首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Three planktonic foraminiferal species Globigerina bulloides, Neogloboquadrina pachyderma (d), and Globorotalia inflata collected from core-tops spanning 35° to 65°N in the North Atlantic were used for U/Ca and Mg/Ca and foraminiferal shell weight analyses. Except for U/Ca in G. bulloides calcified under warm conditions (>∼13 °C), U/Ca ratios in all three studied species increase with decreasing latitude and show strong positive correlations with Mg/Ca ratios. A dissolution effect on planktonic U/Ca is suggested by decreased shell weight and U/Ca and Mg/Ca ratios for shells from very deep water depth (>4.4 km) along the latitudinal transect. G. bulloides from down core samples in the North Atlantic show low U/Ca ratios during the last glacial and high ratios during the Holocene, similar to the Mg/Ca evolution trend. In general, our data indicate that the U incorporation into planktonic foraminiferal carbonates is strongly influenced by calcification temperature, although U/Ca in G. bulloides may be affected by seawater carbonate ion concentration under warm conditions and/or other factors.  相似文献   

2.
The geochemistry of coral skeletons may reflect seawater conditions at the time of deposition and the analysis of fossil skeletons offers a method to reconstruct past climate. However the precipitation of cements in the primary coral skeleton during diagenesis may significantly affect bulk skeletal geochemistry. We used secondary ion mass spectrometry (SIMS) to measure Sr, Mg, B, U and Ba concentrations in primary coral aragonite and aragonite and calcite cements in fossil Porites corals from submerged reefs around the Hawaiian Islands. Cement and primary coral geochemistry were significantly different in all corals. We estimate the effects of cement inclusion on climate estimates from drilled coral samples, which combine cements and primary coral aragonite. Secondary 1% calcite or ∼2% aragonite cement contamination significantly affects Sr/Ca SST estimates by +1 °C and −0.4 to −0.9 °C, respectively. Cement inclusion also significantly affects Mg/Ca, B/Ca and U/Ca SST estimates in some corals. X-ray diffraction (XRD) will not detect secondary aragonite cements and significant calcite contamination may be below the limit of detection (∼1%) of the technique. Thorough petrographic examination of fossils is therefore essential to confirm that they are pristine before bulk drilled samples are analysed. To confirm that the geochemistry of the original coral structures is not affected by the precipitation of cements in adjacent pore spaces we analysed the primary coral aragonite in cemented and uncemented areas of the skeleton. Sr/Ca, B/Ca and U/Ca of primary coral aragonite is not affected by the presence of cements in adjacent interskeletal pore spaces i.e. the coral structures maintain their original composition and selective SIMS analysis of these structures offers a route to the reconstruction of accurate SSTs from altered coral skeletons. However, Mg/Ca and Ba/Ca of primary coral aragonite are significantly higher in parts of skeletons infilled with high Mg calcite cement. We hypothesise this reflects cement infilling of intraskeletal pore spaces in the primary coral structure.  相似文献   

3.
In order to investigate the incorporation of Sr, Mg, and U into coral skeletons and its temperature dependency, we performed a culture experiment in which specimens of the branching coral (Porites cylindrica) were grown for 1 month at three seawater temperatures (22, 26, and 30 °C). The results of this study showed that the linear extension rate of P. cylindrica has little effect on the skeletal Sr/Ca, Mg/Ca, and U/Ca ratios. The following temperature equations were derived: Sr/Ca (mmol/mol) = 10.214(±0.229) − 0.0642(±0.00897) × T (°C) (r2 = 0.59, p < 0.05); Mg/Ca (mmol/mol) = 1.973(±0.302) + 0.1002(±0.0118) × T (°C) (r2 = 0.67, p < 0.05); and U/Ca (μmol/mol) = 1.488(±0.0484) − 0.0212(±0.00189) × T (°C) (r2 = 0.78, p < 0.05). We calculated the distribution coefficient (D) of Sr, Mg, and U relative to seawater temperature and compared the results with previous data from massive Porites corals. The seawater temperature proxies based on D calibrations of P. cylindrica established in this study are generally similar to those for massive Porites corals, despite a difference in the slope of DU calibration. The calibration sensitivity of DSr, DMg, and DU to seawater temperature change during the experiment was 0.64%/°C, 1.93%/°C, and 1.97%/°C, respectively. These results suggest that the skeletal Sr/Ca ratio (and possibly the Mg/Ca and/or U/Ca ratio) of the branching coral P. cylindrica can be used as a potential paleothermometer.  相似文献   

