首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen isotopic composition of land-snail shells may provide insight into the source region and trajectory of precipitation. Last glacial maximum (LGM) gastropod shells were sampled from loess from Belgium to Serbia and modern land-snail shells both record δ18O values between 0‰ and − 5‰. There are significant differences in mean fossil shell δ18O between sites but not among genera at a single location. Therefore, we group δ18O values from different genera together to map the spatial distribution of δ18O in shell carbonate. Shell δ18O values reflect the spatial variation in the isotopic composition of precipitation and incorporate the snails' preferential sampling of precipitation during the warm season. Modern shell δ18O decreases in Europe along a N-S gradient from the North Sea inland toward the Alps. Modern observed data of isotopes in precipitation (GNIP) demonstrate a similar trend for low-altitude sites. LGM shell δ18O data show a different gradient with δ18O declining toward the ENE, implying a mid-Atlantic source due to increased sea ice and a possible southern displacement of the westerly jet stream. Balkan LGM samples show the influence of a Mediterranean source, with δ18O values decreasing northward.  相似文献   

2.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

3.
The fluid composition, δD of channel H2O, and δ18O of lattice oxygen have been determined in beryl and emerald from a variety of geological environments and used to constrain the origin of the parental fluids from which beryl has grown. Step-heating analyses performed by quadrupolar mass spectrometry were used to quantify the composition of the fluid phases in beryl from granitic pegmatites and greisens and emerald from Brazil, Colombia, and Afghanistan. An important conclusion is that beryl and emerald have a similar fluid composition, with concentrations of H2O being greater than 90% of the total water in the mineral irrespective of the age of formation (2.0 Ga to 32 Ma) and tectonic settings. However, the Brazilian Santa Terezinha shear-zone emerald deposit contains abundant CO2, up to 13 wt% of the total fluid. A second conclusion is that the channel H2O content for some Brazilian emeralds is higher than the range defined for beryl in the literature, especially for those related to the shear-zone type (2.99 lt; H2O < 3.16 wt%) and the pegmatite type from the Pombos, Pela Ema, and Pirenopolis deposits (2.78 < H2O < 3.01 wt%). Colombian emeralds have very low H2O contents (1.30 < H2O < 1.96 wt%), among the lowest in the world.

Brazilian, Colombian, and Afghanistani emeralds have contrasting and restricted ranges of δ18O values. In Brazil, emeralds related to pegmatites have a systematic δ18O inter-deposit variability (+6.3 < δ18O < +12.4‰). The calculated δ18O of the fluid was buffered by the host ultrabasic rocks during fluid-rock interaction. Emerald and cogenetic phlogopite related to shear-zone-type deposits have a quite restricted δ18O range (+12.0 < δ18O 7lt; +12.4‰); the calculated is interpreted to represent the original isotopic composition of the hydrothermal fluid. Relative to Brazil, the δ18O of Colombian and Afghanistani emeralds shows strong enrichment in 18O (+13.4 < δ18O < +23.6‰), and the high calculated δ18O of the fluid suggests extensive reaction with 18O-rich sedimentary or metasedimentary rocks.

In Brazil, the δD composition of channels in emerald and the calculated δ18OH2O for phlogopite are compatible with both magmatic and metamorphic origins. A magmatic origin is supported for emeralds associated with the pegmatitic Socotó and Carnaiba deposits (mean δD = ?37.8 ± 8‰) and a metamorphic origin is suggested for the Santa Terezinha shear-zone type (mean δD = ?32.4 ± 3‰). A metamorphic origin is proposed for Colombian emeralds. Afghanistani emeralds have a δD composition of channels (mean δD = ?46.3 ± 1.3‰) that is compatible with both magmatic and metamorphic origins.  相似文献   

