首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
Numerous studies have utilized surface complexation theory to model proton adsorption behaviour onto mesophilic bacteria. However, few experiments, to date, have investigated the effects of pH and ionic strength on proton interactions with thermophilic bacteria. In this study, we characterize proton adsorption by the thermophile Anoxybacillus flavithermus by performing acid-base titrations and electrophoretic mobility measurements in NaNO3 (0.001-0.1 M). Equilibrium thermodynamics (Donnan model) were applied to describe the specific chemical reactions that occur at the water-bacteria interface. Acid-base titrations were used to determine deprotonation constants and site concentrations for the important cell wall functional groups, while electrophoretic mobility data were used to further constrain the model. We observe that with increasing pH and ionic strength, the buffering capacity increases and the electrophoretic mobility decreases. We develop a single surface complexation model to describe proton interactions with the cells, both as a function of pH and ionic strength. Based on the model, the acid-base properties of the cell wall of A. flavithermus can best be characterized by invoking three distinct types of cell wall functional groups, with pKa values of 4.94, 6.85, and 7.85, and site concentrations of 5.33, 1.79, and 1.42 × 10−4 moles per gram of dry bacteria, respectively. A. flavithermus imparts less buffering capacity than pure mesophilic bacteria studied to date because the thermophile possesses a lower total site density (8.54 × 10−4 moles per dry gram bacteria).  相似文献   

2.
The purpose of the present work is to extend our knowledge of metal–cyanobacteria interactions and to contribute to the database on adsorption parameters of aquatic microorganisms with respect to metal pollutants. To this end, the surface properties of the cyanobacteria (Gloeocapsa sp. f-6gl) were studied using potentiometric acid–base titration methods and ATR-FTIR (attenuated total reflection infrared) spectroscopy. The electrophoretic mobility of viable cells was measured as a function of pH and ionic strength (0.01 and 0.1 M). Surface titrations at 0.01–1.0 M NaCl were performed using limited residence time reactors (discontinuous titration) with analysis of Ca, Mg and dissolved organic C for each titration point in order to account for alkali-earth metal–proton exchange and cell degradation, respectively. Results demonstrate that the cell-wall bound Ca and Mg from the culture media contribute to the total proton uptake via surface ion-exchange reactions. This has been explicitly taken into account for net proton balance calculations. Adsorption of Zn, Cd, Pb and Cu was studied at 25 °C in 0.01 M NaNO3 as a function of pH and metal concentration. The proportion of adsorbed metal increases as a function of culture age with cells of 44 days old having the largest adsorption capacities. A competitive Langmuir sorption isotherm in conjunction with a linear programming method (LPM) was used to fit experimental data and assess the number of surface sites and adsorption reaction constants involved in the binding of metals to the cyanobacteria surface. These observations allowed the determination of the identity and concentration of the major surface functional groups (carboxylate, amine, phosphoryl/phosphodiester and hydroxyl) responsible for the amphoteric behavior of cyanobacterial cell surfaces in aqueous solutions and for metal adsorption. Results of this work should allow better optimizing of metal bioremediation/biosequestration processes as they help to define the most efficient range of pH, cell biomass and duration of exposure necessary for controlled metal adsorption on cyanobacteria cultures. It follows from comparison of adsorption model parameters between different bacteria that technological application of cyanobacteria in wastewater bioremediation can be as efficient as other biological sorbents.  相似文献   

3.
Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior from approximately pH 3-9 that requires the presence of four distinct sites, with pKa values of 3.3 ± 0.2, 4.8 ± 0.2, 6.7 ± 0.4, and 9.4 ± 0.5, and site concentrations of 8.9(±2.6) × 10−5, 1.3(±0.2) × 10−4, 5.9(±3.3) × 10−5, and 1.1(±0.6) × 10−4 moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low.  相似文献   