4.
In order to investigate the interindividual and ontogenetic effects on Mg and Sr incorporation, magnesium/calcium (Mg/Ca) and strontium/calcium (Sr/Ca) ratios of cultured planktonic foraminifera have been determined. Specimens of Globigerinoides sacculifer were grown under controlled physical and chemical seawater conditions in the laboratory. By using this approach, we minimised the effect of potential environmental variability on Mg/Ca and Sr/Ca ratios. Whereas temperature is the overriding control of Mg/Ca ratios, the interindividual variability observed in the Mg/Ca values contributes 2-3 °C to the apparent temperature variance. Interindividual variability in Sr/Ca ratios is much smaller than that observed in Mg/Ca values. The variability due to ontogeny corresponds to −0.43 mmol/mol of Mg/Ca ratio per chamber added. This translates into an apparent decrease of ∼1 °C in Mg/Ca-based temperature per ontogenetic (chamber) stage. No significant ontogenetic effect is observed on Sr incorporation. We conclude that the presence of a significant ontogenetic effect on Mg incorporation can potentially offset Mg/Ca-based temperature reconstructions. We propose two new empirical Mg/Ca-temperature equation based on Mg/Ca measurements of the last four ontogenetic (chamber) stages and whole foraminiferal test: Mg/Ca = (0.55(±0.03) − 0.0002(±4 × 10−5) MSD) e0.089T and, Mg/Ca = (0.55(±0.03) − 0.0001(±2 × 10−5) MSD) e0.089T, respectively, where MSD corresponds to the maximum shell diameter of the individual.  相似文献   

5.
We test for and calibrate a proxy for ocean temperature based on the skeletal composition of the widely distributed, deep-sea gorgonians in the family Isididae (bamboo corals), through use of three complementary methods: a short-term comparison of element/Ca ratios to a four-year temperature record, a long-term comparison with oceanographic records spanning forty years, and a geographic comparison of Isidids collected at sites ranging from the tropics to Antarctica. The assays consistently support a temperature-dependency for Mg/Ca ratios and suggest S/Ca is indirectly affected by temperature, but indicate little or no effect of temperature on P/Ca and Sr/Ca. The consensus relationship between Mg/Ca and temperature for Isidid calcite from the comparisons with the temperature time-series is T = −0.505 + 0.048 Mg/Ca, where T is in °C, Mg/Ca is in mmol/mol, and the applicable range is 3-6 °C. The results of the geographic assay, though imprecise, suggest the applicable range extends to temperatures below freezing. The scatter of data points around the regression of temperature and Mg/Ca is wide in all assays. This could reflect the effect of factors other than temperature on Mg/Ca ratios, but is also likely to reflect limitations of the field data, the effects of assumed constant growth rates in the corals and instrumental analytical error. The combined effects of micro-scale variability in growth rates and wide confidence intervals for each data point suggests that environmental reconstruction from Isidid internode calcite from sparse data or at time scales less than decades be done with caution. Comparisons within and among colonies do not indicate strong vital effects on ontogenetic variability in the corals, other than possibly close to the central pore of the coral. However, similar Mg/Ca ratios for Isidids from Antarctic and more temperate regions suggest adaptation to local conditions and hence a role for physiology at higher taxonomic levels, at least. Taxonomically higher level vital effects are also suggested by large differences between gorgonian families in their regressions between Mg/Ca and temperature, by Mg/Ca ratios that overlap over a wide temperature and habitat range, and for a non-linear relationship between temperature and the slope of the Mg/Ca-temperature relationship across the order.  相似文献   