4.
In situ analysis reveals that eclogite-facies garnets are zoned in δ18O with lower values in the core and rims that are ~1.5 to 2.5 ‰ higher. This pattern is present in 9 out of 12 garnets analyzed by SIMS from four orogenic eclogite terranes, and correlates with an increase in the mole fraction of pyrope and Mg/Fe ratio from core to rim, indicating prograde garnet growth. At the maximum temperatures and the time-scales experienced by these garnets, calculated intragranular diffusion distances for oxygen are small (<5 μm), indicating that δ18O records primary growth zoning and not diffusive exchange. The oxygen isotope gradients are larger than could form due to temperature changes during closed-system mineral growth. Thus, gradients reflect the compositions of fluids infiltrating during prograde metamorphism. Values of δ18O in garnet cores range from ?1 to 15 ‰, likely preserving the composition of the eclogite protoliths. Two garnet cores from the Almenningen eclogite in the Western Gneiss Region, Norway, have δ18O ~?1 ‰ and are the first negative δ18O eclogites identified in the region. In contrast with orogenic eclogites, seven high δ18O garnets (>5 ‰) from two kimberlites are homogeneous in δ18O, possibly due to diffusive exchange, which is possible for prolonged periods at higher mantle temperatures. Homogeneity of δ18O in garnets outside the normal mantle range (5–6 ‰) may be common in kimberlitic samples.  相似文献   

5.
We derive equations describing the evolution of the carbon and oxygen isotope composition of the bicarbonate in a calcite precipitating solution on the surface of a stalagmite using a classical Rayleigh approach. The combined effects of calcite precipitation, degassing of CO2 and the buffering effect of the water reservoir are taken into account. Whereas δ13C shows a progressive increase to a final constant value, δ18O shows an initial isotopic enrichment, which exponentially decays due to the buffering effect of the water reservoir. The calculated evolution is significantly different for both carbon and oxygen isotopes than derived in a recent paper [Dreybrodt W. (2008) Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating H2O-CO2-CaCO3 solution and the related isotopic composition of calcite in stalagmites. Geochim. Cosmochim. Acta72, 4712-4724.].Furthermore, we discuss the isotopic evolution of the bicarbonate in the solution for long residence times on the stalagmite surface, i.e., for t. The equilibrium isotope ratio of the bicarbonate is then determined by isotopic exchange between the cave atmosphere and the bicarbonate in the solution and can be calculated by equilibrium isotope fractionation. For strongly ventilated caves exchange with the cave atmosphere will result in higher δ13C and δ18O values than those observed in a pure Rayleigh distillation scenario, for sparsely ventilated caves it will result in lower δ13C and δ18O values.  相似文献   

6.
We analyzed the deuterium composition of individual plant-waxes in lake sediments from 28 watersheds that span a range of precipitation D/H, vegetation types and climates. The apparent isotopic fractionation (εa) between plant-wax n-alkanes and precipitation differs with watershed ecosystem type and structure, and decreases with increasing regional aridity as measured by enrichment of 2H and 18O associated with evaporation of lake waters. The most negative εa values represent signatures least affected by aridity; these values were −125 ± 5‰ for tropical evergreen and dry forests, −130‰ for a temperate broadleaf forest, −120 ± 9‰ for the high-altitude tropical páramo (herbs, shrubs and grasses), and −98 ± 6‰ for North American montane gymnosperm forests. Minimum εa values reflect ecosystem-dependent differences in leaf water enrichment and soil evaporation. Slopes of lipid/lake water isotopic enrichments differ slightly with ecosystem structure (i.e. open shrublands versus forests) and overall are quite small (slopes = 0-2), indicating low sensitivity of lipid δD variations to aridity compared with coexisting lake waters. This finding provides an approach for reconstructing ancient precipitation signatures based on plant-wax δD measurements and independent proxies for lake water changes with regional aridity. To illustrate this approach, we employ paired plant-wax δD and carbonate-δ18O measurements on lake sediments to estimate the isotopic composition of Miocene precipitation on the Tibetan plateau.  相似文献   

7.
INTRODUCTIONVermicular red earth is distributed widely in South China,significant for the research into Quaternary environment andglobal change. Huang (1993) discovered the evidence of human activities-popple tools in vermicular red earth of the middle-upper reaches of Hanshui Riverl Zhu et al. (1991 ) statedthat red earth was a good information carrier of global changeafter the research into tropic red earth and environment byweathered mineral and geochemistry. Zhao and Yang (1995)stud…  相似文献   