4.
An amorphous or nanocrystalline calcium carbonate (ACC) phase with aragonite-like short-range order was found to be a transient precursor phase of calcite precipitation mediated by cyanobacteria of the strain Synechococcus leopoliensis PCC 7942. Using scanning transmission X-ray microscopy (STXM), different Ca-species such as calcite, aragonite-like CaCO3, and Ca adsorbed on extracellular polymers were discriminated and mapped, together with various organic compounds, at the 30 nm-scale. The nucleation of the amorphous aragonite-like CaCO3 was found to take place within the tightly bound extracellular polymeric substances (EPS) produced by the cyanobacteria very close to the cell wall. The aragonite-like CaCO3 is a type of ACC since it did not show either X-ray or electron diffraction peaks. The amount of aragonite-like CaCO3 precipitated in the EPS was dependent on the nutrient supply during bacterial growth. Higher nutrient concentrations (both N and P) during the cultivation of the cyanobacteria resulted in higher amounts of precipitation of the aragonite-like CaCO3, whereas the amount of Ca2+ adsorbed per volume of EPS was almost independent of the nutrient level. After the onset of the precipitation of the thermodynamically stable calcite and loss of supersaturation the aragonite-like CaCO3 dissolved whereas Ca2+ remained sorbed to the EPS albeit at lower concentrations. Based on these observations a model describing the temporal and spatial evolution of calcite nucleation on the surface of S. leopoliensis was developed. In another set of STXM experiments the amount of aragonite-like CaCO3 precipitated on the cell surface was found to depend on the culture growth phase: cells in the exponential growth phase adsorbed large amounts of Ca within the EPS and mediated nucleation of ACC, while cells at the stationary/death phase neither adsorbed large amounts of Ca2+ nor mediated the formation of aragonite-like CaCO3. It is suggested that precipitation of an X-ray amorphous CaCO3 layer by cyanobacteria could serve as a protection mechanism against uncontrolled precipitation of a thermodynamically stable phase calcite on their surface.  相似文献   

5.
We investigated the effect of CO2 and primary production on the carbon isotopic fractionation of alkenones and particulate organic matter (POC) during a natural phytoplankton bloom dominated by the coccolithophore Emiliania huxleyi. In nine semi-closed mesocosms (∼11 m3 each), three different CO2 partial pressures (pCO2) in triplicate represented glacial (∼180 ppmv CO2), present (∼380 ppmv CO2), and year 2100 (∼710 ppmv CO2) CO2 conditions. The largest shift in alkenone isotopic composition (4-5‰) occurred during the exponential growth phase, regardless of the CO2 concentration in the respective treatment. Despite the difference of ∼500 ppmv, the influence of pCO2 on isotopic fractionation was marginal (1-2‰). During the stationary phase, E. huxleyi continued to produce alkenones, accumulating cellular concentrations almost four times higher than those of exponentially dividing cells. Our isotope data indicate that, while alkenone production was maintained, the interaction of carbon source and cellular uptake dynamics by E. huxleyi reached a steady state. During stationary phase, we further observed a remarkable increase in the difference between δ13C of bulk organic matter and of alkenones spanning 7-12‰. We suggest that this phenomenon is caused mainly by a combination of extracellular release of 13C-enriched polysaccharides and subsequent particle aggregation induced by the production of transparent exopolymer particles (TEP).  相似文献   

6.
In this study, we conducted electrophoretic mobility, potentiometric titration, and metal sorption experiments to investigate the surface charge characteristics of Bacillus subtilis and the electrostatic interactions between metal cations and the cell surface electric field. Electrophoretic mobility experiments performed as a function of pH and ionic strength show an isoelectric point of pH 2.4, with the magnitude of the electrokinetic potential increasing with increasing pH, and decreasing with increasing ionic strength. Potentiometric titration experiments conducted from pH 2.4 to 9 yield an average surface charge excess of 1.6 μmol/mg (dry mass). Corresponding cell wall charge density values were used to calculate the Donnan potential (ΨDON) as function of pH and ionic strength. Metal sorption experiments conducted with Ca(II), Sr(II), and Ba(II) exhibit strong ionic strength dependence, suggesting that the metal ions are bound to the bacterial cell wall via an outer-sphere complexation mechanism. Intrinsic metal sorption constants for the sorption reactions were determined by correcting the apparent sorption constant with the Boltzmann factor. A 1:2 metal-ligand stoichiometry provides the best fit to the experimental data with log K2int values of 5.9 ± 0.3, 6.0 ± 0.2, 6.2 ± 0.2 for Ca(II), Sr(II), and Ba(II) respectively. Electrophoretic mobility measurements of cells sorbed with Ca(II), Sr(II), and Ba(II) support the 1:2 sorption stoichiometry. These results indicate that electrical potential parameters derived from the Donnan model can be applied to predict metal binding onto bacterial surfaces over a wide range of pH and ionic strength conditions.  相似文献   