6.
Fossil corals are unique archives of past seasonal climate variability, providing vital information about seasonal climate phenomena such as ENSO and monsoons. However, submarine diagenetic processes can potentially obscure the original climate signals and lead to false interpretations. Here we demonstrate the potential of laser ablation ICP-MS to rapidly detect secondary aragonite precipitates in fossil Porites colonies recovered by Integrated Ocean Drilling Program (IODP) Expedition 310 from submerged deglacial reefs off Tahiti. High resolution (100 μm) measurements of coralline B/Ca, Mg/Ca, S/Ca, and U/Ca ratios are used to distinguish areas of pristine skeleton from those afflicted with secondary aragonite. Measurements of coralline Sr/Ca, U/Ca and oxygen isotope ratios, from areas identified as pristine, reveal that the seasonal range of sea surface temperature in the tropical south Pacific during the last deglaciation (14.7 and 11 ka) was similar to that of today.  相似文献   

7.
Calcium isotope fractionation in calcite and aragonite   总被引:1,自引:0,他引:1  
Calcium isotope fractionation was measured on skeletal aragonite and calcite from different marine biota and on inorganic calcite. Precipitation temperatures ranged from 0 to 28°C. Calcium isotope fractionation shows a temperature dependence in accordance with previous observations: 1000 · ln(αcc) = −1.4 + 0.021 · T (°C) for calcite and 1000 · ln(αar) = −1.9 + 0.017 · T (°C) for aragonite. Within uncertainty the temperature slopes are identical for the two polymorphs. However, at all temperatures calcium isotopes are more fractionated in aragonite than in calcite. The offset in δ44/40Ca is about 0.6‰. The underlying mechanism for this offset may be related to the different coordination numbers and bond strengths of the calcium ions in calcite and aragonite crystals, or to different Ca reaction behavior at the solid-liquid interface. Recently, the observed temperature dependence of the Ca isotope fractionation was explained quantitatively by the temperature control on precipitation rates of calcium carbonates in an experimental setting (Lemarchand et al., 2004). We show that this mechanism can in principle also be applied to CaCO3 precipitation in natural environments in normal marine settings. Following this model, Ca isotope fractionation in marine Ca carbonates is primarily controlled by precipitation rates. On the other hand the larger Ca isotope fractionation of aragonite compared to calcite can not be explained by different precipitation rates. The rate control model of Ca isotope fractionation predicts a strong dependence of the Ca isotopic composition of carbonates on ambient CO32− concentration. While this model is in general accordance with our observations in marine carbonates, cultured specimens of the planktic foraminifer Orbulina universa show no dependence of Ca-isotope fractionation on the ambient CO32− concentration. The latter observation implies that the carbonate chemistry in the calcifying vesicles of the foraminifer is independent from the ambient carbonate ion concentration of the surrounding water.  相似文献   

8.
Over the last decade, sea surface temperature (SST) reconstructed from the Mg/Ca ratio of foraminiferal calcite has increasingly been used, in combination with the δ18O signal measured on the same material, to calculate the δ18Ow, a proxy for sea surface salinity (SSS). A number of studies, however, have shown that the Mg/Ca ratio is also sensitive to other parameters, such as pH or , and salinity. To increase the reliability of foraminiferal Mg/Ca ratios as temperature proxies, these effects should be quantified in isolation. Individuals of the benthic foraminifera Ammonia tepida were cultured at three different salinities (20, 33 and 40 psu) and two temperatures (10-15 °C). The Mg/Ca and Sr/Ca ratios of newly formed calcite were analyzed by Laser Ablation ICP-MS and demonstrate that the Mg concentration in A. tepida is overall relatively low (mean value per experimental condition between 0.5 and 1.3 mmol/mol) when compared to other foraminiferal species, Sr being similar to other foraminiferal species. The Mg and Sr incorporation are both enhanced with increasing temperatures. However, the temperature dependency for Sr disappears when the distribution factor DSr is plotted as a function of calcite saturation state (Ω). This suggests that a kinetic process related to Ω is responsible for the observed dependency of Sr incorporation on sea water temperature. The inferred relative increase in DMg per unit salinity is 2.8% at 10 °C and 3.3% at 15 °C, for the salinity interval 20-40 psu. This implies that a salinity increase of 2 psu results in enhanced Mg incorporation equivalent to 1 °C temperature increase. The DSr increase per unit salinity is 0.8% at 10 °C and 1.3% at 15 °C, for the salinity interval 20-40 psu.  相似文献   

