首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sulfur isotope effects produced by microbial dissimilatory sulfate reduction are used to reconstruct the coupled cycling of carbon and sulfur through geologic time, to constrain the evolution of sulfur-based metabolisms, and to track the oxygenation of Earth’s surface. In this study, we investigate how the coupling of carbon and sulfur metabolisms in batch and continuous cultures of a recently isolated marine sulfate reducing bacterium DMSS-1, a Desulfovibrio sp., influences the fractionation of sulfur isotopes.DMSS-1 grown in batch culture on seven different electron donors (ethanol, glycerol, fructose, glucose, lactate, malate and pyruvate) fractionates 34S/32S ratio from 6‰ to 44‰, demonstrating that the fractionations by an actively growing culture of a single incomplete oxidizing sulfate reducing microbe can span almost the entire range of previously reported values in defined cultures. The magnitude of isotope effect correlates well with cell specific sulfate reduction rates (from 0.7 to 26.1 fmol/cell/day). DMSS-1 grown on lactate in continuous culture produces a larger isotope effect (21-37‰) than the lactate-grown batch culture (6‰), indicating that the isotope effect also depends on the supply rate of the electron donor and microbial growth rate. The largest isotope effect in continuous culture is accompanied by measurable changes in cell length and cellular yield that suggest starvation. The use of multiple sulfur isotopes in the model of metabolic fluxes of sulfur shows that the loss of sulfate from the cell and the intracellular reoxidation of reduced sulfur species contribute to the increase in isotope effects in a correlated manner. Isotope fractionations produced during sulfate reduction in the pure culture of DMSS-1 expand the previously reported range of triple sulfur isotope effects (32S, 33S, and 34S) by marine sulfate reducing bacteria, implying that microbial sulfur disproportionation may have a smaller 33S isotopic fingerprint than previously thought.  相似文献   

2.
We present a 3-year study of concentrations and sulfur isotope values (δ34S, Δ33S, and Δ36S) of sulfur compounds in the water column of Fayetteville Green Lake (NY, USA), a stratified (meromictic) euxinic lake with moderately high sulfate concentrations (12-16 mM). We utilize our results along with numerical models (including transport within the lake) to identify and quantify the major biological and abiotic processes contributing to sulfur cycling in the system. The isotope values of sulfide and zero-valent sulfur across the redox-interface (chemocline) change seasonally in response to changes in sulfide oxidation processes. In the fall, sulfide oxidation occurs primarily via abiotic reaction with oxygen, as reflected by an increase in sulfide δ34S at the redox interface. Interestingly, S isotope values for zero-valent sulfur sampled at this time still reflect production and recycling by phototrophic S-oxidation. In the spring, sulfide S isotope values suggest an increased input from phototrophic oxidation, consistent with a more pronounced phototroph population at the chemocline. This trend is associated with smaller fractionations between sulfide and zero-valent sulfur, suggesting a metabolic rate control on fractionation similar to that for sulfate reduction. Comparison of our data with previous studies indicates that the S isotope values of sulfate and sulfide in the deep waters are remarkably stable over long periods of time, with consistently large fractionations of up to 58‰ in δ34S. Models of the δ34S and Δ33S trends in the deep waters (considering mass transport via diffusion and advection along with biological processes) require that these fractionations are a consequence of sulfur compound disproportionation at and below the redox interface in addition to large fractionations during sulfate reduction. The large fractionations during sulfate reduction appear to be a consequence of the high sulfate concentrations and the distribution of organic matter in the water column. The occurrence of disproportionation in the lake is supported by profiles of intermediate sulfur compounds and by lake microbiology, but is not evident from the δ34S trends alone. These results illustrate the utility of including minor S isotopes in sulfur isotope studies to unravel complex sulfur cycling in natural systems.  相似文献   

3.
Kinetic isotope effects related to the breaking of chemical bonds drive sulfur isotope fractionation during dissimilatory sulfate reduction (DSR), whereas oxygen isotope fractionation during DSR is dominated by exchange between intercellular sulfur intermediates and water. We use a simplified biochemical model for DSR to explore how a kinetic oxygen isotope effect may be expressed. We then explore these relationships in light of evolving sulfur and oxygen isotope compositions (δ34SSO4 and δ18OSO4) during batch culture growth of twelve strains of sulfate-reducing bacteria. Cultured under conditions to optimize growth and with identical δ18OH2O and initial δ18OSO4, all strains show 34S enrichment, whereas only six strains show significant 18O enrichment. The remaining six show no (or minimal) change in δ18OSO4 over the growth of the bacteria. We use these experimental and theoretical results to address three questions: (i) which sulfur intermediates exchange oxygen isotopes with water, (ii) what is the kinetic oxygen isotope effect related to the reduction of adenosine phosphosulfate (APS) to sulfite (SO32−), (iii) does a kinetic oxygen isotope effect impact the apparent oxygen isotope equilibrium values? We conclude that oxygen isotope exchange between water and a sulfur intermediate likely occurs downstream of APS and that our data constrain the kinetic oxygen isotope fractionation for the reduction of APS to sulfite to be smaller than 4‰. This small oxygen isotope effect impacts the apparent oxygen isotope equilibrium as controlled by the extent to which APS reduction is rate-limiting.  相似文献   

