首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diclofenac(DCF) is one of the most frequently detected pharmaceuticals in groundwater, posing a great threat to the environment and human health due to its toxicity. To mitigate the DCF contamination,experiments on DCF degradation by the combined process of zero-valent iron nanoparticles(nZVI) and nano calcium peroxide(nCaO_2) were performed. A batch experiment was conducted to examine the influence of the adding dosages of both nZVI and nCaO_2 nanoparticles and pH value on the DCF removal.In the meantime, the continuous-flow experiment was done to explore the sustainability of the DCF degradation by jointly adding nZVI/nCaO_2 nanoparticles in the reaction system. The results show that the nZVI/nCaO_2 can effectively remove the DCF in the batch test with only 0.05 g/L nZVI and 0.2 g/L nCaO_2 added, resulting in a removal rate of greater than 90% in a 2-hour reaction with an initial pH of 5. The degradation rate of DCF was positively correlated with the dosage of nCaO_2, and negatively correlated with both nZVI dosage and the initial pH value. The order of significance of the three factors is identified as pH value nZVI dosage nCaO_2 dosage. In the continuous-flow reaction system, the DCF removal rates remained above 75% within 150 minutes at the pH of 5, with the applied dosages of 0.5 g/L for nZVI and 1.0 g/L for nCaO_2. These results provide a theoretical basis for the nZVI/nCaO_2 application to remove DCF in groundwater.  相似文献   

2.
In the last years, it has been proven that zero-valent iron nanoparticles, including those produced using green methods, are efficient remediation agents for a wide range of target contaminants. However, apart from the known advantages of these green nanomaterials, the knowledge of how they act on distinct contaminants is not yet fully understood and requires further investigation. The objectives of this work were to study the degradation of a common antibiotic, amoxicillin, in water and in a sandy soil using green zero-valent iron nanoparticles (gnZVIs) as reductants and as catalysts for the Fenton reaction. It represents the first study of the use of gnZVI, as alternative for the zero-valent iron nanoparticles produced with sodium borohydride, for the degradation of amoxicillin. The results of the performed tests indicate that gnZVIs have the potential to be used in remediation processes. In both chemical tests, the gnZVI was able to degrade up to 100% of amoxicillin in aqueous solutions, using an amoxicillin/gnZVI molar ratio of 1:15 when applied as a reductant, and an amoxicillin/H2O2/gnZVI molar ratio of 1:13:1 when applied as a catalyst for the Fenton reaction. The soil tests showed that the required molar ratios for near complete degradation were higher in the reduction test (1:150) than in the gnZVI-catalyzed Fenton reaction (1:1290:73). This is possibly due to parallel reactions with the soil matrix and/or limitations of the reagents to reach the entire soil sample. The degradation efficiencies obtained in these tests were 55 and 97% for the reduction and catalyzed Fenton processes, respectively.  相似文献   

3.
林丹彤  胡黎明 《岩土力学》2022,43(2):337-344
纳米零价铁在多孔介质中的运动能力影响其作为污染地下水修复材料的应用潜力。已有研究多采用一维柱试验研究纳米零价铁的运动行为,对于其二维运动行为的报道有限。自主研发了模拟多孔介质中纳米颗粒运动的模型试验系统,采用细、中、粗3种不同粒径的玻璃珠模拟土体,通过取样测量和图像分析等方法获得了磷负载纳米铁在多孔介质中的运动行为。一维柱试验结果表明磷负载纳米铁在中玻璃珠和粗玻璃珠中均有一定的运动能力,其液相回收率分别为50.3%和41.0%,而在细玻璃珠中运动能力较差;二维模型试验表明磷负载纳米铁在中玻璃珠中的滞留量随距离逐渐降低,而在粗玻璃珠中则呈现出滞留量随距离先升高后降低的趋势。由模型试验结果分析可知,磷负载纳米铁的运动和滞留过程与多孔介质孔隙结构和流速密切相关,颗粒阻塞与表面沉积等不同物理过程的共同作用导致了其在不同粒径多孔介质中运动特性的差异。研究成果可用于评估磷负载纳米铁的运动能力及分析其在多孔介质中的运移和滞留机制,为纳米零价铁技术的工程应用和环境风险评价提供参考依据。  相似文献   