9.
The Lost City Hydrothermal Field at 30°N, near the Mid-Atlantic Ridge, is an off-axis, moderate temperature, high-pH (9-10.8), serpentinite-hosted vent system. The field is hosted on ∼1.5 Ma crust, near the summit of the Atlantis Massif. Within the field, actively venting carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the chimneys and vent fluids is controlled by serpentinization reactions between seawater and underlying peridotite. Mixing of <40-91 °C calcium-rich vent fluids with seawater results in the precipitation of variable mixtures of aragonite, calcite, and brucite. The resultant deposits range from tall, graceful pinnacles to fragile flanges and delicate precipitates that grow outward from fissures in the bedrock. In this study, mineralogy, petrographic analyses, major and trace element concentrations, and Sr isotopic compositions are used to propose a model for the growth and chemical evolution of carbonate chimneys in a serpentinite-hosted environment. Our results show that nascent chimneys are characterized by a porous, interlacing network of aragonite, and brucite minerals that form extremely fragile structures. The chemistry of these young deposits is characterized by ∼10 wt% Ca and up to 27 wt% Mg, extremely low trace metal concentrations, and 87Sr/86Sr isotope ratios near 0.70760. During aging of the chimneys, progressive reactions with seawater result in the dissolution of brucite, the conversion of aragonite to calcite, and infilling of pore spaces with calcite. The oldest chimneys are dominated by calcite, with bulk rock values of up to 36 wt% Ca and <1 wt% Mg. These older structures contain higher concentrations of trace metals (e.g., Mn and Ti), and have Sr isotope ratios near seawater values (0.70908). Exposed ultramafic rocks are prevalent along the Mid-Atlantic, Arctic, and Indian Ocean ridge networks and it is likely that other Lost City-type systems exist.  相似文献   

10.
This study was designed to investigate the effect of light and temperature on Sr/Ca and Mg/Ca ratios in the skeleton of the coral Acropora sp. for the purpose of evaluating temperature proxies for paleoceanographic applications. In the first experiment, corals were cultivated under three light levels (100, 200, 400 μmol photons m−2 s−1) and constant temperature (27 °C). In the second experiment, corals were cultivated at five temperatures (21, 23, 25, 27, 29 °C) and constant light (400 μmol photons m−2 s−1). Increasing the water temperature from 21 to 29 °C, induced a 5.7-fold increase in the rate of calcification, which induced a 30% increase in the Mg/Ca ratio. In contrast, by increasing the light level by a factor of 4, the rate of calcification was increased only by a factor of 1.7, with a corresponding 9% increase in the Mg/Ca ratio. Thus, the relative change in the calcification rate in the two experiments (5.7 vs. 1.7) scales with the corresponding relative change in Mg/Ca ratio (30% vs. 9%). We conclude that there is a strong biological control on the incorporation of Mg.For Sr/Ca, good correlations were also observed with water temperature and the calcification rate induced by temperature changes. However, in sharp contrast with the Mg/Ca ratio, a temperature-induced 5.7-fold increase in the calcification rate only induced a 4.5% change (decrease) in the Sr/Ca ratio. An important finding for paleoceanographic applications is that the Sr/Ca ratio did not appear to be sensitive to changes in the light level, or to changes in calcification rate induced by changes in the light level. Thus, in this study, water temperature was found to be the dominant parameter controlling the skeletal Sr/Ca ratio.  相似文献   