8.
9.
The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ11B has some limitations such as the knowledge of the fractionation factor (α4-3) between boric acid and the borate ion and the amplitude of “vital effects” on this proxy that are not well constrained. Using secondary ion mass spectrometry (SIMS) we have examined the internal variability of the boron isotope ratio in the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24 ± 0.1 °C) in seawater with pH ranging between 7.90 and 8.45. Intra-shell boron isotopes showed large variability with an upper limit value of ≈30‰. Our results suggest that the fractionation factor α4-3 of 0.97352 (Klochko et al., 2006) is in better agreement with our experiments and with direct pH measurements in seawater vacuoles associated with the biomineralization process in these foraminifera. Despite the large variability of the skeletal pH values in each cultured specimen, it is possible to link the lowest calculated pH values to the experimental culture pH values while the upper pH limit is slightly below 9. This variability can be interpreted as follows: foraminifera variably increase the pH at the biomineralization site to about 9. This increase above ambient seawater pH leads to a range in δ11B (Δ11B) for each seawater pH. This Δ11B is linearly correlated with the culture seawater pH with a slope of −13.1 per pH unit, and is independent of the fractionation factor α4-3, or the δ11Bsw through time. It may also be independent of the pKB (the dissociation constant of boric acid) value. Therefore, Δ11B in foraminifera can potentially reconstruct paleo-pH of seawater.  相似文献   

10.
11.
I present a numerical diffusion-advection-reaction model to simulate CO2 chemistry, δ13C, and oxidation of organic carbon and methane in sediment porewater. The model takes into account detailed reaction kinetics of dissolved CO2 compounds, H2O, H+, OH, boron and sulfide compounds. These reactions are usually assumed to be in local equilibrium, which is shown to be a good approximation in most cases. The model also includes a diffusive boundary layer across which chemical species are transported between bottom water and the sediment-water interface. While chemical concentrations and δ13CTCO2 at these locations are frequently assumed equal, I demonstrate that they can be quite different. In this case, shells of benthic foraminifera do not reflect the desired properties of bottom water, even for species living at the sediment-water interface (z = 0 cm). Environmental conditions recorded in their shells are strongly influenced by processes occurring within the sediment. The model is then applied to settings in the Santa Barbara Basin and at Hydrate Ridge (Cascadia Margin), locations of strong organic carbon and methane oxidation. In contrast to earlier studies, I show that a limited contribution of methane-derived carbon to porewater TCO2 in the Santa Barbara Basin cannot be ruled out. Simulation of methane venting shows that at oxidation rates greater than , the δ13C of porewater TCO2 at z > 1 cm is depleted by more than 15‰ relative to bottom water. Depletions of this magnitude have not been observed in living benthic foraminifera, even at methane vents with much higher oxidation rates. This suggests that foraminifera at these sites either calcify at very shallow sediment depth or during times when oxidation rates are much lower than ∼50 μmol cm−2 y−1.  相似文献   