4.
纳米零价铁地下水修复技术的最新研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
纳米零价铁(NZVI)是粒径在1~100nm之间的铁颗粒,它的比表面积和反应活性远远大于普通铁屑和铁粉,可以直接注入到含水层的重污染区,形成一个高效的原位反应带,灵活、高效、低成本地治理地下水污染。NZVI不仅可以降解各种卤代烃,还可以降解部分不含卤族元素的有机污染物,吸附或降解地下水中的重金属离子和多种无机阴离子。NZVI地下水修复技术在发达国家已经得到工程应用并正在迅速推广,原位场地因素对NZVI地下水修复效果的影响是今后该领域重要发展方向。NZVI在含水层中的有效分散和运移是今后NZVI用于地下水修复的主要突破点。  相似文献   

5.
A survey of U.S. east coast estuaries confirms that large-scale rapid removal of iron from river water is a general phenomenon during estuarine mixing. The river-borne ‘dissolved’ iron consists almost entirely of mixed iron oxide-organic matter colloids, of diameter less than 0.45 μm, stabilized by the dissolved organic matter. Precipitation occurs on mixing because the seawater cations neutralize the negatively charged iron-bearing colloids allowing flocculation. The process has been duplicated in laboratory experiments using both natural filtered and unfiltered river water and a synthetic colloidal goethite in 0.05 μm filtered water. The colloidal nature of the iron has been further confirmed by ultracentrifugation and ultrafiltration. A major consequence of the precipitation phenomena is to reduce the effective input of ‘dissolved’ iron to the ocean by about 90% of the primary river value, equivalent to a concentration of less than 1 μmol per liter of river water.  相似文献   

6.
岩浆-热液系统中铁的富集机制探讨   总被引:8,自引:17,他引:8  
与岩浆-热液系统有关的铁矿类型有岩浆型钒钛磁铁矿床、玢岩铁矿、矽卡岩型铁矿和海相火山岩型铁矿,与这些铁矿有关的岩浆岩从基性-超基性、中性到中酸性岩均有,其中岩浆型钒钛磁铁矿床与基性-超基性深成侵入岩有关,形成于岩浆阶段,主要与分离结晶作用有关,但是厚大的富铁矿石的形成则可归结于原始的富铁钛苦橄质岩浆、分离结晶作用、多期次的岩浆补充以及流动分异等联合过程。钒钛磁铁矿石产于岩体下部还是上部与母岩浆的氧逸度有关:高的氧逸度导致磁铁矿早期结晶而使得其堆积于岩体的下部,相反,低氧逸度则导致低品位的浸染状矿石产于岩体的上部。虽然野外一些证据表明,元古宙斜长岩中的磷铁矿石可能是不混溶作用形成的,但是目前尚无实验证据。某些玢岩铁矿的一些磷灰石-磁铁矿石可能与闪长质岩浆同化混染了地壳中的磷导致的不混溶作用有关。除此之外,其他各类与岩浆作用有关的铁矿床均与岩浆后期的岩浆-热液作用有关。这些不同类型铁矿床的蚀变和矿化过程具有相似性,反映了它们形成过程具有相似的物理化学条件。成矿实验以及流体包裹体研究表明,岩浆-流体转换过程中出溶流体的数量以及成分受多种因素控制,其中岩浆分离结晶作用以及碳酸盐地层和膏盐层的混染可导致出溶的流体中Cl浓度的升高。早期高氧逸度环境可以使得硫以SO42-形式存在,抑制硫与铁的结合形成黄铁矿,有利于铁在早期以Cl的络合物发生迁移。大型富铁矿的形成需要一个长期稳定的流体对流循环系统,而岩浆的多期侵位或岩浆房以及在相对封闭的环境中(需要一个不透水层)一个有利于流体循环的断裂/裂隙系统是形成一个长期稳定的流体对流循环系统的必要条件。但是由于不同地质环境,流体中铁的卸载方式和位置会有明显差别,由此导致不同的矿石结构构造和不同的矿体产状。  相似文献   