4.
Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains (Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ18Owater = +700‰) and depleted water (δ18Owater = −40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation (εS > −13.2‰), δ18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 (εS < −22.7‰) the residual sulfate showed an increase of the sulfate δ18O close to the values of the enriched water of +700‰. In the experiments with δ18O-depleted water, the oxygen isotope values in the residual sulfate stayed fairly constant for strains Desulfovibrio desulfuricans, Desulfobacca acetoxidans and Desulfonatronovibrio hydrogenovorans. However, strain TRM1, which exhibits the lowest sulfur isotope fractionation factor (εS < −38.7‰) showed slightly decreasing δ18O values.Our results give strong evidence that the oxygen atoms of sulfate exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5′-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the “recycled” sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the stable isotope enrichment factor for sulfur measured during sulfate reduction. The reoxidation of intermediates of the sulfate reduction pathway does also strongly influence the sulfur stable isotope enrichment factor. This aforesaid reoxidation is probably dependent on the metabolic conversion of the substrate and therefore also influences the stable isotope fractionation factor indirectly in a rate dependent manner. However, this effect is only indirect. The sulfur isotope enrichment factors for the kinetic reactions themselves are probably not rate dependent.  相似文献   

5.
The discovery of 33S anomalies in Archean sedimentary rocks has established that the early Earth before ∼2.2 Ga (billion years ago) had a very different sulfur cycle than today. The origin of the anomalies and the nature of early sulfur cycle are, however, poorly known and debated. In this study, we analyzed the total sulfur and oxygen isotope compositions, the δ18O, Δ17O, δ34S, Δ33S, and Δ36S, for the >3.2 Ga Fig Tree barite deposits from the Barberton Greenstone Belt, South Africa. The goal is to address two questions: (1) was Archean barite sulfate a mixture of 33S-anomalous sulfate of photolysis origin and 33S-normal sulfate of other origins? (2) did the underlying photochemical reactions that generated the observed 33S anomalies for sulfide and sulfate also generate 17O anomalies for sulfate?We developed a new method in which pure barite sulfate is extracted for oxygen and sulfur isotope measurements from a mixture of barite sands, cherts, and other oxygen-bearing silicates. The isotope data reveal that (1) there is no distinct 17O anomaly for Fig Tree barite, with an average Δ17O value the same as that of the bulk Earth (−0.02 ± 0.07‰, N = 49); and (2) the average δ18O value is +10.6 ± 1.1‰, close to that of the modern seawater sulfate value (+9.3‰). Evidence from petrography and from the δ18O of barites and co-existing cherts suggest minimum overprinting of later metamorphism on the sulfate’s oxygen isotope composition. Assuming no other processes (e.g., biological) independently induced oxygen isotope exchange between sulfate and water, the lack of reasonable correlation between the δ18O and Δ33S or between the δ34S and Δ33S suggests two mutually exclusive scenarios: (1) An overwhelming majority of the sulfate in the Archean ocean was of photolysis origin, or (2) The early Archean sulfate was a mixture of 33S-normal sulfates and a small portion (<5%?) of 33S-anomalous sulfate of photolysis origin from the atmosphere. Scenario 1 requires that sulfate of photolysis origin must have had only small 33S or 36S anomalies and no 17O anomaly. Scenario 2 requires that the photolysis sulfate have had highly negative δ34S and Δ33S values, recommending future theoretical and experimental work to look into photochemical processes that generate sulfate in Quadrant I and sulfide in Quadrant III in a δ34S (X)-Δ33S (Y) Cartesian plane. A total sulfur and oxygen isotope analysis has provided constraints on the underlying chemical reactions that produced the observed sulfate isotope signature as well as the accompanying atmospheric, oceanic, and biological conditions.  相似文献   