12.
A general model has been developed to calculate changes of 18O of minerals in addition to their composition and modal abundance in metamorphic systems. A complete set of differential equations can be written to describe any chemical system in terms of the variables dP, dT, dX, dM, and d18O (X, M, and 18O refer to the chemical composition, number of moles, and oxygen isotope composition of each phase respectively). This set is composed of the differentials of five subsets of equations: (1) conditions of heterogeneous equilibrium; (2) compositional stoichiometry for each mineral; (3) mass balance for each oxide component; (4) oxygen isotope partitioning between phases; (5) conservation of the oxygen isotope ratio of the system. The variance of the complete set of equations is 2, and changes of 18O, composition, and modal abundance for each mineral can be calculated for arbitrary changes of P and T. Applications to a typical pelitic bulk composition at amphibolite and lower granulite facies conditions suggest that for systems dominated by continuous reactions such as: (a) chlorite + quartz = garnet+H2O; (b) staurolite + biotite = garnet + muscovite + H2O; or (c) garnet + muscovite = sillimanite + biotite, isopleths of mineral 18O are nearly independent of pressure, and have a spacing of about 0.1 per 10–20°C. For nearly discontinuous reactions such as: (d) garnet + chlorite + muscovite = biotite + staurolite+H2O; (e) staurolite + muscovite = biotite + aluminosilicate + garnet+H2O; or (f) muscovite + quartz = sillimanite + K-feldspar+H2O, isopleths of mineral 18O have slopes more nearly parallel to endmember reaction boundaries and 18O of phases can have a greater temperature dependence (e.g., 0.1 per 2°C for reaction d). This behavior results from relatively large amounts of reaction progress for small changes of P or T. However, the calculated exhaustion of a reactant within 0.1–5°C ensures that the predicted effects of such reactions on mineral 18O will not exceed 0.25 for typical bulk compositions. Models that allow for fractional crystallization of garnet suggest that prograde garnet zoning in pelitic assemblages will be relatively smooth until staurolite becomes unstable. At higher temperatures, garnet may develop a step of as much as 0.6 in its core-rim zoning as a result of combined garnet resorption during the continuous reaction garnet + muscovite = sillimanite + biotite and repartitioning of the garnet rim composition to relatively heavy 18O. The models are insensitive to the degree to which garnet fractionally crystallizes and to the isotope fractionation factors used; only extreme changes in modal abundance or bulk composition for a given mineral assemblage can produce significant changes in the predicted trends. In the absence of infiltration, isotopic shifts resulting from net transfer reactions for minerals in typical amphibolite, eclogite, and lower granulite facies metapelites and metabasites are inferred from the models to be 1 or less for 150°C of heating.  相似文献   

13.
Seasonal and spatial variations in the δ13C and δ18O values of the modern endogenic (thermogene) travertine deposited in a calcite-depositing canal at Baishuitai, Yunnan, SW China were examined to understand their potential for paleoclimatic and paleoenvironmental implications. The sampling sites were set in the upstream, middle reach and downstream of the canal, and the modern endogenic travertine samples were collected semimonthly to measure their δ13C and δ18O values. It was found that both δ13C and δ18O values of the endogenic travertine were low in the warm rainy season and high in the cold dry season, and correlated with each other. The low δ18O values in warm rainy season were mainly related to the higher water temperature and the lower δ18O values of rainwater, and the low δ13C values are caused by the dilution effect of overland flow with low δ13C values in the warm rainy season and the reduced CO2-degassing of canal-water caused by the dilution effect of the overland flow. The linear negative correlation between the travertine δ18O (or δ13C) values and rainfall amount may be used for paleo-rainfall reconstruction if one knows the δ18O (or δ13C) values of the fossil endogenic travertine at Baishuitai though the reconstruction was not straightforward. It was also found that there was a progressive downstream increase of the δ18O and δ13C values of the travertine along the canal, the former being mainly due to the preferential evaporation of H216O to the atmosphere and the latter to the preferential release of 12CO2 to the atmosphere during CO2-degassing. However, the downstream increase of the travertine δ18O and δ13C values was less intensive in rainy season because of the reduced evaporation and CO2-degassing during the rainy season. To conclude, the downstream travertine sites could be more favorable for the paleo-rainfall reconstruction while the upstream travertine sites are more favorable for the paleo-temperature reconstruction. So, this study demonstrates that endogenic travertine, like epigenic (meteogene) tufa, could also be a good candidate for high-resolution paleoclimatic and paleoenvironmental reconstruction.  相似文献   