11.
This study presents the results from precipitation experiments carried out to investigate the partitioning of the alkaline earth cations Mg2+, Ca2+, Sr2+, and Ba2+ between abiogenic aragonite and seawater as a function of temperature. Experiments were carried out at 5 to 75 °C, using the protocol of Kinsman and Holland [Kinsman, D.J.J., Holland, H.D., 1969. The coprecipitation of cations with CaCO3 IV. The coprecipitation of Sr2+ with aragonite between 16 and 96 °C. Geochim. Cosmochim. Acta33, 1-17.] The concentrations of Mg Sr and Ba were determined in the fluid from each experiment by inductively coupled plasma-mass spectrometry, and in individual aragonite grains by secondary ion mass spectrometry. The experimentally produced aragonite grains are enriched in trace components (“impurities”) relative to the concentrations expected from crystal-fluid equilibrium, indicating that kinetic processes are controlling element distribution. Our data are not consistent with fractionations produced kinetically in a boundary layer adjacent to the growing crystal because Sr2+, a compatible element, is enriched rather than depleted in the aragonite. Element compatibilities, and the systematic change in partitioning with temperature, can be explained by the process of surface entrapment proposed by Watson and Liang [Watson, E.B., Liang, Y., 1995. A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am. Mineral.80, 1179-1187] and Watson [Watson, E.B., 1996. Surface enrichment and trace-element uptake during crystal growth. Geochim. Cosmochim. Acta60, 5013-5020; Watson, E.B., 2004. A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals. Geochim. Cosmochim. Acta68, 1473-1488]. This process is thought to operate in regimes where the competition between crystal growth rate and diffusivity in the near-surface region limits the extent to which the solid can achieve partitioning equilibrium with the fluid. A comparison of the skeletal composition of Diploria labyrinthiformis (brain coral) collected on Bermuda with results from precipitation calculations carried out using our experimentally determined partition coefficients indicate that the fluid from which coral skeleton precipitates has a Sr/Ca ratio comparable to that of seawater, but is depleted in Mg and Ba, and that there are seasonal fluctuations in the mass fraction of aragonite precipitated from the calcifying fluid (“precipitation efficiency”). The combined effects of surface entrapment during aragonite growth and seasonal fluctuations in “precipitation efficiency” likely forms the basis for the temperature information recorded in the aragonite skeletons of Scleractinian corals.  相似文献   

12.
Magnesium/calcium, Sr/Ca, and Na/Ca atom ratios were determined in the calcite and aragonite regions of Mytilus edulis shells which were grown in semi-artificial ‘seawater’ solutions having varying Mg/Ca, Sr/Ca, and Na/Ca ratios. These ratios were measured by instrumental neutron activation, atomic absorption, and electron microprobe analytical techniques. Strontium/calcium ratios in both calcite and aragonite were linearly proportional to solution Sr/Ca ratios. Magnesium/calcium ratios in calcite increased exponentially when solution Mg/Ca ratios were raised above the normal seawater ratio; whereas in aragonite, Mg/Ca ratios increased linearly with increases in solution Mg/Ca ratios. Sodium/calcium and sulfur/calcium ratios in calcite covaried with Mg/Ga solution ratios. Conversely, in aragonite, Na/Ca ratios varied linearly with solution Na/Ca ratios.Magnesium is known to inhibit calcite precipitation at its normal seawater concentration. We infer from the results of the work reported here that Mytilus edulis controls the Mg activity of the outer extrapallial fluid, thus facilitating the precipitation of calcitic shell. Increases in sulfur content suggest that changes in shell organic matrix content occur as a result of environmental stress. Certain increases in Mg content may also be correlated to stress. Sodium/calcium variations, and their absolute amounts in calcite and aragonite, are best explained by assuming that a substantial amount of Na is adsorbed on the calcium carbonate crystal surface. Strontium/calcium ratios show more promise than either Mg/Ca or Na/Ca ratios as seawater paleochemistry indicators, because the Sr/Ca distribution coefficients for both aragonite and calcite are independent of seawater Ca and Sr concentrations.  相似文献   

13.
Nanostructure, composition and mechanisms of bivalve shell growth   总被引:3,自引:0,他引:3  
Freshwater and marine cultured pearls form via identical processes to the shells of bivalves and can therefore serve as models for the biomineralization of bivalve shells in general. Their nanostructure consists of membrane-coated granules (vesicles) which contain amorphous calcium carbonate (ACC) at the beginning of the biomineralization sequence, preceding the crystallization of aragonite and vaterite. In contrast to the commonly accepted view, crystallization of ACC occurs rapidly and within the granular nano-compartments mediated by organic molecules much earlier than platelet formation. The interlamellar organic sheets in nacre that form the platelet structure of nacre themselves form by self-organization after the crystallization process of CaCO3 is completed and, thus, cannot serve as a nucleation template for aragonite. Pores in the organic sheets are postulated to be a result of this process rather than to represent the pathways for CaCO3 through pre-existing interlamellar sheets. The amorphous phase has the highest concentrations of Mg (5.8 mol%), Mn (6.6 mol%), S (4.7 mol%) and P (1 mol%) of the three CaCO3-polymorphs. Mg/Ca and Mn/Ca ratios are found to decrease in the order ACC > vaterite > aragonite, corresponding to decreasing organic content in the different phases. This, as well as an observed enrichment of Mg in the organic-rich growth-banding of the pearls, suggests an at least partially organic speciation of Mg and Mn in bivalves and may be responsible for the observed physiological influence on Mg/Ca and Mn/Ca ratios in bivalves as a proxy for environmental parameters.  相似文献   