6.
The stable isotopes of sulfate are often used as a tool to assess bacterial sulfate reduction on the macro scale. However, the mechanisms of stable isotope fractionation of sulfur and oxygen at the enzymatic level are not yet fully understood. In batch experiments with water enriched in 18O we investigated the effect of different nitrite concentrations on sulfur isotope fractionation by Desulfovibrio desulfuricans.With increasing nitrite concentrations, we found sulfur isotope enrichment factors ranging from −11.2 ± 1.8‰ to −22.5 ± 3.2‰. Furthermore, the δ18O values in the remaining sulfate increased from approximately 50-120‰ when 18O-enriched water was supplied. Since 18O-exchange with ambient water does not take place in sulfate, but rather in intermediates of the sulfate reduction pathway (e.g. ), we suggest that nitrite affects the steady-state concentration and the extent of reoxidation of the metabolic intermediate sulfite to sulfate during sulfate reduction. Given that nitrite is known to inhibit the production of the enzyme dissimilatory sulfite reductase, our results suggest that the activity of the dissimilatory sulfite reductase regulates the kinetic isotope fractionation of sulfur and oxygen during bacterial sulfate reduction. Our novel results also imply that isotope fractionation during bacterial sulfate reduction strongly depends on the cell internal enzymatic regulation rather than on the physico-chemical features of the individual enzymes.  相似文献   

7.
The coexistence of magmatic anhydrite and sulfide minerals in non-arc-related mafic magmas has only rarely been documented. Likewise the S isotope fractionation between sulfate and sulfide in mafic rocks has infrequently been measured. In the Kharaelakh intrusion associated with the world-famous Noril’sk ore district in Siberia coexisting magmatic anhydrite and sulfide minerals have been identified. Sulfur isotope compositions of the anhydrite-sulfide assemblages have been measured via both ion microprobe and conventional analyses to help elucidate the origin of the anhydrite-sulfide pairs. Magmatic anhydrite and chalcopyrite are characterized by δ34S values between 18.8‰ and 22.8‰, and 9.3‰ and 13.2‰, respectfully. Coexisting anhydrite and chalcopyrite show Δ values that fall between 8.5‰ and 11.9‰. Anhydrite in the Kharaelakh intrusion is most readily explained by the assimilation of sulfate from country rocks; partial reduction to sulfide led to mixing between sulfate-derived sulfide and sulfide of mantle origin. The variable anhydrite and sulfide δ34S values are a function of differing degrees of sulfate reduction, variable mixing of sulfate-derived and mantle sulfide, incomplete isotopic homogenization of the magma, and a lack of uniform attainment of isotopic equilibrium during subsolidus cooling. The δ34S values of sulfide minerals have changed much less with cooling than have anhydrite values due in large part to the high sulfide/sulfate ratio. Variations in both sulfide and anhydrite δ34S values indicate that isotopically distinct domains existed on a centimeter scale. Late stage hydrothermal anhydrite and pyrite also occur associated with Ca-rich hydrous alteration assemblages (e.g., thomsonite, prehnite, pectolite, epidote, xonotlite). δ34S values of secondary hydrothermal anhydrite and pyrite determined by conventional analyses are in the same range as those of the magmatic minerals. Anhydrite-pyrite Δ values are in the 9.1-10.1‰ range, and are smaller than anticipated for the low temperatures indicated by the silicate alteration assemblages. The small Δ values are suggestive of either sulfate-sulfide isotopic disequilibrium or closure of the system to further exchange between ∼550 and 600 °C. Our results confirm the importance of the assimilation of externally derived sulfur in the generation of the elevated δ34S values in the Kharaelakh intrusion, but highlight the sulfur isotopic variability that may occur in magmatic systems. In addition, our results confirm the need for more precise experimental determination of sulfate-sulfide sulfur isotope fractionation factors in high-T systems.  相似文献   

8.
The isotopic composition of sulfur has been studied in plants representative of various regions of the U.S.S.R., two oceanic islands, and atmospheric precipitations on land and in marine areas. In soils, the isotopic composition of sulfur in the atmospheric water varies as a result of sulfate reduction (increase of δ34S of the soil sulfate) and sulfate regeneration from hydrogen sulfide. The sulfur in plants from the oceanic islands has characteristically higher values of δ34S than the sulfur in the plants and in the atmospheric water of the continents. Compared to sea water, the sulfur from the island plants that were studied contains a considerably lesser proportion of the 34S isotope. This can be explained by the significant role in such plants of the sulfur of the atmospheric air masses coming from the continents.  相似文献   

