首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The refractory element-enriched inclusions found in the carbonaceous meteorites give cosmochemists a fascinating glimpse at processes which occurred near the birth of the solar system. Although many complications must still be unravelled, the weight of the available evidence indicates that many of these objects condensed directly from the solar nebula, and have remained relatively unaltered up to the present. Their mineralogical and chemical compositions therefore reflect conditions at the time of their formation. The most thoroughly studied of the inclusions are those from the Allende CV meteorite. These, in general, have mineral assemblages similar to those which would be predicted for nebular condensation. The mineralogical agreement is not strict, however, and also the bulk chemical compositions sometimes deviate markedly from expected trends. More work is required to understand these differences. A range of isotopic anomalies in many elements has been found, in these inclusions. Some of these suggest an extra-solar system origin for a part of the material in the inclusions. Although much less work has been done on the inclusions in the CM meteorites, current data indicate that they will prove to be at least as valuable as those from Allende. Chemical data show that some inclusions in the Murchison meteorite are more refractory than the most refractory Allende inclusions. Isotopic anomalies, including25Mg excesses and oxygen-16 enriched oxygen, indicate that, in spite of chemical and mineralogical differences, the Murchison and Allende inclusions contain common isotopic components, and are probably contemporaneous.  相似文献   

3.
High-precision Zn isotopic variations are reported for carbonaceous chondrites (CC), equilibrated (EOC) and unequilibrated (UOC) ordinary chondrites, iron meteorites from the IAB-IIICD (nonmagmatic) and IIIA (magmatic) groups, and metal from the Brenham pallasite. For irons, δ65Cu values are also reported. Data have also been obtained on a coarse-grained type-B calcium-, aluminum-rich refractory inclusion (CAI) from Allende and on acid leaches of Allende (CV3), Krymka (LL3), and Charsonville (H6). Variations expressed as δ66Zn (deviation in parts per thousand of 66Zn/64Zn in samples relative to a standard) spread over a range of 0.3‰ for carbonaceous chondrites, 2‰ for ordinary chondrites, and 4‰ for irons.The measured 66Zn/64Zn, 67Zn/64Zn, and 68Zn/64Zn ratios vary linearly with mass difference and define a common isotope fractionation line with terrestrial samples, which demonstrates that Zn was derived from an initially single homogeneous reservoir. The δ66Zn values are correlated with meteorite compositions and slightly decrease in the order CI, CM, CV-CO, and to UOC. The isotopically light Zn of Allende CAI and the acid-resistant residues of Allende and Krymka show that the light component is associated with refractory material, presumably minerals from the spinel-group. This, together with the reverse correlation between relative abundances of light Zn isotopes and volatile element abundances, suggests that Zn depletion in planetary bodies with respect to CI cannot be ascribed to devolatilization of CI-like material. These observations rather suggest that refractory material reacted with a gas phase enriched in the lighter Zn isotopes. Alternatively, chondrules with their associated rims should carry a light Zn isotopic signature. The δ66Zn values of unequilibrated chondrites are rather uniform, whereas equilibrated chondrites show distinctly more isotopic variability.The values of δ65Cu-δ66Zn in irons define two trends. The moderate and positively correlated Cu and Zn isotope variations in IIIA and pallasite samples probably reflect crystallization of silicate, sulfide, and solid metal from the liquid metal. The range of δ66Zn values of the IAB-IIICD group is large (>3‰) and contrasts with the moderate fractionation of Cu isotopes. We interpret this feature and the negative δ66Zn-δ65Cu correlation as reflecting mixing, possibly achieved by percolation, between metals from a regolith devolatilized at low temperature (enriched in heavy zinc) and metallic liquids formed within the parent body.  相似文献   

