首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on deep imaging of a remote M31 globular cluster, MGC1, obtained with Gemini/GMOS. Our colour–magnitude diagram for this object extends ∼5 mag below the tip of the red-giant branch and exhibits features consistent with an ancient metal-poor stellar population, including a long, well-populated horizontal branch. The red-giant branch locus suggests MGC1 has a metal abundance  [M/H]≈−2.3  . We measure the distance to MGC1 and find that it lies ∼160 kpc in front of M31 with a distance modulus  μ= 23.95 ± 0.06  . Combined with its large projected separation of   R p= 117 kpc  from M31, this implies a deprojected radius of   R gc= 200 ± 20 kpc  , rendering it the most isolated known globular cluster in the Local Group by some considerable margin. We construct a radial brightness profile for MGC1 and show that it is both centrally compact and rather luminous, with   MV =−9.2  . Remarkably, the cluster profile shows no evidence for a tidal limit and we are able to trace it to a radius of at least 450 pc, and possibly as far as ∼900 pc. The profile exhibits a power-law fall-off with exponent  γ=−2.5  , breaking to  γ=−3.5  in its outermost parts. This core-halo structure is broadly consistent with expectations derived from numerical models, and suggests that MGC1 has spent many gigayears in isolation.  相似文献   

2.
We present wide-area UBRI photometry for globular clusters around the Leo group galaxy NGC 3379. Globular cluster candidates are selected from their B -band magnitudes and their  ( U − B ) o   versus  ( B − I ) o   colours. A colour–colour selection region was defined from photometry of the Milky Way and M31 globular cluster systems. We detect 133 globular cluster candidates, which supports previous claims of a low specific frequency for NGC 3379.
The Milky Way and M31 reveal blue and red subpopulations, with  ( U − B ) o   and  ( B − I ) o   colours indicating mean metallicities similar to those expected based on previous spectroscopic work. The stellar population models of Maraston and Brocato et al. are consistent with both subpopulations being old, and with metallicities of  [Fe/H]∼−1.5  and −0.6 for the blue and red subpopulations, respectively. The models of Worthey do not reproduce the  ( U − B ) o   colours of the red (metal-rich) subpopulation for any modelled age.
For NGC 3379 we detect a blue subpopulation with similar colours, and presumably age/metallicity, to that of the Milky Way and M31 globular cluster systems. The red subpopulation is less well defined, perhaps due to increased photometric errors, but indicates a mean metallicity of [Fe/H]∼−0.6.  相似文献   

3.
We independently redetermine the reddening and age of the globular cluster (GC) 037−B327 in M31 by comparing independently obtained multicolour photometry with theoretical stellar population synthesis models. 037−B327 has long been known to have a very large reddening value, which we confirm to be   E ( B − V ) = 1.360 ± 0.013  , in good agreement with the previous results. We redetermine its most likely age at  12.4 ± 3.2 Gyr  .
037−B327 is a prime example of an unusually bright early counterpart to the ubiquitous 'super' star clusters presently observed in most high-intensity star-forming regions in the local Universe. In order to have survived for a Hubble time, we conclude that its stellar initial mass function (IMF) cannot have been top-heavy. Using this constraint, and a variety of simple stellar population (SSP) models, we determine a photometric mass of     , somewhat depending on the SSP models used, the metallicity and age adopted and the IMF representation. This mass, and its relatively small uncertainties, makes this object the most massive star cluster of any age in the Local Group. Assuming that the photometric mass estimate thus derived is fairly close to its dynamical mass, we predict that this GC has a (one-dimensional) velocity dispersion of the order of  (72 ± 13) km s−1  . As a surviving 'super' star cluster, this object is of prime importance for theories aimed at describing massive star cluster evolution.  相似文献   

4.
Using metallicities from the literature, combined with the Revised Bologna Catalogue of photometric data for M31 clusters and cluster candidates [the latter of which is the most comprehensive catalogue of M31 clusters currently available, including 337 confirmed globular clusters (GCs) and 688 GC candidates], we determine 443 reddening values and intrinsic colours, and 209 metallicities for individual clusters without spectroscopic observations. This, the largest sample of M31 GCs presently available, is then used to analyse the metallicity distribution of M31 GCs, which is bimodal with peaks at [Fe/H]≈−1.7 and −0.7 dex. An exploration of metallicities as a function of radius from the M31 centre shows a metallicity gradient for the metal-poor GCs, but no such gradient for the metal-rich GCs. Our results show that the metal-rich clusters appear as a centrally concentrated spatial distribution; however, the metal-poor clusters tend to be less spatially concentrated. There is no correlation between luminosity and metallicity among the M31 sample clusters, which indicates that self-enrichment is indeed unimportant for cluster formation in M31.
The reddening distribution shows that slightly more than half of the GCs are affected by a reddening of E ( B − V ) ≲ 0.2 mag; the mean reddening value is   E ( B − V ) = 0.28+0.23−0.14 mag  . The spatial distribution of the reddening values indicates that the reddening on the north-western side of the M31 disc is more significant than that on the south-eastern side, which is consistent with the conclusion that the north-western side is nearer to us.  相似文献   