7.
Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. In this study, a novel approach using nanoscale zero-valent iron (nZVI or ‘nano-iron’) as a tracer was developed for detecting fracture flow paths directly. Generally, only a few rock fractures are permeable while most are much less permeable. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet. A series of field experiments were conducted in two wells in fractured rock at a hydrogeological research station in Taiwan, to test the cross-hole migration of the nano-iron tracer through permeable connected fractures. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. This study has demonstrated that integrating the nano-iron tracer test with flowmeter measurement has the potential to characterize preferential flow paths in fractured rock.  相似文献   

8.
9.
Trichloropropane(TCP) is a chlorinated solvent which derives from chemical manufacturing as a precursor, and it is also an important constituent of solvent formulations in cleaning/degreasing operations. The control and remediation of TCP in polluted sites is a challenge for many conventional remediation techniques due to its refractory behaviour. This challenge in mind, some nano-materials and oxidants were tested to evaluate their effectiveness as in TCP degradation in a laboratory setting. Experimental results indicate that the use of nanoscale zero-valent iron prepared by green tea(GT) as a reductant has negligible degradation effect on TCP under normal temperature and pressure conditions. However, zinc powders of similar size but higher surface reactivity, demonstrated stronger dechlorination capacity in the breakdown of TCP, as almost all of TCP was degraded by carboxymethocel(CMC) stabilized nanoscale zinc within 24 h. Activated persulfate by citric acid(CA) and chelated Fe(Ⅱ) was also used for TCP treatment with a TCP removal efficiency rate of nearly 50% within a 24 h reaction period, and a molar ratio of S_2O_8~(2-), Fe~(2+) and CA is 20:5:1. Both the reduction and oxidation reactions are in accordance with the pseudo-first order kinetic equation. These results are promising for future use of TCP for the remediation of polluted sites.  相似文献   

10.
Reactive mixtures to be used in a permeable reactive barrier (PRB) for the treatment of low quality groundwater derived from a mine waste rock storage site were evaluated. Low pH drainage water from the site contained high concentrations of sulfate and dissolved metals, including Al, Co, Ni, and Zn. Column experiments were conducted to evaluate whether mixtures containing either peat moss (as an organic carbon source) or a mixture of peat moss and granular zero-valent iron (ZVI) filings, in addition to small amounts of lime and/or limestone, were suitable treatment materials for removing these metals from the water. The experimental results showed that the mixtures promote bacterially-mediated sulfate reduction and metal removal by precipitation of metal sulfides, metal carbonate/hydroxide precipitation, and adsorption under relatively high pH conditions (pH of 7–8). Both reactive mixtures removed influent dissolved metals to near or below the limit of detection in the effluent throughout the experiment; however, influent-level concentrations of the metals of interest gradually moved through the column containing peat alone, as the pH neutralizing ability in the mixture was consumed. In contrast, the column containing both peat and ZVI showed very little breakthrough of the influent metals, suggesting that the longevity of the mixture including ZVI will be much longer than the mixture containing peat alone. The results show that both reactive mixtures should be effective in a PRB installation as long as neutral pH conditions and microbial activity are maintained. The cost to performance ratio of the two reactive mixtures will be a key factor in determining which mixture is best suited for a particular site.  相似文献   

11.
Nanoscale zero-valent iron particles(NZVI) produced by using green tea(GT) extract as a reductant can remove Cr(Ⅵ) from water effectively,which can be utilized in groundwater remediation.In order to define the reaction mechanism and removal effect in the aquifer,in this study,GT-NZVI particles were prepared and measured by some characterization methods to define their surface performance,and then batch and one-dimensional experiments were carried out to reveal the reaction properties of GT-NZVI ...  相似文献   