14.
The integrity of coral-based reconstructions of past climate variability depends on a comprehensive knowledge of the effects of post-depositional alteration on coral skeletal geochemistry. Here we combine millimeter-scale and micro-scale coral Sr/Ca data, scanning electron microscopy (SEM) images, and X-ray diffraction with previously published δ18O records to investigate the effects of submarine and subaerial diagenesis on paleoclimate reconstructions in modern and young sub-fossil corals from the central tropical Pacific. In a 40-year-old modern coral, we find secondary aragonite is associated with relatively high coral δ18O and Sr/Ca, equivalent to sea-surface temperature (SST) artifacts as large as −3 and −5 °C, respectively. Secondary aragonite observed in a 350-year-old fossil coral is associated with relatively high δ18O and Sr/Ca, resulting in apparent paleo-SST offsets of up to −2 and −4 °C, respectively. Secondary Ion Mass Spectrometry (SIMS) analyses of secondary aragonite yield Sr/Ca ratios ranging from 10.78 to 12.39 mmol/mol, significantly higher compared to 9.15 ± 0.37 mmol/mol measured in more pristine sections of the same fossil coral. Widespread dissolution and secondary calcite observed in a 750-year-old fossil coral is associated with relatively low δ18O and Sr/Ca. SIMS Sr/Ca measurements of the secondary calcite (1.96-9.74 mmol/mol) are significantly lower and more variable than Sr/Ca values from more pristine portions of the same fossil coral (8.22 ± 0.13 mmol/mol). Our results indicate that while diagenesis has a much larger impact on Sr/Ca-based paleoclimate reconstructions than δ18O-based reconstructions at our site, SIMS analyses of relatively pristine skeletal elements in an altered coral may provide robust estimates of Sr/Ca which can be used to derive paleo-SSTs.  相似文献   

15.
The relationship between potential elemental proxies (Mg/Ca, Sr/Ca and Mn/Ca ratios) and environmental factors was investigated for the bivalve Pecten maximus in a detailed field study undertaken in the Menai Strait, Wales, U.K. An age model constructed for each shell by comparison of measured and predicted oxygen-isotope ratios allowed comparison on a calendar time scale of shell elemental data with environmental variables, as well as estimation of shell growth rates. The seasonal variation of shell Mn/Ca ratios followed a similar pattern to one previously described for dissolved Mn2+ in the Menai Strait, although further calibration work is needed to validate such a relationship. Shell Sr/Ca ratios unexpectedly were found to co-vary most significantly with calcification temperature, whilst shell Mg/Ca ratios were the next most significant control. The temporal variation in the factors that control shell Sr/Ca ratios strongly suggest the former observation most likely to be the result of a secondary influence on shell Sr/Ca ratios by kinetic effects, the latter driven by seasonal variation in shell growth rate that is in turn influenced in part by seawater temperature. P. maximus shell Mg/Ca ratio to calcification temperature relationships exhibit an inverse correlation during autumn to early spring (October to March-April) and a positive correlation from late spring through summer (May-June to September). No clear explanation is evident for the former trend, but the similarity of the records from the three shells analysed indicate that it is a real signal and not a spurious observation. These observations confirm that application of the Mg/Ca proxy in P. maximus shells remains problematic, even for seasonal or absolute temperature reconstructions. For the range of calcification temperatures of 5-19 °C, our shell Mg/Ca ratios in P. maximus are approximately one-fourth those in inorganic calcite, half those in the bivalve Pinna nobilis, twice those in the bivalve Mytilus trossulus, and four to five times higher than Mg/Ca ratios in planktonic and benthonic foraminifera. Our findings further support observations that Mg/Ca ratios in bivalve shell calcite are an unreliable temperature proxy, as well as substantial taxon- and species-specific variation in Mg incorporation into bivalves and other calcifying organisms, with profound implications for the application of this geochemical proxy to the bivalve fossil record.  相似文献   