14.
<正>The Ordos Cretaceous Groundwater Basin,located in an arid-semiarid area in northwestern China,is a large-style groundwater basin.SO_4~(2-) is one of the major harmful components in groundwater.Dissolved SO_4~(2-) concentrations,andδ~(34)S-SO_4~(2-) andδ~(18)O-SO_4~(2-) in groundwater from 14 boreholes and in gypsum from aquifer were analyzed.Results show that SO_4~(2-) in shallow groundwaters originates from precipitation,sulfide oxidation,and dissolution of stratum sulphate,with a big range ofδ~(34)S values,from-10.7‰to 9.2‰,and addition of SO_4~(2-) in deep groundwater results from dissolution of stratum sulphate,with biggerδ~(34)S values,from 7.8‰to 18.5‰,compared with those in shallow groundwater.This research also indicates that three types of sulphate are present in the strata,and characterized by highδ~(34)S values and highδ~(18)O values-style,highδ~(34)S values and middleδ~(18)O valuesstyle, middleδ~(34)S values and lowδ~(18)O values-style,respectively.Theδ~(34)S-SO_4~(2-) andδ~(18)O-SO_4~(2-) in groundwater have a good perspective for application in distinguishing different groundwater systems and determining groundwater circulation and evolution in this area.  相似文献   

15.
Isotope measurements (18O, D, 3H) indicate groundwater origin in the Lower Colorado River Valley (LCRV) and provide an alternative, or supplement, to the US Bureau of Reclamations proposed accounting surface method. The accounting surface method uses a hydraulic criterion to identify certain wells away from the flood plain that will eventually yield mainstream Colorado River water. New isotope data for 5 surface-water and 18 groundwater sites around Topock Marsh, Arizona, are compared with river-water data (1974–2002) from 11 sites between Utah and Mexico and with groundwater data from previous LCRV studies. Three groundwater sources are repeatedly identified in the LCRV: (1) local recharge derived from precipitation, usually winter rain, plots slightly below the global meteoric water line (GMWL) and has D values that are 20 greater than those of recent river water; (2) older (pre-1950) upper basin river-water plots on or near the GMWL, distinct from local rainfall and recent river water; and (3) recent (post-1950) Colorado River water, including Topock Marsh samples, plots below the GMWL along an evaporation trend. Large floods, as in 1983, complicate interpretation by routing less evaporated upper basin water into the LCRV; however, tritium content can indicate the age of a water. River-water tritium has declined steadily from its peak of 716 TU in 1967 to about 11 TU in 2002. Mixtures of all three groundwater sources are common.
Resumen Mediciones isotópicas (18O, D, 3H) indican cual es el origen del agua subterránea en el Valle Bajo del Río Colorado (LCRV) y aportan una alternativa, o complemento, para el método superficie de conteo propuesto por el Buró de Reclamación de Estados Unidos. El método superficie de conteo utiliza un criterio hidráulico para identificar ciertos pozos alejados de la planicie de inundación que eventualmente producirán agua a partir de la corriente principal del Río Colorado. Los nuevos datos isotópicos para 18 sitios de agua subterránea y 5 sitios de agua superficial cerca de los Pantanos Topock, Arizona, se comparan con datos de agua de río (1974–2002) provenientes de 11 sitios localizados entre Utah y México, y con datos de aguas subterráneas de estudios previos realizados en el LCRV. Se identifican reiteradamente tres fuentes de aguas subterráneas en el LCRV: (1) recarga local derivada de precipitación, generalmente lluvia de invierno, cuya composición cae ligeramente por debajo de la línea de agua meteórica global (GMWL) y tiene valores D que son 20 mayores que los reportados para agua de río reciente; (2) el agua de río más vieja (pre-1950) de la cuenca alta cuya composición cae sobre o cerca de la GMWL, diferente de la lluvia local y del agua de río reciente; (3) agua reciente (post-1950) del Río Colorado, incluyendo muestras de los Pantanos Topock, con composición por debajo de la GMWL a lo largo de una tendencia a la evaporación. Inundaciones grandes, como en 1983, complican la interpretación al transmitir menos agua evaporada de la cuenca alta hacia el LCRV; sin embargo, el contenido de tritio puede indicar la edad del agua. El contenido de tritio en agua de río ha disminuido constantemente desde la concentración pico de 716 TU en 1967 a cerca de 11 TU en 2002. Es común que exista mezclas de las tres fuentes de agua subterránea.