12.
A small-scale field test was initiated in September 1994 to evaluate the in situ remediation of groundwater contaminated with chromate using a permeable reactive barrier composed of a mixture of zero-valent Fe, sand and aquifer sediment. The site used was an old chrome-plating facility located on a U.S. Coast Guard air base near Elizabeth City, North Carolina. Dissolved chromate concentrations were reduced to less than 0.01 mg/L via reduction from Cr(VI) to Cr(III) as a result of the corrosion of the Fe. As the Fe corrodes, pH increases, oxidation-reduction potential declines, dissolved oxygen is consumed, and Fe(II) is generated. Mineral phases formed as a result of the Fe corrosion include ferrous sulfides and various Fe oxides, hydroxides, and oxyhydroxides.  相似文献   

13.
14.
纳米零价铁(nZVI)存在易团聚、钝化和迁移性差等问题,影响对六价铬[Cr(VI)]污染地下水的原位修复效果。为了开发一种低成本、绿色的nZVI改性材料,以球磨生物炭(BC)为载体负载nZVI,构建了nZVI@BC反应体系,再利用羧甲基纤维素(CMC)稳定nZVI@BC,合成了一种新型高效、抗钝化纳米级别的修复材料CMC-nZVI@BC。对改性前后的nZVI进行表征分析,探究了材料添加量、Cr(VI)初始质量浓度、初始pH值、温度及地下水化学组分对CMC-nZVI@BC去除Cr(VI)的影响,并阐明去除Cr(VI)的机理。得出如下结论:(1)铁碳质量比为2∶1时的nZVI@BC对Cr(VI)的去除效果最好, 3 h内0.6 g/L CMC-nZVI@BC对50 mg/L Cr(VI)的去除率达99.9%,表现出较高的去除Cr(VI)的速率和能力;(2)去除Cr(VI)的主要机制是通过还原和沉淀反应;(3)在pH值2~10范围内,pH值对去除Cr(VI)有显著影响,温度影响较小;(4)${\mathrm{SO}}_4^{2-}$的存在促进了Cr(VI)的去除,而${\mathrm{HCO}}_3^{-} $、${\mathrm{NO}}_3^{-} $、Ca2+、Mg2+和腐殖酸对Cr(VI)的去除均有不同程度的抑制作用。这些结果表明,CMC-nZVI@BC可以作为有效去除Cr(VI)的原位修复药剂,为nZVI在地下水原位修复的应用提供了依据。  相似文献   

15.
16.
周俊鹏 《江苏地质》2019,43(2):222-228
辽宁本溪地区为我国重要的鞍山式铁矿富集区,研究该地区含铁建造的显微构造变形机制,对系统研究区内含铁建造的沉积演化过程具有重要意义。研究表明,该处岩石经历了2期强烈韧性变形作用改造,依据重结晶作用类型和主要显微结构,变形作用发生在绿片岩岩相条件下。利用古差值应力大小测量,确定该地区含铁建造岩石变形古应力值为27.36~36.88 MPa;剪应变值在11.342~18.555 MPa之间,并具有左旋剪切性质。  相似文献   

17.
Environmental contamination resulting from dyes has become a serious concern for today’s world. The textile effluents are highly colored, and the disposal of these in water bodies causes severe damage to the environment by reducing the solar light penetration which may affect the photosynthetic activity and the aquatic life in water. Further, the high water solubility of dyes also leads to surface and ground water contamination. Thus, in this study, we attempt to develop a cost-effective and eco-friendly method for removal of toxic dyes from aqueous using biosynthesized iron nanoparticles (INPs). Various complimentary instruments such as a thermogravimetric analysis, scanning electron microscopy/energy dispersive X-ray spectrometer, and X-ray diffraction were employed for identification and characterization of INPs. The biosynthesized INPs were applied as a Fenton-like catalyst for decolorization of toxic dyes solution like methylene blue, methyl orange, allura red, brilliant blue, and green S using hydrogen peroxide under solar radiation. The decolorization of the toxic dyes solution using INPs was monitored by UV–visible spectrophotometer, and the data obtained were utilized to evaluate the kinetic rate of the reactions. The kinetic data suggest that the decolorization of all studied toxic dyes solution follows first-order rate with rate constant values in the range of 13.1 × 10?3–17.7 × 10?3 min?1. Therefore, such a clean method employing non-toxic plant extract in INP synthesis and the application of INPs as a Fenton-like catalyst in toxic dyes decolorization can be considered as an alternative technique to the expensive and toxic chemical methods.  相似文献   