16.
Each of two calcitic stalagmites from Grotte de Clamouse, Herault, southern France, displays a discrete aragonite layer dated at around 1100 yr BP. The layer of fanning aragonite ray crystals is immediately preceded by calcite with Mg and Sr compositions that are uniquely high for the past 3 kyr. Trace element compositions close to the boundary between original aragonite and calcite are consistent with quasi‐equilibrium partitioning of trace elements between the phases. Study of modern dripwaters demonstrates that pronounced covariation of Mg/Ca and Sr/Ca ratios in dripwater occurs owing to large amounts of calcite precipitation upflow of the drips that fed the stalagmites. Trace element to Ca ratios are enhanced during seasonally dry periods. Ion microprobe data demonstrate a pronounced covariation of trace elements, including Mg and Sr in calcite, and Sr, U and Ba in aragonite. The mean peak spacing is close to the long‐term mean of annual growth rates determined by differences in U‐series ages and so the trace element peaks are interpreted as annual. The trace element chemistry of the stalagmites on annual to inter‐annual scales thus directly reflects the amounts of prior calcite precipitation, interpreted as an index of aridity. The longer‐term context is a multi‐decadal period of aridity (1200–1100 yr BP) possibly correlated with an analogous episode in Central America. The arid period culminated in the nucleation of aragonite, but within a decade was followed by a return to precursor conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The Mg/Ca ratio of seawater has varied significantly throughout the Phanerozoic Eon, primarily as a function of the rate of ocean crust production. Specimens of the crustose coralline alga Neogoniolithon sp. were grown in artificial seawaters encompassing the range of Mg/Ca ratios shown to have existed throughout the Phanerozoic. Significantly, the coralline algae’s skeletal Mg/Ca ratio varied in lockstep with the Mg/Ca ratio of the artificial seawater. Specimens grown in seawater treatments formulated with identical Mg/Ca ratios but differing absolute concentrations of Mg and Ca exhibited no significant differences in skeletal Mg/Ca ratios, thereby emphasizing the importance of the ambient Mg/Ca ratio, and not the absolute concentration of Mg, in determining the Mg/Ca ratio of coralline algal calcite. Specimens grown in seawater of the lowest molar Mg/Ca ratio (mMg/Ca = 1.0) actually changed their skeletal mineralogy from high-Mg (skeletal mMg/Ca > 0.04) to low-Mg calcite (skeletal mMg/Ca < 0.04), suggesting that ancient calcitic red algae, which exhibit morphologies and modes of calcification comparable to Neogoniolithon sp., would have produced low-Mg calcite from the middle Cambrian to middle Mississippian and during the middle to Late Cretaceous, when oceanic mMg/Ca approached unity. By influencing the original Mg content of carbonate facies in which these algae have been ubiquitous, this condition has significant implications for the geochemistry and diagenesis of algal limestones throughout most of the Phanerozoic. The crustose coralline algae’s precipitation of high-Mg calcite from seawater that favors the abiotic precipitation of aragonite indicates that these algae dictate the precipitation of the calcitic polymorph of CaCO3. However, the algae’s nearly abiotic pattern of Mg fractionation in their skeletal calcite suggests that their biomineralogical control is limited to polymorph specification and is generally ineffectual in the regulation of skeletal Mg incorporation. Therefore, the Mg/Ca ratio of well-preserved fossils of crustose coralline algae, when corrected for the effect of seawater temperature, may be an archive of oceanic Mg/Ca throughout the Phanerozoic. Magnesium fractionation algorithms that model algal skeletal Mg/Ca as a function of seawater Mg/Ca and temperature are presented herein. The results of this study support the empirical fossil evidence that secular variation of oceanic Mg/Ca has caused the mineralogy and skeletal chemistry of many calcifying marine organisms to change significantly over geologic time.  相似文献   