4.
Three of the most highly metamorphosed meteorites of their respective classes, Shaw (LL7), Karoonda (C5), and Coolidge (C4), were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Te, Tl, U, and Zn. Comparison with data by Lipschutz and coworkers on artificially heated primitive meteorites shows that the natural metamorphism of meteorites cannot have taken place in a system open to volatiles. Shaw, metamorphosed at 1300°C for >106 yr, is less depleted in In, Bi, Ag, Te, Zn, and Tl than Krymka heated at 1000°C for 1 week. Karoonda, metamorphosed at 600°C for many millennia, is less depleted in Bi and Tl than Allende heated at 600°C for 1 week.Data on primordial noble gases also show that the volatile-element patterns of ordinary and carbonaceous chondrites were established by nebular condensation, and changed little if at all during metamorphism. For enstatite chondrites, the evidence is still incomplete, but seems to favor a nebular origin of the volatile pattern.The general constancy of Tl/Rb, Tl/Cs and Tl/U ratios in terrestrial and lunar rocks suggests that loss of volatile metals such as Tl is rare during normal magmatism or metamorphism. Only impact melts show such loss with any frequency.  相似文献   

5.
We report in situ ion microprobe analyses of oxygen isotopic compositions of olivine, low-Ca pyroxene, high-Ca pyroxene, anorthitic plagioclase, glassy mesostasis, and spinel in five aluminum-rich chondrules and nine ferromagnesian chondrules from the CR carbonaceous chondrites EET92042, GRA95229, and MAC87320. Ferromagnesian chondrules are isotopically homogeneous within ±2‰ in Δ17O; the interchondrule variations in Δ17O range from 0 to −5‰. Small oxygen isotopic heterogeneities found in two ferromagnesian chondrules are due to the presence of relict olivine grains. In contrast, two out of five aluminum-rich chondrules are isotopically heterogeneous with Δ17O values ranging from −6 to −15‰ and from −2 to −11‰, respectively. This isotopic heterogeneity is due to the presence of 16O-enriched spinel and anorthite (Δ17O = −10 to −15‰), which are relict phases of Ca,Al-rich inclusions (CAIs) incorporated into chondrule precursors and incompletely melted during chondrule formation. These observations and the high abundance of relict CAIs in the aluminum-rich chondrules suggest a close genetic relationship between these objects: aluminum-rich chondrules formed by melting of spinel-anorthite-pyroxene CAIs mixed with ferromagnesian precursors compositionally similar to magnesium-rich (Type I) chondrules. The aluminum-rich chondrules without relict CAIs have oxygen isotopic compositions (Δ17O = −2 to −8‰) similar to those of ferromagnesian chondrules. In contrast to the aluminum-rich chondrules from ordinary chondrites, those from CRs plot on a three-oxygen isotope diagram along the carbonaceous chondrite anhydrous mineral line and form a continuum with amoeboid olivine aggregates and CAIs from CRs. We conclude that oxygen isotope compositions of chondrules resulted from two processes: homogenization of isotopically heterogeneous materials during chondrule melting and oxygen isotopic exchange between chondrule melt and 16O-poor nebular gas.  相似文献   

6.
We report on the abundances of Ru isotopes in (1) iron meteorites, (2) stony-iron meteorites (pallasites), (3) ordinary and carbonaceous chondrites, and (4) in refractory inclusions from the carbonaceous meteorite Allende. We have developed improved Multiple-Collector, Negative-ion Thermal Ionization Mass Spectrometric (MC-NTIMS) techniques for Ru, with high ionization efficiency of 4% and with chemical separation techniques for Ru, which reduce mass interferences to the ppm level, so that no mass interference corrections needed to be applied. Our data were normalized to 99Ru/101Ru to correct for mass-dependent fractionation. We find no Ru isotopic effects in the ordinary chondrites and group IAB iron meteorites we have measured. There are significant effects (deficits) in the pure s-process nuclide 100Ru, in the Allende whole-rock and in refractory inclusions of up to 1.7 parts in 10,000 (εu). There are also endemic deficits in 100Ru in iron meteorites and in pallasites of up to 1.1 εu. The Ru data suggest a wide spread and large scale heterogeneity in p-, s-, and r-process components resulting in a deficit in s-process nuclides or enhancements in both p- and r-process nuclides, in refractory siderophiles condensing in the early solar nebula. In contrast, the data on bulk Murchison suggest an excess in 100Ru and in 104Ru, which are distinct from the rest of the measured patterns. Our results establish the presence of significant isotopic heterogeneity for Ru in the early solar nebula. The observation of endemic Ru effects in planetary differentiates, such as iron meteorites and pallasites, must reflect the siderophile nature of Ru and the preservation in condensing FeNi metal of refractory metal condensate grains formed in the early solar nebula. Once incorporated in the metal phase, the refractory siderophiles remained in the metal phase through the melting and differentiation of planetesimals to form FeNi cores and silicate mantles and crusts.  相似文献   