Résumé Les mesures isotopiques (d18O, dD, 3H) indiquent les origine de leaux souterraines dans la Vallée de la Rivière du Bas Colorado (LCRV) et sont une alternative, ou un supplément, à la méthode des bilans hydrologiques proposée par du «US Bureau of Reclamation». Cette méthode de bilan hydrologique utilise un critère hydraulique permettant didentifier certains puits hors de la plaine dinondation qui pomperaient une part non négligeable de leur eau dans la rivière Colorado. De nouvelles données isotopiques provenant de 5 sites deau de surface et 18 deaux souterraines autour de Topock Marsh en Arizona, sont comparées avec les données (1974–2000) de 11 sites localisés entre Utah et Mexico, ainsi que des données dautres études sur la LCRV. Ces sources deaux souterraines sont identifiées à plusieurs reprises dans la LCRV: (1) la recharge locale dérivant des précipitations, généralement les pluies hivernales, se retrouvent légèrement sous la ligne deau météoritique globale (GMWL) et possède des valeurs de dD 20% supérieures aux valeurs des eaux récentes de la rivière; (2) les eaux vieilles (pre-1950) du bassin supérieur de la rivière possèdent une valeurs très proches de la GMWL, distinctes des valeurs de la pluie locale et des eaux récentes de la rivière; et (3) les eaux récentes (post-1950) de la Rivière Colorado, incluant les échantillons de Topock Marsh, se positionnent à côté de la GMWL sur une droite dévaporation. Les grandes inondations, par exemple celle de 1983, compliquent linterprétation en reprenant dans la LCRV moins deaux marquées comme évaporées et provenant du bassin supérieur; par ailleurs le pic de tritium est descendu de 716 TU en 1967 à 11 TU en 2002. Les mélanges de ces trois sources sont assez fréquentes.
  相似文献   

16.
《Quaternary Science Reviews》1999,18(8-9):1021-1038
Time-series O isotope profiles for three U–Th dated stalagmites have revealed that for much of the Holocene, a site on the Atlantic seaboard (SW Ireland) exhibits first-order δ18O trends that are almost exactly out of phase with coupled δ18O curves from two southern European sites (SE France and NW Italy). In the Irish stalagmite (CC3 from Crag Cave, SW Ireland), low δ18O at 10,000 cal yr BP reflects cool conditions. By the early to mid-Holocene (9000–6000 cal yr BP) δ18O had increased, reflecting the onset of warmer conditions on the Atlantic seaboard. This shift to higher δ18O was accompanied by a marked increase in the stalagmite extension rate, reinforcing our interpretation that this was a period of relative warmth. Except for an episode of increased extension rate about 5500 yr ago, δ18O in the Crag stalagmite exhibits a gradual decrease, accompanied by declining extension rates between 7800 and 3500 cal yr BP, interpreted as a cooling trend. There is evidence for increases in both δ18O and stalagmite extension rate in the period from 3500 cal yr BP to the present day suggesting a return to warmer conditions on the Atlantic seaboard. In the stalagmite from NW Italy (ER76, Grotta di Ernesto, Trentino province) the early-Holocene (c. 9200-7800 cal yr BP) is characterised by high δ18O, probably indicative of warm and/or dry conditions. Exceptionally low δ18O from 7800 to 6900 cal yr BP at this site reflects a well-defined wet phase (Cerin wet phase). In the last three millennia, this stalagmite exhibits a shift to lower δ18O, interpreted as some combination of cooler and/or wetter conditions. Unlike the Irish stalagmite, the Italian sample does not show a correlation between δ18O and extension rate. Instead, its extension rate correlates roughly with δ13C, presumably reflecting a climate-driven vegetation change. In the early Holocene, δ18O in the French stalagmite (CL26, Grotte de Clamouse, Herault province, SE France) was low relative to its Holocene average. For much of the period since c. 3500 cal yr BP this stalagmite exhibits higher δ18O than in the early Holocene, suggesting warmer conditions. Like the Irish stalagmite, the French sample exhibits a well-defined correlation between δ18O and extension rate. Had drip-water availability been the dominant control on δ18O at this semi-arid site then higher δ18O would have been accompanied by lower, not higher extension rates. This suggests strongly that temperature rather than rainfall amount was the dominant control at this site. While conclusions regarding the patterns of climate variability on a continent scale must remain tentative because of the limited number of stalagmites studied we argue that early Holocene warm conditions on the Atlantic seaboard (Irish site) coincided with relatively cool conditions at the Clamouse site. By c. 3500 yr ago the pattern appears to have been reversed.  相似文献   