18.
Calcite Mg/Ca is usually assumed to vary linearly with solution Mg/Ca, that a constant partition coefficient describes the relationship between these two ratios. Numerous published empirical datasets suggests that this relationship is better described by a power function. We provide a compilation of these literature data for biotic and abiotic calcite in the form of Calcite Mg/Ca = F(Solution Mg/Ca)H, where F and H are empirically determined fitting parameters describing the slope and deviation from linearity, respectively, of the function. This is equivalent to Freundlich sorption behavior controlling Mg incorporation in calcite. Using a power function, instead of a partition coefficient, lowers Phanerozoic seawater Mg/Ca estimates based on echinoderm skeletal material by, on average, 0.5 mol/mol from previous estimates.These functions can also be used to model the primary skeletal calcite Mg/Ca of numerous calcite phases through geologic time. Such modeling suggests that the Mg/Ca of all calcite precipitated from seawater has varied through the Phanerozoic in response to changing seawater Mg/Ca and that the overall range in Mg/Ca measured among various calcite phases would be greatest when seawater Mg/Ca was also high (e.g., “aragonite seas”) and lowest when seawater Mg/Ca was low (e.g., “calcite seas”). It follows that, during times of “calcite seas” when the seawater Mg/Ca is presumed to have been lower, deposition of calcite with low Mg contents would have resulted in a depressed drive for diagenetic stabilization of shelfal carbonate and, in turn, lead to greater preservation of crystal and skeletal microfabrics and primary chemistries in biotic and abiotic calcites.  相似文献   

19.
To determine oxygen isotope fractionation between aragonite and water, aragonite was slowly precipitated from Ca(HCO3)2 solution at 0 to 50°C in the presence of Mg2+ or SO42−. The phase compositions and morphologies of synthetic minerals were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The effects of aragonite precipitation rate and excess dissolved CO2 gas in the initial Ca(HCO3)2 solution on oxygen isotope fractionation between aragonite and water were investigated. For the CaCO3 minerals slowly precipitated by the CaCO3 or NaHCO3 dissolution method at 0 to 50°C, the XRD and SEM analyses show that the rate of aragonite precipitation increased with temperature. Correspondingly, oxygen isotope fractionations between aragonite and water deviated progressively farther from equilibrium. Additionally, an excess of dissolved CO2 gas in the initial Ca(HCO3)2 solution results in an increase in apparent oxygen isotope fractionations. As a consequence, the experimentally determined oxygen isotope fractionations at 50°C indicate disequilibrium, whereas the relatively lower fractionation values obtained at 0 and 25°C from the solution with less dissolved CO2 gas and low precipitation rates indicate a closer approach to equilibrium. Combining the lower values at 0 and 25°C with previous data derived from a two-step overgrowth technique at 50 and 70°C, a fractionation equation for the aragonite-water system at 0 to 70°C is obtained as follows:
  相似文献   

20.
Two strains of moderately halophilic bacteria were grown in aerobic culture experiments containing gel medium to determine the Sr partition coefficient between dolomite and the medium from which it precipitates at 15 to 45 °C. The results demonstrate that Sr incorporation in dolomite does occur not by the substitution of Ca, but rather by Mg. They also suggest that Sr partitioning between the culture medium and the minerals is better described by the Nernst equation (DSrdol = Srdol/Srbmi), instead of the Henderson and Kracek equation (DSrdol = (Sr/Ca)dol/(Sr/Ca)solution. The maximum value for DSrdol occurs at 15 °C in cultures with and without sulfate, while the minimum values occur at 35 °C, where the bacteria exhibit optimal growth. For experiments at 25, 35 and 45 °C, we observed that DSrdol values are greater in cultures with sulfate than in cultures without sulfate, whereas DSrdol values are smaller in cultures with sulfate than in cultures without sulfate at 15 °C.Together, our observations suggest that DSrdol is apparently related to microbial activity, temperature and sulfate concentration, regardless of the convention used to assess the DSrdol. These results have implications for the interpretation of depositional environments of ancient dolomite. The results of our culture experiments show that higher Sr concentrations in ancient dolomite could reflect microbial mediated primary precipitation. In contrast, previous interpretations concluded that high Sr concentrations in ancient dolomites are an indication of secondary replacement of aragonite, which incorporates high Sr concentrations in its crystal lattice, reflecting a diagenetic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号