18.
Iron silicate minerals (bronzite, fayalite), exposed to aqueous dissolution in the laboratory for up to 60 days at room temperature and pH 1, 1.5, and 6, have been studied for evidence of changes in surface composition, using XPS, and these results compared with those obtained from solution chemical analysis. In the absence of dissolved O2 or at low pH (1–1.5) dissolution proceeds congruently after the initial formation of a thin (<10 Å) protonated surface layer depleted in Fe relative to Si. This layer is unstable and does not grow with time as attested to by long term congruent dissolution and by the formation of an amorphous silica surficial breakdown product at pH 1 and 1.5. In bronzite the layer is also slightly depleted in Mg but much less than it is in Fe due to the preferential occupation by Fe+2 of more weakly bonded M2 sites. The behavior of the layer is similar to that found earlier on iron-free pyroxene (Schottet al., 1981); in other words, because of its thinness and instability it is not diffusion-inhibiting or protective toward dissolution.In the presence of dissolved O2, as would be the case in most weathering solutions, dissolution of bronzite and fayalite results in the formation of two surface layers whose compositions were deduced by measurements of XPS binding energies. The outer layer, consisting of hydrous ferric oxide, is readily removed by ultrasonic cleaning and, most likely, is not protective toward dissolution. The inner layer consists of Fe+3 in a protonated or hydroxylated silicate (Mg-silicate in the case of bronzite) matrix. This layer appears to impede dissolution over the time scale of the experiment as attested to by parabolic dissolution rates. However, the layer does not continue to grow on the time scale of weathering because ultrasonically cleaned soil grains (Berner and Schott, 1982) exhibit surface compositions similar to those found in the present month-long laboratory experiments. In other words, a thick, highly altered, diffusion-inhibiting, protective surface layer does not form at the acidic pH of most soils.  相似文献   

19.
什根特铁矿赋存于康布铁堡组火山沉积岩系中,矿体呈层状、透镜状、脉状,受地层控制。同时发育矽卡岩及磁铁矿化。矿床形成经历了火山沉积期(主成矿期),岩浆热液期(矽卡岩型矿化)和区域变质期。火山沉积期和岩浆热液期退化蚀变阶段的磁铁矿均具有富Fe,贫Si、Ti、V、Mg、Mn特点;磁铁矿稀土元素配分模式和原始地幔标准化蛛网图具有相似曲线变化特征,指示火山沉积期和退化蚀变阶段的铁矿化具有相同的物质来源,即来自基性火山岩。早期矽卡岩阶段石榴子石中流体包裹体均一温度为160~403℃,集中在180~260℃,盐度集中在5%~9%(质量分数,Na Cleq,下同),δD介于-134‰~-125‰,δ18OH2O值为4.7‰~8.6‰,表明流体为岩浆水。石英碳酸盐阶段流体包裹体均一温度为140~536℃,主要集中在160~340℃,盐度集中在6%~16%,表明流体具有从高温演化到低温、中低盐度和中低密度的特征,石英的δD介于-98‰~-95‰,δ18OH2O值为-0.6‰~2.0‰,表明该阶段流体来自岩浆水混合大气降水。  相似文献   

20.
The interaction of oleic acid with fluorite, calcite and barite has been studied using solubility, oleate abstraction, electrophoretic mobility and Hallimond-tube flotation measurements. Abstraction of oleate from aqueous solution corresponds to the precipitation of the metal oleate. Multilayers of metal oleate inhibits the dissolution of the minerals and prevents true equilibrium from being obtained. Flotation is not only dependent on the amount of oleate abstracted but also on the strength of adhesion of the precipitated metal oleate to the minerals. Selectivity between the flotation of calcite, fluorite and barite is unlikely to be obtained by varying the pH because similar responses are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号