7.
To provide constraints on the speciation of bacterial surface functional groups, we have conducted potentiometric titrations using the gram-positive aerobic species Bacillus subtilis, covering the pH range 2.1 to 9.8. Titration experiments were conducted using an auto-titrator assembly, with the bacteria suspended in fixed ionic strength (0.01 to 0.3 M) NaClO4 solutions. We observed significant adsorption of protons over the entire pH range of this study, including to the lowest pH values examined, indicating that proton saturation of the cell wall did not occur under any of the conditions of the experiments. Ionic strength, over the range studied here, did not have a significant effect on the observed buffering behavior relative to experimental uncertainty. Electrophoretic mobility measurements indicate that the cell wall is negatively charged, even under the lowest pH conditions studied. These experimental results necessitate a definition of the zero proton condition such that the total proton concentration at the pH of suspension is offset to account for the negative bacterial surface charge that tends towards neutrality at pH <2.The buffering intensity of the bacterial suspensions reveals a wide spread of apparent pKa values. This spread was modeled using three significantly different approaches: a Non-Electrostatic Model, a Constant Capacitance Model, and a Langmuir-Freundlich Model. The approaches differ in the manner in which they treat the surface electric field effects, and in whether they treat the proton-active sites as discrete functional groups or as continuous distributions of related sites. Each type of model tested, however, provides an excellent fit to the experimental data, indicating that titration data alone are insufficient for characterizing the molecular-scale reactions that occur on the bacterial surface. Spectroscopic data on the molecular-scale properties of the bacterial surface are required to differentiate between the underlying mechanisms of proton adsorption inherent in these models. The applicability and underlying conceptual foundation of each model is discussed in the context of our current knowledge of the structure of bacterial cell walls.  相似文献   

8.
A mathematical model based on the advection-dispersion equation, modified to account for growth, decay, attachment, and detachment of microorganisms, was developed to describe the transport and growth of bacteria in aquifers. Column experiments on the transport of a species of sulfate-reducing bacteria through saturated-aquifer sediment were conducted to gain a quantitative knowledge of the attachment and detachment processes. Relevant parameter values such as the attachment-site capacity of the sediment and the attachment and detachment coefficients under different conditions, were obtained by fitting the experimental data with the non-growth condition transport model. The transport model was then refined and improved to incorporate the microbial sulfate reduction mechanism. To evaluate the applicability of this model, bacterial transport in aquifers under both nutrient-rich and oligotrophic environments was modeled by employing the parameters gained from experiments and from available literature; the model results were consistent with observations reported in former studies. In addition, the results revealed that the distribution of bacteria in the aqueous phase and in the sediments is directly related to the attachment-site capacity of the sediment. Thus, the attachment-site capacity of the sediment is a key factor to evaluate the transport and growth of bacteria in aquifers.  相似文献   

9.
《Chemical Geology》2007,236(3-4):266-280
The surface chemistry of the cell wall of the metal resistant bacterium Cupriavidus metallidurans CH34 was investigated through proton exchange and zinc and cadmium sorption experiments. The effect of organic and mineral nutrients availability, culture age and viability on cell wall reactivity to H+, Zn or Cd was specifically addressed. Parameter sensitivity studies allowed constraining the pH-validity domain of the titration experiments and defining experimental conditions that permit reproducible experiments with this bacterium. The results were satisfactorily fitted with a non-electrostatic model that allowed the determination of the stability constants of three discrete acid–base functional groups differing in acidity at bacterial cell surfaces. These results revealed that C. metallidurans CH34 did not particularly stand out in terms of its surface reactivity as compared to metal-sensitive bacteria. This may confirm a generic global reactivity of all bacteria towards non-redox sensitive metals. The same reactivity to zinc was observed for C. metallidurans CH34 cells grown in LB-rich or TSM-mineral media. Cell surface reactivity was found to be independent of organic substrates availability but strongly dependent on cell growth stage and cell viability. Zinc sorption by C. metallidurans CH34 was only slightly (15% decrease) affected by phosphate availability. This suggests the involvement of phosphorus sites in metal binding. Zn and Cd stability constants compared to those of strong chelating ligands but were higher than those of weak ligands, such as acetic acid or phosphoric acid. This indicates that bacterial cells strongly compete with small dissolved organic components that are potentially less reactive to metals than bacteria. This competition potentially affects metal mobility in soils.  相似文献   