7.
The carbonaceous chondrites contain significant amounts of carbon- and nitrogen-bearing components, the most abundant of which is organic matter. Stepped combustion data of whole rock and HF/HCl residues of carbonaceous chondrites reveal that the organic material can be subdivided operationally into three components: (1) free organic matter (FOM), which is readily extractable from whole-rock meteorites and is enriched in 13C and 15N; (2) labile organic matter (LOM), which has a macromolecular structure but is liberated by hydrous pyrolysis; LOM is the parent structure for some FOM and is also enriched in 13C and 15N; and (3) refractory organic matter (ROM), which is also macromolecular but is virtually unaffected by hydrous pyrolysis and is relatively depleted in 13C and 15N. The macromolecular entities (LOM and ROM) are by far the most abundant organic components present, and as such, the relative abundances of the 13C- and 15N-enriched LOM and the 13C- and 15N-depleted ROM will have a major influence on the overall isotopic composition of the whole-rock meteorite. Laboratory experiments designed to simulate the effects of parent body aqueous alteration indicate that this form of processing removes LOM from the macromolecular material, allowing ROM to exert a stronger influence on the overall isotopic compositions. Hence, aqueous alteration of macromolecular materials on the meteorite parent body may have a significant control on the stable isotopic compositions of whole-rock carbonaceous chondrites. The enstatite chondrites are also carbon rich but have been subjected to high levels of thermal metamorphism on their parent body. Stepped combustion data of HF/HCl residues of enstatite chondrites indicate, that if they and carbonaceous chondrites inherited a common organic progenitor, metamorphism under reducing conditions appears to incorporate and preserve some of the 13C enrichments in LOM during graphitisation. However, when metamorphism is at its most extreme, the 15N enrichments in LOM are lost.  相似文献   

8.
9.
The Vigarano subtype is a petrographically complex class of meteorites. Oxidized and reduced groups can be distinguished on the basis of metal vs magnetite abundances and Ni contents of sulfide minerals. These meteorites also differ in the proportions of matrix and chondrules and in polymict character. Slight bulk chemical differences correlate with the recognized petrologic groupings. It is likely that the Vigarano subtype includes several previously unrecognized subgroups. Metamorphism has affected Coolidge, Mulga (West) and, to a lesser extent, Allende, as evidenced by ferromagnesian mineral equilibration, Fe-enrichment of fine-grained inclusions, and loss of some volatile gases. Because of the metamorphic effects in the Allende chondrite (the only meteorite of the group that has been intensively studied) and the petrographie differences among all meteorites of the Vigarano subtype, it is suggested that Allende alone may not adequately reflect the wide spectrum of properties in this important class of meteorites.  相似文献   