9.
Sulfur isotope compositions of pumice and adsorbed volatiles on ash from the first historical eruption of Anatahan volcano (Mariana arc) are presented in order to constrain the sources of sulfur erupted during the period 10-21 May, 2003. The isotopic composition of S extracted from erupted pumice has a narrow range, from δ34SV-CDT +2.6‰ to +3.2‰, while the composition of sulfur adsorbed onto ash has a larger range (+2.8‰ to +5.3‰). Fractionation modeling for closed and open system scenarios suggests that degassing of SO2 raised the δ34SV-CDT value of S dissolved in the melt from an initial composition of between +1.6‰ and +2.6‰ for closed-system degassing, or between −0.5‰ and +1.5‰ for open-system degassing, however closed-system degassing is the preferred model. The calculated values for the initial composition of the magma represent a MORB-like (δ34SV-CDT ∼ 0‰) mantle source with limited contamination by subducted seawater sulfate (δ34SV-CDT +21‰). Modeling also suggests that the δ34SV-CDT value of SO2 gas in closed-system equilibrium with the degassed magma was between +0.9‰ and +2.5‰. The δ34SV-CDT value of sulfate adsorbed onto ash in the eruption plume (+2.8‰ to +5.1‰) is consistent with sulfate formation by oxidation of magmatic SO2 in the eruption column. The sulfur isotope composition of sulfate adsorbed to ash changes from lower δ34S values for ash erupted early in the eruption to higher δ34S values for ash erupted later in the eruption. We interpret the temporal/stratigraphic change in sulfate isotopic composition to primarily reflect a change in the isotopic composition of magmatic SO2 released from the progressively degassing magma and is attributed to the expulsion of an accumulated gas phase at the beginning of the eruption. More efficient oxidation of magmatic SO2 gas to sulfate in the early water-rich eruption plume probably contributed to the change in S isotope compositions observed in the ash leachates.  相似文献   

10.
Evaluation of the extent of volatile element recycling in convergent margin volcanism requires delineating likely source(s) of magmatic volatiles through stable isotopic characterization of sulfur, hydrogen and oxygen in erupted tephra with appropriate assessment of modification by degassing. The climactic eruption of Mt. Mazama ejected approximately 50 km3 of rhyodacitic magma into the atmosphere and resulted in formation of a 10-km diameter caldera now occupied by Crater Lake, Oregon (lat. 43°N, long. 122°W). Isotopic compositions of whole-rocks, matrix glasses and minerals from Mt. Mazama climactic, pre-climactic and postcaldera tephra were determined to identify the likely source(s) of H2O and S. Integration of stable isotopic data with petrologic data from melt inclusions has allowed for estimation of pre-eruptive dissolved volatile concentrations and placed constraints on the extent, conditions and style of degassing.Sulfur isotope analyses of climactic rhyodacitic whole rocks yield δ34S values of 2.8-14.8‰ with corresponding matrix glass values of 2.4-13.2‰. δ34S tends to increase with stratigraphic height through climactic eruptive units, consistent with open-system degassing. Dissolved sulfur concentrations in melt inclusions (MIs) from pre-climactic and climactic rhyodacitic pumices varies from 80 to 330 ppm, with highest concentrations in inclusions with 4.8-5.2 wt% H2O (by FTIR). Up to 50% of the initial S may have been lost through pre-eruptive degassing at depths of 4-5 km. Ion microprobe analyses of pyrrhotite in climactic rhyodacitic tephra and andesitic scoria indicate a range in δ34S from −0.4‰ to 5.8‰ and from −0.1‰ to 3.5‰, respectively. Initial δ34S values of rhyodacitic and andesitic magmas were likely near the mantle value of 0‰. Hydrogen isotope (δD) and total H2O analyses of rhyodacitic obsidian (and vitrophyre) from the climactic fall deposit yielded values οf −103 to −53‰ and 0.23-1.74 wt%, respectively. Values of δD and wt% H2O of obsidian decrease towards the top of the fall deposit. Samples with depleted δD, and mantle δ18O values, have elevated δ34S values consistent with open-system degassing. These results imply that more mantle-derived sulfur is degassed to the Earth’s atmosphere/hydrosphere through convergent margin volcanism than previously attributed. Magmatic degassing can modify initial isotopic compositions of sulfur by >14‰ (to δ34S values of 14‰ or more here) and hydrogen isotopic compositions by 90‰ (to δD values of −127‰ in this case).  相似文献   

11.
Concentrations of oceanic and atmospheric oxygen have varied over geologic time as a function of sulfur and carbon cycling at or near the Earth’s surface. This balance is expressed in the sulfur isotope composition of seawater sulfate. Given the near absence of gypsum in pre-Phanerozoic sediments, trace amounts of carbonate-associated sulfate (CAS) within limestones or dolostones provide the best available constraints on the isotopic composition of sulfate in Precambrian seawater. Although absolute CAS concentrations, which range from those below detection to ∼120 ppm sulfate in this study, may be compromised by diagenesis, the sulfur isotope compositions can be buffered sufficiently to retain primary values.Stratigraphically controlled δ34S measurements for CAS from three mid-Proterozoic carbonate successions (∼1.2 Ga Mescal Limestone, Apache Group, Arizona, USA; ∼1.45-1.47 Ga Helena and Newland formations, Belt Supergroup, Montana, USA; and ∼1.65 Ga Paradise Creek Formation, McNamara Group, NW Queensland, Australia) show large isotopic variability (+9.1‰ to +18.9‰, −1.1‰ to +27.3‰, and +14.1‰ to +37.3‰, respectively) over stratigraphic intervals of ∼50 to 450 m. This rapid variability, ranging from scattered to highly systematic, and overall low CAS abundances can be linked to sulfate concentrations in the mid-Proterozoic ocean that were substantially lower than those of the Phanerozoic but higher than values inferred for the Archean. Results from the Belt Supergroup specifically corroborate previous arguments for seawater contributions to the basin. Limited sulfate availability that tracks the oxygenation history of the early atmosphere is also consistent with the possibility of extensive deep-ocean sulfate reduction, the scarcity of bedded gypsum, and the stratigraphic δ34S trends and 34S enrichments commonly observed for iron sulfides of mid-Proterozoic age.  相似文献   