17.
18.
Zircon grains were separated from lunar regolith and rocks returned from four Apollo landing sites, and analyzed in situ by secondary ion mass spectrometry. Many regolith zircons preserve magmatic δ18O and trace element compositions and, although out of petrologic context, represent a relatively unexplored resource for study of the Moon and possibly other bodies in the solar system. The combination of oxygen isotope ratios and [Ti] provides a unique geochemical signature that identifies zircons from the Moon. The oxygen isotope ratios of lunar zircons are remarkably constant and unexpectedly higher in δ18O (5.61 ± 0.07 ‰ VSMOW) than zircons from Earth’s oceanic crust (5.20 ± 0.03 ‰) even though mare basalt whole-rock samples are nearly the same in δ18O as oceanic basalts on Earth (~5.6 ‰). Thus, the average fractionation of oxygen isotopes between primitive basalt and zircon is smaller on the Moon [Δ18O(WR-Zrc) = 0.08 ± 0.09 ‰] than on Earth (0.37 ± 0.04 ‰). The smaller fractionations on the Moon suggest higher temperatures of zircon crystallization in lunar magmas and are consistent with higher [Ti] in lunar zircons. Phase equilibria estimates also indicate high temperatures for lunar magmas, but not specifically for evolved zircon-forming melts. If the solidus temperature of a given magma is a function of its water content, then so is the crystallization temperature of any zircon forming in that melt. The systematic nature of O and Ti data for lunar zircons suggests a model based on the following observations. Many of the analyzed lunar zircons are likely from K, rare earth elements, P (KREEP)-Zr-rich magmas. Zircon does not saturate in normal mafic magmas; igneous zircons in mafic rocks are typically late and formed in the last most evolved portion of melts. Even if initial bulk water content is moderately low, the late zircon-forming melt can concentrate water locally. In general, water lowers crystallization temperatures, in which case late igneous zircon can form at significantly lower temperatures than the solidus inferred for a bulk-rock composition. Although lunar basalts could readily lose H2 to space during eruption, lowering water fugacity; the morphology, large size, and presence in plutonic rocks suggest that many zircons crystallized at depths that retarded degassing. In this case, the crystallization temperatures of zircons are a sensitive monitor of the water content of the parental magma as well as the evolved zircon-forming melt. If the smaller Δ18O(zircon–mare basalt) values reported here are characteristic of the Moon, then that would suggest that even highly evolved zircon-forming magmas on the Moon crystallized at higher temperature than similar magmas on Earth and that magmas, though not necessarily water-free, were generally drier on the Moon.  相似文献   