10.
Chondrules in E3 chondrites differ from those in other chondrite groups. Many contain near-pure endmember enstatite (Fs<1). Some contain Si-bearing FeNi metal, Cr-bearing troilite, and, in some cases Mg, Mn- and Ca-sulfides. Olivine and more FeO-rich pyroxene grains are present but much less common than in ordinary or carbonaceous chondrite chondrules. In some cases, the FeO-rich grains contain dusty inclusions of metal. The oxygen three-isotope ratios (δ18O, δ17O) of olivine and pyroxene in chondrules from E3 chondrites, which are measured using a multi-collection SIMS, show a wide range of values. Most enstatite data plots on the terrestrial fractionation (TF) line near whole rock values and some plot near the ordinary chondrite region on the 3-isotope diagram. Pyroxene with higher FeO contents (∼2-10 wt.% FeO) generally plots on the TF line similar to enstatite, suggesting it formed locally in the EC (enstatite chondrite) region and that oxidation/reduction conditions varied within the E3 chondrite chondrule-forming region. Olivine shows a wide range of correlated δ18O and δ17O values and data from two olivine-bearing chondrules form a slope ∼1 mixing line, which is approximately parallel to but distinct from the CCAM (carbonaceous chondrite anhydrous mixing) line. We refer to this as the ECM (enstatite chondrite mixing) line but it also may coincide with a line defined by chondrules from Acfer 094 referred to as the PCM (Primitive Chondrite Mineral) line (Ushikubo et al., 2011). The range of O isotope compositions and mixing behavior in E3 chondrules is similar to that in O and C chondrite groups, indicating similar chondrule-forming processes, solid-gas mixing and possibly similar 16O-rich precursors solids. However, E3 chondrules formed in a distinct oxygen reservoir.Internal oxygen isotope heterogeneity was found among minerals from some of the chondrules in E3 chondrites suggesting incomplete melting of the chondrules, survival of minerals from previous generations of chondrules, and chondrule recycling. Olivine, possibly a relict grain, in one chondrule has an R chondrite-like oxygen isotope composition and may indicate limited mixing of materials from other reservoirs. Calcium-aluminum-rich inclusions (CAIs) in E3 chondrites have petrologic characteristics and oxygen isotope ratios similar to those in other chondrite groups. However, chondrules from E3 chondrites differ markedly from those in other chondrite groups. From this we conclude that chondrule formation was a local event but CAIs may have all formed in one distinct place and time and were later redistributed to the various chondrule-forming and parent body accretion regions. This also implies that transport mechanisms were less active at the time of and following chondrule formation.  相似文献   

11.
Chondrules and chondrites provide unique insights into early solar system origin and history, and iron plays a critical role in defining the properties of these objects. In order to understand the processes that formed chondrules and chondrites, and introduced isotopic fractionation of iron isotopes, we measured stable iron isotope ratios 56Fe/54Fe and 57Fe/54Fe in metal grains separated from 18 ordinary chondrites, of classes H, L and LL, ranging from petrographic types 3-6 using multi-collector inductively coupled plasma mass spectrometry. The δ56Fe values range from −0.06 ± 0.01 to +0.30 ± 0.04‰ and δ57Fe values are −0.09 ± 0.02 to +0.55 ± 0.05‰ (relative to IRMM-014 iron isotope standard). Where comparisons are possible, these data are in good agreement with published data. We found no systematic difference between falls and finds, suggesting that terrestrial weathering effects are not important in controlling the isotopic fractionations in our samples. We did find a trend in the 56Fe/54Fe and 57Fe/54Fe isotopic ratios along the series H, L and LL, with LL being isotopically heavier than H chondrites by ∼0.3‰ suggesting that redox processes are fractionating the isotopes. The 56Fe/54Fe and 57Fe/54Fe ratios also increase with increasing petrologic type, which again could reflect redox changes during metamorphism and also a temperature dependant fractionation as meteorites cooled. Metal separated from chondrites is isotopically heavier by ∼0.31‰ in δ56Fe than chondrules from the same class, while bulk and matrix samples plot between chondrules and metal. Thus, as with so many chondrite properties, the bulk values appear to reflect the proportion of chondrules (more precisely the proportion of certain types of chondrule) to metal, whereas chondrule properties are largely determined by the redox conditions during chondrule formation. The chondrite assemblages we now observe were, therefore, formed as a closed system.  相似文献   

12.
Stepwise dissolutions of the carbonaceous chondrites Orgueil (CI), Murchison (CM) and Allende (CV) reveal large nucleosynthetic anomalies for Zr isotopes that contrast with the uniform compositions found in bulk meteorites. Two complementary nucleosynthetic components are observed: one enriched and one depleted in s-process nuclides. The latter component, characterized by excess 96Zr, is most distinctive in the acetic acid leachate (up to ε96Zr ≈ 50). The excess decreases with increasing acid strength and the final leaching steps of the experiment are depleted in 96Zr and thus enriched in s-process nuclides. Presolar silicon carbide grains are likely host phases for part of the anomalous Zr released during these later stages. However, by mass balance they cannot account for the 96Zr excesses observed in the early leaching steps and this therefore hints at the presence of at least one additional carrier phase with significant amounts of anomalous Zr. The data provide evidence that average solar system material consists of a homogenized mixture of different nucleosynthetic components, which can be partly resolved by leaching experiments of carbonaceous chondrites.  相似文献   