12.
We report a study of the oxygen isotope ratios of chondrules and their constituent mineral grains from the Mokoia, oxidized CV3 chondrite. Bulk oxygen isotope ratios of 23 individual chondrules were determined by laser ablation fluorination, and oxygen isotope ratios of individual grains, mostly olivine, were obtained in situ on polished mounts using secondary ion mass spectrometry (SIMS). Our results can be compared with data obtained previously for the oxidized CV3 chondrite, Allende. Bulk oxygen isotope ratios of Mokoia chondrules form an array on an oxygen three-isotope plot that is subparallel to, and slightly displaced from, the CCAM (carbonaceous chondrite anhydrous minerals) line. The best-fit line for all CV3 chondrite chondrules has a slope of 0.99, and is displaced significantly (by δ17O ∼ −2.5‰) from the Young and Russell slope-one line for unaltered calcium-aluminum-rich inclusion (CAI) minerals. Oxygen isotope ratios of many bulk CAIs also lie on the CV-chondrule line, which is the most relevant oxygen isotope array for most CV chondrite components. Bulk oxygen isotope ratios of most chondrules in Mokoia have δ18O values around 0‰, and olivine grains in these chondrules have similar oxygen isotope ratios to their bulk values. In general, it appears that chondrule mesostases have higher δ18O values than olivines in the same chondrules. Our bulk chondrule data spread to lower δ18O values than any ferromagnesian chondrules that have been measured previously. Two chondrules with the lowest bulk δ18O values (−7.5‰ and −11.7‰) contain olivine grains that display an extremely wide range of oxygen isotope ratios, down to δ17O, δ18O around -50‰ in one chondrule. In these chondrules, there are no apparent relict grains, and essentially no relationships between olivine compositions, which are homogeneous, and oxygen isotopic compositions of individual grains. Heterogeneity of oxygen isotope ratios within these chondrules may be the result of incorporation of relict grains from objects such as amoeboid olivine aggregates, followed by solid-state chemical diffusion without concomitant oxygen equilibration. Alternatively, oxygen isotope exchange between an 16O-rich precursor and an 16O-poor gas may have taken place during chondrule formation, and these chondrules may represent partially equilibrated systems in which isotopic heterogeneities became frozen into the crystallizing olivine grains. If this is the case, we can infer that the earliest nebular solids from which chondrules formed had δ17O and δ18O values around -50‰, similar to those observed in refractory inclusions.  相似文献   

13.
Phosphomonoesters are an important source of dissolved inorganic orthophosphate (PO4 or Pi), the preferred form of P utilized by microbiota and aquatic plants in marine and freshwater ecosystems. Two enzymes involved in phosphomonoester metabolism and commonly detected in natural waters (alkaline phosphatase and 5′-nucleotidase) have been studied to determine the oxygen isotope signature of Pi-regeneration from phosphomonoesters by enzymatic degradation. Oxygen (O) isotope ratios of water and Pi released from phosphomonoesters during enzyme hydrolysis experiments demonstrate that released Pi incorporates one oxygen atom from water. The isotopic fractionation between this incorporated water O and ambient water O is −30 (±8)‰ for alkaline phosphatase and −10 (±1)‰ for 5′-nucleotidase, with very weak dependence on temperature. The result of these enzyme-specific isotopic fractionations at one of the four O sites in PO4 is that the δ18O value of Pi regenerated by 5′-nucleotidase is 5‰ higher than Pi regenerated by alkaline phosphatase from the same phosphomonoester substrate. The δ18O value of regenerated Pi also reflects inheritance of 75% of O from the phosphomonoester substrate, thus making the δ18O of phosphomonoester-derived Pi a potential tracer of organophosphorous compound sources. Phosphomonoesterase-regenerated Pi has a distinct phosphate oxygen isotope signature that is different and distinguishable from that of biologically recycled and subsequently equilibrated Pi and Pi regenerated from photooxidation of organic matter. The δ18O value of regenerated Pi will correlate positively with the δ18O value of bulk water and the fractionation, α, between regenerated Pi and water, αregen Pi-water, should converge toward equilibrium αPi-water values with increased biological cycling of Pi.  相似文献   