19.
Soils in the McMurdo Dry Valleys, Antarctica contain ice and considerable amounts of salt. Ice often occurs at shallow depth throughout the Dry Valleys and other areas of hyperarid permafrost, notably on Mars. This common occurrence of shallow ice is enigmatic; however, since according to published sublimation models it should disappear relatively quickly (at rates of order 0.1 mm a−1) due to vapor loss to the atmosphere. This loss may be offset by recharge from snowmelt infiltrating and freezing in the soil. Herein, we present a first quantitative estimate of this recharge based on measured vertical profiles of δD and δ18O that reveal considerable detail about the sources and sinks of ice. We model these profiles, taking into account the salt content and a soil temperature record along a 1.6 m depth profile of ∼10 ka old ice-cemented soils in Victoria Valley, Antarctica. The stable isotopes of ice are enriched in heavy isotopes at the top of the ice cement (20 cm depth); both δD and δ18O values plotted against depth exhibit a concave upward curve. At depth, the isotope composition is similar to that of Lake Victoria and modern meteoric water. The concave shape of the isotope profile is suggestive of downward advection-dispersion of snowmelt water enriched in heavy isotopes into the ice cement. Our advection-dispersion model, coupled with field data, enables us to quantify the advective flux and dispersion of melt water into the ice. The advective velocity and dispersion coefficient depend on the time since advection began and the ice-to-brine ratio; they are, respectively, of the order of 10−11-10−10 m s−1 and 10−12-10−11 m2 s−1. These values suggest that over the ∼10 ka time period, a total of 190 mm water infiltrated into the ice-cemented ground. The isotope composition and deuterium excess values of the uppermost ice cement can be modeled from snowmelt water enriched in salts using open system-Rayleigh fractionation. To develop the isotopic signature of the upper ice cement requires evaporation of ∼95% of the snowmelt water. Based on 190 mm brine infiltrating into the soil requires an initial total of ∼4 m of snowmelt water. This corresponds to ∼0.4 mm a−1 suggesting that, under the current climate condition, water from snowmelt is sufficient to compensate modeled sublimation rates, and therefore conserve ground ice in Victoria Valley.  相似文献   

20.
Understanding the relationships between speleothem stable isotopes (δ13C δ18O) and in situ cave forcing mechanisms is important to interpreting ancient stalagmite paleoclimate records. Cave studies have demonstrated that the δ18O of inorganically precipitated (low temperature) speleothem calcite is systematically heavier than the δ18O of laboratory-grown calcite for a given temperature. To understand this apparent offset, rainwater, cave drip water, groundwater, and modern naturally precipitated calcite (farmed in situ) were grown at multiple locations inside Hollow Ridge Cave in Marianna, Florida. High resolution micrometeorological, air chemistry time series and ventilation regimes were also monitored continuously at two locations inside the cave, supplemented with periodic bi-monthly air gas grab sample transects throughout the cave.Cave air chemistry and isotope monitoring reveal density-driven airflow pathways through Hollow Ridge Cave at velocities of up to 1.2 m s−1 in winter and 0.4 m s−1 in summer. Hollow Ridge Cave displays a strong ventilation gradient in the front of the cave near the entrances, resulting in cave air that is a mixture of soil gas and atmospheric CO2. A clear relationship is found between calcite δ13C and cave air ventilation rates estimated by proxies pCO2 and 222Rn. Calcite δ13C decreased linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of Δδ13CCaCO3 = −7‰. A whole-cave “Hendy test” at multiple contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ δ13C offset between calcite precipitated in a ventilation flow path and calcite precipitated on the edge or out of flow paths. This interpretation of the “Hendy test” has implications for interpreting δ13C records in ancient speleothems. Calcite δ13CCaCO3 may be a proxy not only for atmospheric CO2 or overlying vegetation shifts but also for changes in cave ventilation due to dissolution fissures and ceiling collapse creating and plugging ventilation windows.Farmed calcite δ18O was found to exhibit a +0.82 ± 0.24‰ offset from values predicted by both theoretical calculations and laboratory-grown inorganic calcite. Unlike δ13CCaCO3, oxygen isotopes showed no ventilation effects, i.e. Δδ18OCaCO3 appears to be a function of growth temperature only although we cannot rule out a small effect of (unmeasured) gradients in relative humidity (evaporation) accompanying ventilation. Our results support the findings of other cave investigators that water-calcite fractionation factors observed in speleothem calcite are higher that those measured in laboratory experiments. Cave and laboratory calcite precipitates may differ mainly in the complex effects of kinetic isotope fractionation. Combining our data with other recent speleothem studies, we find a new empirical relationship for cave-specific water-calcite oxygen isotope fractionation across a range of temperatures and cave environments:
1000lnα=16.1(103T-1)-24.6  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号