13.
Separated magnetic and nonmagnetic components from the ordinary chondrites Dhajala (H3.8) and Ochansk (H4) were analyzed for their Re-Os isotopic compositions, as well as for the abundances of the highly siderophile elements (HSE) Re, Os, Ir, Ru, Pt and Pd. The Re-Os isotopic systematics of these components are used to constrain the timing of HSE fractionations, and assess the level of open-system behavior of these elements in each of the different components. The high precision, isotope dilution mass spectrometric analyses of the HSE are used to constrain the origins of, and possible relations between some of the diverse components present in these chondrites. The relative and absolute abundances of the HSE differ considerably among the components. Metal fractions have Re/Os that are factors of ∼2 (Dhajala) to ∼3 (Ochansk) higher than those of their nonmagnetic fractions. The isotopic data for both meteorites are consistent with the largest Re-Os fractionations occurring between metal and nonmagnetic components early in solar system history, although minor to moderate late stage, open-system behavior, and limited variations in Re/Os preclude a precise determination of the age for that fractionation. Open-system behavior is generally absent to minor in the metal fractions, and highly variable in nonmagnetic fractions. Re/Os ratios of nonmagnetic fractions deviate as much as 40% from a primordial isochron. Although some deviations are large for isochron applications, nearly all are negligible with respect to consideration of fractionation processes controlling the HSE.Metal from both meteorites contains about 90% of the total budget of HSE. Metal in Ochansk has ∼2 to 10 times the abundances of the bulk meteorite, while metal from the matrix of Dhajala has ∼2 to 4 times the abundances of the bulk. Fine metal in both meteorites has higher abundances than coarse metal, as has been previously observed. Nonmagnetic components, consisting of chondrules and matrix from which metal was removed in the laboratory, have highly fractionated HSE, characterized by much lower Re/Os than the bulk meteorites, as well as large relative depletions in Pd. The abundances of Re, Os, Ir, Ru and Pt in the nonmagnetic fractions are 14-120 ng/g, much higher than would be expected if they had equilibrated with the metal phases present (150-16,000 ng/g). Collectively, the data are consistent with the HSE budget in ordinary chondrites being dominated by two HSE-bearing carrier phases with distinct compositions. These phases formed separately, and never subsequently equilibrated. Metal components incorporated a HSE carrier that formed at high through moderate temperatures and relatively high pressures, such that the relatively volatile Pd behaved coherently with the more refractory HSE. Nonmagnetic fractions from both chondrules and matrix have HSE compositions that likely require at least two processes that fractionated the HSE. Depletions in Pd are consistent with the presence of HSE carriers that formed as either highly refractory condensates, or residues of high degrees of metal melting. Depletions in Re may implicate a period of relatively high fO2 during which a volatile form of Re was separated from the other HSE.  相似文献   

14.
Tellurium isotope data acquired by multiple-collector inductively coupled plasma-mass spectrometry (MC-ICPMS) are presented for sequential acid leachates of the carbonaceous chondrites Orgueil, Murchison, and Allende. Tellurium isotopes are produced by a broad range of nucleosynthetic pathways and they are therefore of particular interest given the isotopic anomalies previously identified for other elements in these meteorites. In addition, the data provide new constraints on the initial solar system abundance of the r-process nuclide 126Sn, which decays to 126Te with a half-life of 234,500 years. The 126Te/128Te ratios of all leachates were found to be identical, within uncertainty, despite variations in 124Sn/128Te of between about 0.002 and 1.4. The data define a 126Sn/124Sn ratio of <7.7 × 10−5 at the time of last isotopic closure, consistent with the value of <18 × 10−5 previously reported for bulk carbonaceous chondrites. How close this is to the initial 126Sn/124Sn ratio of the solar system depends on when the investigated samples last experienced redistribution of Sn and Te. No clear evidence is found for nucleosynthetic anomalies in the abundances of p-, s-, and r-process nuclides. The largest effect detected in this study is a small excess of the r-process nuclide 130Te in a nitric acid leachate of Murchison. This fraction displays an anomalous ε130Te of +3.5 ± 2.5. Although barely resolvable given the analytical uncertainties, this is consistent with the presence of a small excess r-process component or an s-process deficit. The general absence of anomalies contrasts with previous results obtained for K, Cr, Zr, Mo, and Ba isotopes in similar leachates, which display nucleosynthetic anomalies of up to 3.8%. The reason for this discrepancy is unclear but it may reflect volatility and more efficient mixing of Te in the solar nebula.  相似文献   