14.
We present multiple sulfur isotope measurements of sulfur compounds associated with the oxidation of H2S and S0 by the anoxygenic phototrophic S-oxidizing bacterium Chlorobium tepidum. Discrimination between 34S and 32S was +1.8 ± 0.5‰ during the oxidation of H2S to S0, and −1.9 ± 0.8‰ during the oxidation of S0 to , consistent with previous studies. The accompanying Δ33S and Δ36S values of sulfide, elemental sulfur, and sulfate formed during these experiments were very small, less than 0.1‰ for Δ33S and 0.9‰ for Δ36S, supporting mass conservation principles. Examination of these isotope effects within a framework of the metabolic pathways for S oxidation suggests that the observed effects are due to the flow of sulfur through the metabolisms, rather than abiotic equilibrium isotope exchange alone, as previously suggested. The metabolic network comparison also indicates that these metabolisms work to express some isotope effects (between sulfide, polysulfides, and elemental sulfur in the periplasm) and suppress others (kinetic isotope effects related to pathways for oxidation of sulfide to sulfate via the same enzymes involved in sulfate reduction acting in reverse). Additionally, utilizing fractionation factors for phototrophic S oxidation calculated from our experiments and for other oxidation processes calculated from the literature (chemotrophic and inorganic S oxidation), we constructed a set of ecosystem-scale sulfur isotope box models to examine the isotopic consequences of including sulfide oxidation pathways in a model system. These models demonstrate how the small δ34S effects associated with S oxidation combined with large δ34S effects associated with sulfate reduction (by SRP) and sulfur disproportionation (by SDP) can produce large (and measurable) effects in the Δ33S of sulfur reservoirs. Specifically, redistribution of material along the pathways for sulfide oxidation diminishes the net isotope effect of SRP and SDP, and can mask the isotopic signal for sulfur disproportionation if significant recycling of S intermediates occurs. We show that the different sulfide oxidation processes produce different isotopic fields for identical proportions of oxidation, and discuss the ecological implications of these results to interpreting minor S isotope patterns in modern systems and in the geologic record.  相似文献   

15.
The formation of authigenic Ca-rich rhodochrosite (ACR) in sapropelic sediments of the Gotland Basin, Baltic Sea, is governed by deepwater renewal processes whereby saline water from the North Atlantic flushes the brackish anoxic Baltic Deeps. The carbon and oxygen isotopic compositions of these Mn-carbonates suggest that ACR formation takes place just below the sediment surface and that dissolved compounds from the deepwater column, such as water and bicarbonate molecules, were incorporated in ACR during authigenesis. Porewaters near the sediment surface display δ18O values of −5.4‰ (VSMOW) and are generally depleted in 18O, compared to the oxygen isotopic composition of water in equilibrium with Mn-carbonate solid solutions (ACR δ18O values are −4.6‰). This suggests that early burial diagenetic processes significantly modify the initial isotopic composition of water during Mn-carbonate formation. The reduction of sulfate having δ18O values of +8.4‰ accounts for a permanent enrichment of porewater 18O and observed δ18O values at depth equal to −4.6‰. However, this process does not explain the observed disequilibrium in the oxygen isotopic composition between water and ACR close to the sediment surface where Mn-carbonate formation takes place. Based on isotopic mass balance calculations, we suggest that MnO2 with δ18O values of +8.9‰ released oxygen enriched in 18O into the anoxic porewaters close below the sediment surface. This process should occur after oxygenation events during deepwater renewal when MnO2 accumulates at the surface of anoxic sediments. Manganese carbonates formed in these waters display δ18O values of ∼1.0‰ heavier than values expected solely from the initial deepwater composition. This quantitatively explains the discrepancy between paleosalinities calculated from ACR δ18O based on Mn-carbonate/water isotopic equilibrium fractionation and direct observations for the same period. Our results emphasize the important role of microbial MnO2 reduction during rhodochrosite authigenesis and suggest that Mn(II) activity, rather than alkalinity, is the limiting component for sedimentary Mn-carbonate formation.  相似文献   

16.
Sulfur isotope fractionation during dissimilatory sulfate reduction has been conceptually described by the widely accepted Rees model as related to the stepwise reduction of sulfate to sulfide within the cells of bacteria. The magnitude of isotope fractionation is determined by the interplay between different reduction steps in a chain of reactions. Here we present a revision of Rees’ model for bacterial sulfate reduction that includes revised fractionation factors for the sulfite-sulfide step and incorporates new forward and reverse steps in the reduction of sulfite to sulfide, as well as exchange of sulfide between the cell and ambient water. With this model we show that in contrast to the Rees model, isotope fractionations well in excess of −46‰ are possible. Therefore, some of the large sulfur isotope fractionations observed in nature can be explained without the need of alternate pathways involving the oxidative sulfur cycle. We use this model to predict that large fractionations should occur under hypersulfidic conditions and where electron acceptor concentrations are limiting.  相似文献   