10.
Experiments with cultured aerobic methane oxidising bacteria confirm that their biomarker lipids will be significantly depleted in 13C compared to the substrate. The methanotrophic bacteria Methylococcus capsulatus and Methylomonas methanica, grown on methane and using the RuMP cycle for carbon assimilation, show maximum 13C fractionation of approximately 30% in the resultant biomass. In M. capsulatus, the maximum fractionation is observed in the earliest part of the exponential growth stage and decreases to approximately 16% as cells approach stationary phase. This change may be associated with a shift from the particulate form to the soluble form of the methane monooxygenase enzyme. Less than maximum fractionation is observed when cells are grown with reduced methane availability. Biomass of M. capsulatus grown on methanol was depleted by 9% compared to the substrate. Additional strong 13C fractionation takes place during polyisoprenoid biosynthesis in methanotrophs. The delta 13C values of individual hopanoid and steroid biomarkers produced by these organisms were as much as l0% more negative than total biomass. In individual cultures, squalene was 13C-enriched by as much as 14% compared to the triterpane skeleton of bacteriohopaneaminopentol. Much of the isotopic dispersion in lipid metabolites could be attributed to shifts in their relative abundances, combined with an overall reduction in fractionation during the growth cycle. In cells grown on methanol, where there was no apparent effect of growth stage on overall fractionation there were still significant isotopic differences between closely related lipids including a 5.3% difference between the hopane and 3 beta-methylhopane skeletons. Hopane and sterane polyisoprenoids were also 13C-depleted compared to fatty acids. These observations have significant implications for the interpretation of specific compound isotopic signatures now being measured for hydrocarbons and other lipids present in sediments and petroleum. In particular, biomarker lipids produced by a single organism do not necessarily have the same carbon isotopic composition.  相似文献   

11.
We use a lattice vibrational technique to derive thermophysical and thermochemical properties and phase equilibria in the system MgO-SiO2 at pressures and temperatures relevant to Earth’s mantle. The technique is based on an extension of Kieffer’s model to incorporate details of the phonon spectrum, and it includes treatment of intrinsic anharmonicity. We use a least squares inversion technique applied to available experimental data, and show that it results in an accurate representation of thermodynamic properties and sound wave velocities of high-pressure phases in the system MgSiO3. The vibrational method has been validated against laboratory experimental data in the temperature range between 0 and 2500 K and at pressures between 1 bar and 30 GPa. The technique results in a phase diagram consistent with the majority of thermophysical and thermochemical data. It is shown that intrinsic anharmonicity affects significantly slopes and positions of the phase boundaries. Our analysis indicates inconsistencies in a number of data sets of thermophysical properties for stishovite, majorite and ortho-enstatite necessitating new measurements. For akimotoite elasticity data at high-pressure and high-temperature conditions and 1 bar heat capacity measurements are needed. For stishovite elasticity measurements are necessary to reconcile elasticity data with V-P-T measurements. Additionally V-P-T measurements at pressures higher than 10 GPa are needed, which should be reconciled with V-P-T data at lower pressures. Raman and infrared spectroscopic data are necessary for both clino-enstatite and majorite. Additionally structural data are needed to resolve the discrepancy between values for the degree of disorder in majorite. Volume expansion data for ortho-enstatite are needed and effects causing differences in measured volume expansion should be elucidated.  相似文献   

12.
The acid-base properties of 14 standard and reference materials from the International Humic Substances Society (IHSS) were investigated by potentiometric titration. Titrations were conducted in 0.1 M NaCl under a nitrogen atmosphere, averaging 30 min from start to finish. Concentrations of carboxyl groups and phenolic groups were estimated directly from titration curves. Titration data were also fit to a modified Henderson-Hasselbalch model for two classes of proton-binding sites to obtain “best fit” parameters that describe proton-binding curves for the samples. The model was chosen for its simplicity, its ease of implementation in computer spreadsheets, and its excellent ability to describe the shapes of the titration curves. The carboxyl contents of the IHSS samples are in the general order: terrestrial fulvic acids > aquatic fulvic acids > Suwannee River natural organic matter (NOM) > aquatic humic acids > terrestrial humic acids. Overall, fulvic acids and humic acids have similar phenolic contents; however, all of the aquatically derived samples have higher phenolic contents than the terrestrially derived samples. The acid-base properties of reference Suwannee River NOM are surprisingly similar to those of standard Suwannee River humic acid. Results from titrations in this study were compared with other published results from both direct and indirect titrations. Typically, carboxyl contents for the IHSS samples were in agreement with the results from both methods of titration. Phenolic contents for the IHSS samples were comparable to those determined by direct titrations, but were significantly less than estimates of phenolic content that were based on indirect titrations with Ba(OH)2 and Ca(OAc)2. The average phenolic-to-carboxylic ratio of the IHSS samples is approximately 1:4. Models that assume a 1:2 ratio of phenolic-to-carboxylic groups may overestimate the relative contribution of phenolic groups to the acid-base chemistry of humic substances.  相似文献   