15.
Boron isotope variations in nature: a synthesis   总被引:9,自引:0,他引:9  
The large relative mass difference between the two stable isotopes of boron, 10B and 11B, and the high geochemical reactivity of boron lead to significant isotope fractionation by natural processes. Published 11B values (relative to the NBS SRM-951 standard) span a wide range of 90. The lowest 11B values around — 30 are reported for non-marine evaporite minerals and certain tourmalines. The most 11B-enriched reservoir known to date are brines from Australian salt lakes and the Dead Sea of Israel with 11B values up to +59. Dissolved boron in present-day seawater has a constant world-wide 11B value of + 39.5. In this paper, available 11B data of a variety of natural fluid and solid samples from different geological environments are compiled and some of the most relevant aspects, including possible tracer applications of boron-isotope geochemistry, are summarized.
Résumé La grande différence relative de masse entre les isotopes stables du bore, 10B et 11B, et la grande réactivité geochimique du bore ont pour conséquence un fractionnement isotopique naturel important. Les valeurs de 11B publiées (par rapport au standard NBS SRM-951) varient de 90. Les valeurs de 11B les plus basses (–30) correspondent aux evaporites non-marines et à certaines tourmalines. Le réservoir le plus enrichi en 11B est représenté par les saumures des lacs salés d' Australie et par la Mer Morte en Israël, qui ont des valuers de 11B allent jusqu'à + 59. L'eau de mer a une valeur de 11B mondialement constante de + 39.5. Des valeurs de 11B des solutions naturelles ainsi que des roches et minéraux de différentes origines, publiées jusqu'à présent, sont présentées ici. En outre quelques aspects importants concernant la géochimie des isotopes du bore y compris quelques applications sont exposés.
  相似文献   

16.
The insoluble polymer from the Murchison C2 chondrite was studied by a variety of degradation techniques: pyrolysis, depolymerization by Na4P2O7 or CF3COOH, and oxidation by HNO3, Na2Cr2O7, or O2/UV light. Products were identified by IR spectroscopy, gas chromatography, and mass spectrometry (time-of-flight and high-resolution). In some cases, parallel measurements were made on a synthetic polymer produced by the Fischer-Tropsch reaction, a meteoritic polymer from the Allende C3V chondrite, and samples of coal or related materials.Our studies confirm the prevailing view that the meteoritic polymer has a bridged aromatic structure with functional groups such as COOH, OH, and CO, but provides much new detail. Oxidation with HNO3 shows that the meteoritic and synthetic polymers have a similar degree of condensation, greater than that of high-volatile bituminous coal. Gentler oxidation with Cr2O2?7 or O2/UV led to the identification of 15 aromatic ring systems as the corresponding carboxylic acids: benzene, biphenyl, naphthalene and phenanthrene and their methyl derivatives, fluoranthene (or pyrene), chrysene, fluorenone, benzophenone, anthraquinone; and the heterocyclics dibenzofuran, benzothiophene, dibenzothiophene, pyridine, quinoline (or isoquinoline), and carbazole. Of 11 aliphatic acids identified, three dicarboxylic acids presumably came from hydroaromatic portions of the polymer, whereas eight monocarboxylic acids probably are derived from bridging groups or ring substituents.Depolymerization with CF3COOH yielded some of the same ring systems, as well as alkanes (C1–C8) and alkenes (C2–C8), alkyl (C1–C5) benzenes and naphthalenes, and methyl- or dimethyl-indene, -indane, -phenol, -pyrrole, and -pyridine. All these compounds were detected below 200°C, and hence probably were indigenous constituents rather than pyrolysis products.Though the match between the synthetic and meteoritic polymer is only fair, several properties of the latter suggest that it, too, was produced by surface catalysis: the predominance of n-alkyl fragments, its occurrence as a surface coating on specific kinds of mineral grains, and the C13C12 fractionation between polymer and coexisting carbonates.  相似文献   