17.
At Lucky Strike near the Azores Triple Junction, the seafloor setting of the hydrothermal field in a caldera system with abundant low-permeability layers of cemented breccia, provides a unique opportunity to study the influence of subsurface geological conditions on the hydrothermal fluid evolution. Coupled analyses of S isotopes performed in conjunction with Se and Fe isotopes have been applied for the first time to the study of seafloor hydrothermal systems. These data provide a tool for resolving the different abiotic and potential biotic near-surface hydrothermal reactions. The δ34S (between 1.5‰ and 4.6‰) and Se values (between 213 and 1640 ppm) of chalcopyrite suggest a high temperature end-member hydrothermal fluid with a dual source of sulfur: sulfur that was leached from basaltic rocks, and sulfur derived from the reduction of seawater sulfate. In contrast, pyrite and marcasite generally have lower δ34S within the range of magmatic values (0 ± 1‰) and are characterized by low concentrations of Se (<50 ppm). For 82Se/76Se ratios, the δ82Se values range from basaltic values of near −1.5‰ to −7‰. The large range and highly negative values of hydrothermal deposits observed cannot be explained by simple mixing between Se leached from igneous rock and Se derived from seawater. We interpret the Se isotope signature to be a result of leaching and mixing of a fractionated Se source located beneath hydrothermal chimneys in the hydrothermal fluid. At Lucky Strike we consider two sources for S and Se: (1) the “end-member” hydrothermal fluid with basaltic Se isotopic values (−1.5‰) and typical S isotope hydrothermal values of 1.5‰; (2) a fractionated source hosted in subsurface environment with negative δ34S values, probably from bacterial reduction of seawater sulfate and negative δ82Se values possibly derived from inorganic reduction of Se oxyanions. Fluid trapped in the subsurface environment is conductively cooled and has restricted mixing and provide favorable conditions for subsurface microbial activity which is potentially recorded by S isotopes. Fe isotope systematic reveals that Se-rich high temperature samples have δ57Fe values close to basaltic values (∼0‰) whereas Se-depleted samples precipitated at medium to low temperature are systematically lighter (δ57Fe values between −1 to −3‰). An important implication of our finding is that light Fe isotope composition down to −3.2‰ may be explained entirely by abiotic fractionation, in which a reservoir effect during sulfide precipitation was able to produce highly fractionated compositions.  相似文献   

18.
In order to reconstruct paleo-environmental conditions for the saline playa lakes of the Rio Grande Rift, we investigated sediment sulfate sources using sulfur isotope compositions of dissolved ions in modern surface water, groundwater, and precipitated in the form of gypsum sediments deposited during the Pleistocene and Holocene in the Tularosa and Estancia Basins. The major sulfate sources are Lower and Middle Permian marine evaporites (δ34S of 10.9-14.4‰), but the diverse physiography of the Tularosa Basin led to a complex drainage system which contributed sulfates from various sources depending on the climate at the time of sedimentation. As inferred from sulfur isotope mass balance constraints, weathering of sulfides of magmatic/hydrothermal and sedimentary origin associated with climate oscillations during Last Glacial Maximum contributed about 35-50% of the sulfates and led to deposition of gypsum with δ34S values of −1.2‰ to 2.2‰ which are substantially lower than Permian evaporates. In the Estancia Basin, microbial sulfate reduction appears to overprint sulfur isotopic signatures that might elucidate past groundwater flows. A Rayleigh distillation model indicates that about 3-18% of sulfates from an inorganic groundwater pool (δ34S of 12.6-13.8‰) have been metabolized by bacteria and preserved as partially to fully reduced sulfur-bearing minerals species (elemental sulfur, monosulfides, disulfides) with distinctly negative δ34S values (−42.3‰ to −20.3‰) compared to co-existing gypsum (−3.8‰ to 22.4‰). For the Tularosa Basin microbial sulfate reduction had negligible effect on δ34S value of the gypsiferous sediments most likely because of higher annual temperatures (15-33 °C) and lower organic carbon content (median 0.09%) in those sediments leading to more efficient oxidation of H2S and/or smaller rates of sulfate reduction compared to the saline playas of the Estancia Basin (5-28 °C; median 0.46% of organic carbon).The White Sands region of the Tularosa Basin is frequently posited as a hydrothermal analogue for Mars. High temperatures of groundwater (33.3 °C) and high δ18O(H2O) values (1.1‰) in White Sands, however, are controlled predominantly by seasonal evaporation rather than the modern influx of hydrothermal fluids. Nevertheless, it is possible that some of the geochemical processes in White Sands, such as sulfide weathering during climate oscillations and upwelling of highly mineralized waters, might be considered as valid terrestrial analogues for the sulfate cycle in places such as Meridiani Planum on Mars.  相似文献   

