.32 < pH < 4.76 and 296 < T < 343 K. Regression of the rates versus other combinations of solution species, e.g.  + H+, F + H+, HF + , HF + F, or  + F, produced equally good fits. Any of these rate laws can be interpreted to mean that the rate-determining step for silica dissolution in fluoride solutions involves a coordinated attack of a Lewis acid, on the bridging O atom and a Lewis base on the Si atom. This allows a redistribution of electrons from the Si–O bond to form a O–H group and a Si–FH group.  相似文献   

14.
The speciation of samarium (III) in chloride-bearing solutions was investigated spectrophotometrically at temperatures of 100-250 °C and a pressure of 100 bars. The simple hydrated ion, Sm3+, is predominant at ambient temperature, but chloride complexes are the dominant species at elevated temperatures. Cumulative formation constants for samarium chloride species were calculated for the following reactions:
  相似文献   

15.
Lead speciation in many aqueous geochemical systems is dominated by carbonate complexation. However, direct observations of Pb2+ complexation by carbonate ions are few in number. This work represents the first investigation of the equilibrium over a range of ionic strength. Through spectrophotometric observations of formation at 25 °C in NaHCO3-NaClO4 solutions, formation constants of the form were determined between 0.001 and 5.0 molal ionic strength. Formation constant results were well represented by the equation:
  相似文献   

16.
The effect of pH and Gibbs energy on the dissolution rate of a synthetic Na-montmorillonite was investigated by means of flow-through experiments at 25 and 80 °C at pH of 7 and 9. The dissolution reaction took place stoichiometrically at 80 °C, whereas at 25 °C preferential release of Mg over Si and Al was observed. The TEM-EDX analyses (transmission electronic microscopy with quantitative chemical analysis) of the dissolved synthetic phase at 25 °C showed the presence of newly formed Si-rich phases, which accounts for the Si deficit. At low temperature, depletion of Si concentration was attributed to incongruent clay dissolution with the formation of detached Si tetrahedral sheets (i.e., alteration product) whereas the Al behaviour remains uncertain (e.g., possible incorporation into Al-rich phases). Hence, steady-state rates were based on the release of Mg. Ex situ AFM measurements were used to investigate the variations in reactive surface area. Accordingly, steady-state rates were normalized to the initial edge surface area (11.2 m2 g−1) and used to propose the dissolution rate law for the dissolution reactions as a function of ΔGr at 25 °C and pH∼9:
  相似文献   

17.
The effect of pH on the kinetics of smectite (K-montmorillonite) dissolution was investigated at 50 and 70 °C in stirred flow-through reactors over the pH range of 1-13.5. Experiments done at very acidic and very basic pH were far from equilibrium. Near neutral pH experiments were closer to equilibrium. The Al/Si release ratio, while initially being incongruent, ultimately approached the stoichiometric value in most of the experiments. Temperature, extreme pH, and time favor congruency. Rates can be described by:
  相似文献   

18.
Partitioning of strontium during spontaneous calcite formation was experimentally studied using an advanced CO2-diffusion technique. Results at different precipitation rates and T = 5, 25, and 40 °C show that at constant temperature Sr incorporation into calcite is controlled by the precipitation rate (R in μmol/m2/h) according to the individual expressions
  相似文献   

19.
The speciation of Nd(III), Sm(III), and Er(III) in sulfate-bearing solutions has been determined spectrophotometrically at temperatures from 25 to 250 °C and a pressure of 100 bars. The data obtained earlier on the speciation of Nd in sulfate-bearing solutions (Migdisov et al., 2006) have been re-evaluated and corrected using a more appropriate activity model and are compared with the corresponding data for Sm(III) and Er(III) and new data for Nd(III). Based on this comparison, the dominant species in the solution are interpreted to be and , with the latter complex increasing in importance at higher temperature. Equilibrium constants were calculated for the following reactions:
  相似文献   

20.
Comparative concentrations of carbonate and hydroxide complexes in natural solutions can be expressed in terms of reactions with bicarbonate that have no explicit pH dependence (). Stability constants for this reaction with n = 1 were determined using conventional formation constant data expressed in terms of hydroxide and carbonate. Available data indicate that stability constants appropriate to seawater at 25 °C expressed in the form are on the order of 104.2 for a wide range of cations (Mz+) with z = +1, +2 and +3. Φ1 is sufficiently large that species appear to substantially dominate MOHz−1 species in seawater. Evaluations of comparative stepwise carbonate and hydroxide stability constant behavior leading to the formation of n = 2 and n = 3 complexes suggest that carbonate complexes generally dominate hydroxide complexes in seawater, even for cations whose inorganic speciation schemes in seawater are currently presumed to be strongly dominated by hydrolyzed forms (). Calculated stability constants, and , indicate that the importance of carbonate complexation is sufficiently large that carbonate and hydroxide complexes would be generally comparable even if calculated Φ2 and Φ3 values are overestimated by two or more orders of magnitude. Inclusion of mixed ligand species in carbonate-hydroxide speciation models allows cation complexation intensities (MT/[Mz+]) to be expressed in the following form:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号