17.
Oxygen isotope compositions of the carbon-rich, acid-resistant fraction of four carbonaceous chondrites (Orgueil, Renazzo, Murchison and Murray) are reported, along with results of experiments wherein bulk samples of Orgueil and Renazzo were selectively outgassed.Variations of the whole rock isotopic compositions of Orgueil and Renazzo with the temperature of vacuum outgassing show that the water released, presumably from hydroxyl radicals bound to the phyllosilicates, has an O-isotope composition distinct from that of the rest of the silicates. A model of formation of carbonaceous chondrite phyllosilicates requiring a single water reservoir with this composition is proposed.The acid residues are only slightly different from the whole rocks and from terrestrial compositions in their 16O-content. A hydrogen-oxygen isotope relation is found, which can be interpreted in terms of low temperature reactions in the primitive solar nebula.  相似文献   

18.
19.
We present whole rock Li and Mg isotope analyses of 33 ultramafic xenoliths from the terrestrial mantle, which we compare with analyses of 30 (mostly chondritic) meteorites. The accuracy of our new Mg isotope ratio measurement protocol is substantiated by a combination of standard addition experiments, the absence of mass independent effects in terrestrial samples and our obtaining identical values for rock standards using two different separation chemistries and three different mass-spectrometric introduction systems. Carbonaceous, ordinary and enstatite chondrites have irresolvable mean stable Mg isotopic compositions (δ25Mg = −0.14 ± 0.06; δ26Mg = −0.27 ± 0.12‰, 2SD), but our enstatite chondrite samples have lighter δ7Li (by up to ∼3‰) than our mean carbonaceous and ordinary chondrites (3.0 ± 1.5‰, 2SD), possibly as a result of spallation in the early solar system. Measurements of equilibrated, fertile peridotites give mean values of δ7Li = 3.5 ± 0.5‰, δ25Mg = −0.10 ± 0.03‰ and δ26Mg = −0.21 ± 0.07‰. We believe these values provide a useful estimate of the primitive mantle and they are within error of our average of bulk carbonaceous and ordinary chondrites. A fuller range of fresh, terrestrial, ultramafic samples, covering a variety of geological histories, show a broad positive correlation between bulk δ7Li and δ26Mg, which vary from −3.7‰ to +14.5‰, and −0.36‰ to + 0.06‰, respectively. Values of δ7Li and δ26Mg lower than our estimate of primitive mantle are strongly linked to kinetic isotope fractionation, occurring during transport of the mantle xenoliths. We suggest Mg and Li diffusion into the xenoliths is coupled to H loss from nominally anhydrous minerals following degassing. Diffusion models suggest that the co-variation of Mg and Li isotopes requires comparable diffusivities of Li and Mg in olivine. The isotopically lightest samples require ∼5-10 years of diffusive ingress, which we interpret as a time since volatile loss in the host magma. Xenoliths erupted in pyroclastic flows appear to have retained their mantle isotope ratios, likely as a result of little prior degassing in these explosive events. High δ7Li, coupled with high [Li], in rapidly cooled arc peridotites may indicate that these samples represent fragments of mantle wedge that has been metasomatised by heavy, slab-derived fluids. If such material is typically stirred back into the convecting mantle, it may account for the heavy δ7Li seen in some oceanic basalts.  相似文献   

20.
Globally, rivers supply uranium to the oceans with excess 234U relative to secular equilibrium and 234U taken-up by corals can be used for dating. In addition, the 234U abundance in sea water, at the time the coral was growing, can be measured independently. The veracity of U-series ages used in determining past sea-level variations is dependent on selecting pristine corals free from diagenetic alteration. A quantitative test for alteration assumes invariant 234U abundances in the oceans for at least the past half a million years and results from samples outside of a narrow range in modern ocean 234U abundance are excluded from data sets. Here, we have used previously published data to show that 234U in the oceans appears to be variable and directly related to changes in sea-level, not only over long glacial-interglacial timescales but also at very short, centennial timescales. Most of the previously discarded data can be used to provide valuable additional sea-level information. The process permits a unique insight into the interplay between sources and sinks of uranium in the oceans mediated by sea-level changes at rates far faster than previously thought possible. Similar, rapid sea-level, forcing of other trace element abundances in the oceans is likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号