13.
《Applied Geochemistry》2003,18(4):527-538
Thermodynamic parameters for proton and metal adsorption onto a gram-negative bacterium from the genus Enterobacteriaceae have been determined and compared with parameters for other strains of bacteria. Potentiometric titrations were used to determine the different types of sites present on bacterial cell walls. Stability constants for adsorption of Pb, Cu and Zn to specific sites were determined from batch adsorption experiments at varying pH with constant metal concentration. Titrations revealed 3 distinct acidic surface sites on the bacterial surface, with pK values of 4.3±0.2, 6.9±0.5 and 8.9±0.5, corresponding to carboxyl, phosphate and hydroxyl/amine groups, with surface densities of 5.0±0.7×10−4, 2.2±0.6×10−4 and 5.5±2.2×10−4 mol/g of dry bacteria. Only carboxyl and phosphate sites are involved in metal uptake, yielding the following intrinsic stability constants: Log Kcarboxyl: Zn=3.3±0.1, Pb=3.9±0.8, and Cu=4.4±0.2, Log Kphosphoryl: Zn=5.1±0.1 and Pb=5.0±0.9. The deprotonation constants are similar to those of other strains of bacteria, while site densities are also within an order of magnitude of other strains. The similarities in surface chemistry and metal stability constants suggest that bacteria may be represented by a simple generic thermodynamic model for the purposes of modelling metal transport in natural environments. Comparison with oxide-coated sand shows that bacteria can attenuate some metals to much lower pH values.  相似文献   

14.
The adsorption of octyl hydroxamate on electrolytic manganese dioxide was investigated through adsorption studies, electrophoretic mobility measurements, infrared spectroscopy and Hallimond tube flotation. The adsorption measurements at room temperature and flotation studies show that a peak in adsorption density and flotation response occurs around pH 9. IR spectra indicate the presence of basic manganous hydroxamate complex at the surface. The electrophoretic mobility studies suggest that hydroxamate adsorbs specifically at the manganese dioxide/water interface. Adsorption measurements at an elevated temperature show that adsorption density increases with increasing temperature. It is postulated that the reactive species in adsorption could be the hydroxamic acid species.  相似文献   

15.
A device consisting of thin wood sheets bolted between transparent plastic plates has proved useful for the collection of wood-boring molluscs. The device makes possible measurements of rates of boring of individual animalsin situ, observations of boring movements, and simplified removal of intact animals from the wood substrate. Rates of boring of the shipwormBankia gouldi observed at intervals of a few days ranged from 0.03 to 3.85 mm per day, increasing with increasing length of the animal. Calculated growth curves indicated that growth was exponential. No significant difference in average boring rates was found between animals maintained in running sea water filtered through 5-μm mesh in the laboratory and animals maintained under field conditions. Extension of the burrow was observed to be accomplished by anterior-posterior and rotational dorsoventral movements of the valves.  相似文献   

16.
17.
Atomic force microscopy (AFM) and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in combination with the interaction force boundary layer (IFBL) model have been used to empirically and theoretically calculate sticking efficiencies (α) of Enterococcus faecalis cells against a silica glass surface. Sticking efficiencies were calculated in solutions of varying pH and ionic strength and related to maximum distances of transport through a hypothetical soil block using colloid filtration theory.AFM measurements show that the repulsive and attractive forces between E. faecalis cells and a glass surface are a function of ionic strength but are less sensitive to changes in solution pH. Zeta (ζ)-potential measurements of the cells and glass surfaces correlate with these trends. Calculated DLVO energy profiles predict much greater sensitivity to changing solution chemistry. Sticking efficiencies derived from AFM measurements range from 9.6 × 10−17 to 1 in solutions of low ionic strength (IS) and from 2.6 × 10−33 to 1 at higher IS. Corresponding α values determined from DLVO theory are essentially zero in all tested solutions.Sticking efficiencies calculated in this study are smaller than values determined from column and field studies in similar systems; however, α derived from AFM data and the IFBL model more closely represent field data than do values calculated from DLVO energy values. A comparison with different methods of calculating α suggests that reversible adhesion may be significant in column-scale transport studies.  相似文献   