19.
Large, correlated, mass-dependent enrichments in the heavier isotopes of O, Cr, Fe, and Ni are observed in type-I (metal/metal oxide) cosmic spherules collected from the deep sea. Limited intraparticle variability of oxygen isotope abundances, typically <5‰ in δ18O, indicates good mixing of the melts and supports the application of the Rayleigh equation for the calculation of fractional evaporative losses during atmospheric entry. Fractional losses for oxygen evaporation from wüstite, assuming a starting isotopic composition equal to that of air (δ18O = 23.5‰; δ17O = 11.8‰), are in the range 55%-77%, and are systematically smaller than evaporative losses calculated for Fe (69%-85%), Cr (81%-95%), and especially Ni (45%-99%). However, as δ18O values increase, fractional losses for oxygen approach those of Fe, Cr, and Ni indicating a shift in the evaporating species from metallic to oxidized forms as the spherules are progressively oxidized during entry heating. The observed unequal fractional losses of O and Fe can be reconciled by allowing for a kinetic isotope mass-dependent fractionation of atmospheric oxygen during the oxidation process and/or that some metallic Fe may have undergone Rayleigh evaporation before oxidation began.In situ measurements of oxygen isotopic abundances were also performed in 14 type-S (silicate) cosmic spherules, 13 from the Antarctic ice and one from the deep sea. Additional bulk Fe and Cr isotopic abundances were determined for two type-S deep-sea spherules. The isotopic fractionation of Cr isotopes suggest appreciable evaporative loss of Cr, perhaps as a sulfide. The oxygen isotopic compositions for the type-S spherules range from δ18O = −2‰ to + 27‰. The intraspherule isotopic variations are typically small, ∼5% relative, except for the less-heated porphyritic spherules which have preserved large isotopic heterogeneities in at least one case. A plot of δ17O vs. δ18O values for these spherules defines a broad parallelogram bounded at higher values of δ17O by the terrestrial fractionation line, and at lower values of δ17O by a line parallel to it and anchored near the isotopic composition of δ18O = −2.5‰ and δ17O = −5‰. Lack of independent evidence for substantial evaporative losses suggests that much of this variation reflects the starting isotopic composition of the precursor materials, which likely resembled CO, CM, or CI chondrites. However, the enrichments in heavy isotopes indicate that some mixing with atmospheric oxygen was probably involved during atmospheric entry for some of the spherules. Isotopic fractionation due to evaporation of incoming grain is not required to explain most of the oxygen isotopic data for type-S spherules. However spherules with barred olivine textures that are thought to have experienced a more intense heating than the porphyritic ones might have undergone some distillation. Two cosmic spherules, one classified as a radial pyroxene type and the other showing a glassy texture, show unfractionated oxygen isotopic abundances. They are probably chondrule fragments that survived atmospheric entry unmelted.Possible reasons type-I spherules show larger degrees of isotopic fractionation than type-S spherules include: a) the short duration of the heating pulse associated with the high volatile content of the type-S spherule precursors compared to type-I spherules; b) higher evaporation temperatures for at least a refractory portion of the silicates compared to that of iron metal or oxide; c) lower duration of heating of type-S spherules compared to type-I spherules as a consequence of their lower densities.  相似文献   

20.
Oxygen and hydrogen isotope analyses were made of Jurassic-age chert nodules from the Holy Cross Mountains, SE Poland, along radial transects at high spatial resolution. There is a radial “sigmoidal” periodicity for both isotope ratios, but the two are out of phase, with high δD values corresponding to low δ18O values. Periodicity for a 100- to 120-mm diameter nodule is approximately 16 mm, increasing slightly toward the rim, with amplitudes approaching 20 and 3.0‰ for hydrogen and oxygen, respectively. The combined hydrogen-oxygen isotope data for one nodule fall on a published curve for chert forming in equilibrium with seawater (Knauth and Epstein, 1976); the range of delta values corresponds to temperature variations of ∼10°C. Data for a second chert fall on a subparallel δD-δ18O line with δD values that are almost 50‰ lower. The δD-δ18O patterns for the nodules cannot be explained by periodic mixing of meteoric and ocean water because the hydrogen and oxygen isotope data are out of phase. Two possible explanations for the antiphase periodicity are (a) cyclical temperature variations, perhaps related to an unstable convection system (e.g., Bolton et al., 1999), and (b) self-organizing catalytic precipitation (e.g., Wang and Merino, 1990). The systematic isotopic variations are difficult to explain by diagenesis and strongly suggest that primary isotopic compositions are preserved. The isotopic data provide important information on the thermal history of the sedimentary basin, if temperature variations are the cause of the isotopic periodicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号