18.
Increasing evidence suggests that bacteria are capable of creating specific redox conditions which are visible as species-specific continuous redox potential (E h) measurements. It has been demonstrated that continuous measurements of E h are valuable for tracking bacterial metabolic activities of bacterial species in liquid cultures. However, it remains uncertain whether this phenomenon is widespread among bacterial species and whether E h measurements reflect similar mechanisms in more complex systems such as soils and sediments. The purpose of this study is therefore to evaluate whether bacteria that naturally occur in sediments have the capacity to control E h and assess the relative partitioning of biological processes involved in E h in natural sediments. To this end, continuous E h measurements are linked to growth of bacteria in liquid cultures and bacterial metabolic activity in aquatic sediment microcosms containing the bioturbator Tubifex spp., in which we evaluate bacterial partitioning in microcosms treated with the bacteriocide formalin. The tested bacterial species (Micrococcus luteus, Paracoccus pantotrophus and Aminobacter aminovarans) appeared to have specific stable E h signals during linear-exponential growth phase, suggesting that these species are capable of exerting an extracellular control on E h measurements, thereby supporting the notion that species-specific E h signals may be widespread among bacterial species. Formalin treatment reduced temporal variability of E h in sediment microcosms. This outcome suggests that bacterial metabolism and inherent relative contributions of members of bacterial community principally determine development of E h in sediment systems and that quantitation of sediment electrochemical properties may offer a potential indicator that characterizes bacterial processes.  相似文献   

19.
The distribution of Cd2+ in the presence of phthalic acid (H2Lp), ferrihydrite and bacteria (Comamonas spp.) was investigated in biologically active systems involving H2Lp biodegradation. Tests showed that Cd2+ sorption onto bacteria, ferrihydrite and bacteria-ferrihydrite mixture increased with pH in all systems, irrespective of H2Lp degradation or not. The use of bacterial growth medium, Bushnell Hass Broth modified for low phosphate, had negligible effect on Cd sorption. In the presence of ferrihydrite, no difference was observed between Cd2+ sorption in the ferrihydrite-live bacteria and in the ferrihydrite-dead bacteria systems as ferrihydrite proved to be the dominant sorption phase. Cadmium sorption to ferrihydrite and to bacterial cells was described using the diffuse layer model and a nonelectrostatic 4-site model, respectively, which were developed for systems lacking H2Lp degradation. For systems experiencing H2Lp degradation this modeling approach predicted the general trend of Cd2+ sorption-edge shift and gave good fits to the observed sorption data. The results obtained demonstrate that Cd2+ sorption in the biologically active system was reasonably estimated by a model developed for biologically inactive systems, although uncertainty exists due to processes involving H2Lp biodegradation products and changes in the bacterial population.  相似文献   

20.
The sorption of selenium(VI) onto pure anatase, a polymorph of titanium dioxide, was investigated. At the macroscopic level, batch experiments and electrophoretic mobility measurements were performed. Selenium(VI) retention was found to be pH-dependent, i.e. sorption of selenium(VI) decreases with increasing pH (pH range 3.5-11). Selenium(VI) sorption dependence on the ionic strength was also evidenced, i.e. sorption increases while the ionic strength decreases. Electrophoretic mobility measurements showed that selenium(VI) sorption had no effect on the isoelectric point of anatase. At the microscopic level, XPS (X-ray Photoelectron Spectroscopy) measurements evidenced the absence of reduction of selenium(VI) during the sorption process. Furthermore, the nature of the sorbed surface species at the anatase/liquid interface was elucidated using Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) spectroscopy. The spectroscopic results strongly suggested the formation of outer-sphere complexes on the whole pH range, in agreement with batch sorption experiments and electrophoretic mobility findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号