5.
The radial distribution of globular clusters in galaxies is always less peaked to the centre than that of the halo stars. Extending previous work to a sample of Hubble Space Telescope globular cluster systems in ellipticals, we evaluate the number of clusters potentially lost to the galactic centre as the integrals of the difference between the observed globular cluster system distribution and the underlying halo light profile. In the sample of galaxies examined it is found that the initial populations of globular clusters may have been ∼30 per cent to 50 per cent richer than now. If these 'missing' globular clusters have decayed and have been partly destroyed in the very central galactic zones, they have carried there a significant quantity of mass that, plausibly, contributed to the formation and feeding of a massive object therein. It is relevant to note that the observed correlation between the core radius of the globular cluster system and the parent galaxy luminosity can be interpreted as a result of evolution.  相似文献   

6.
We present the result of a photometric and Keck low-resolution imaging spectrometer (LRIS) spectroscopic study of dwarf galaxies in the core of the Perseus Cluster, down to a magnitude of   M B =−12.5  . Spectra were obtained for 23 dwarf-galaxy candidates, from which we measure radial velocities and stellar population characteristics from absorption line indices. From radial velocities obtained using these spectra, we confirm 12 systems as cluster members, with the remaining 11 as non-members. Using these newly confirmed cluster members, we are able to extend the confirmed colour–magnitude relation for the Perseus Cluster down to   M B =−12.5  . We confirm an increase in the scatter about the colour–magnitude relationship below   M B =−15.5  , but reject the hypothesis that very red dwarfs are cluster members. We measure the faint-end slope of the luminosity function between   M B =−18  and −12.5, finding  α=−1.26 ± 0.06  , which is similar to that of the field. This implies that an overabundance of dwarf galaxies does not exist in the core of the Perseus Cluster. By comparing metal and Balmer absorption line indices with α-enhanced single stellar population models, we derive ages and metallicities for these newly confirmed cluster members. We find two distinct dwarf elliptical populations: an old, metal-poor population with ages ∼8 Gyr and metallicities  [Fe/H] < −0.33  , and a young, metal-rich population with ages <5 Gyr and metallicities  [Fe/H] > −0.33  . Dwarf galaxies in the Perseus Cluster are therefore not a simple homogeneous population, but rather exhibit a range in age and metallicity.  相似文献   

7.
We present BVI photometry of 190 galaxies in the central 4 ×3 deg2 region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities.
In this paper, we investigate the surface brightness–magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness–magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec−2, it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness–magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation.
  B − V   and   V − I   colours are determined for a sample of 113 cluster galaxies and the colour–magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour–magnitude relation. Their mean   V − I   colours (∼1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour–magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.  相似文献   

8.
We explore the rich globular cluster (GC) system of the nearby Sa galaxy M104, the 'Sombrero' (NGC 4594), using archive Wide Field Planetary Camera 2 data. The GC colour distribution is found to be bimodal at the >99 per cent confidence level, with peaks at     and     . The inferred metallicities are very similar to those of GCs in our Galaxy and M31. However, the Sombrero reveals a much enhanced number of red (metal-rich) GCs compared to other well-studied spirals. Because the Sombrero is dominated by a huge bulge and only has a modest disc, we associate the two subpopulations with the halo and bulge components, respectively. Thus our analysis supports the view that the metal-rich GCs in spirals are associated with the bulge rather than with the disc. The Sombrero GCs have typical effective (half-light) radii of ∼2 pc with the red ones being ∼30 per cent smaller than the blue ones. We identify many similarities between the GC system of the Sombrero and those of both late-type spirals and early-type galaxies. Thus both the GC system and the Hubble type of the Sombrero galaxy appear to be intermediate in their nature.  相似文献   

9.
A search for young massive star clusters (YMCs) in the nearby face-on spiral galaxy M51 (NGC 5194) has been carried out using UBV CCD images from the prime focus camera on the Lick 3-m Shane telescope. The YMC population is found to be quite rich with a specific U -band luminosity     consistent with the high current star formation rate (SFR) of this galaxy. The brightest clusters have     far brighter than any young clusters currently known in the Milky Way and even surpassing the luminosity of the R136 cluster in the 30 Dor complex in the Large Magellanic Cloud. A few of the YMCs are examined on archive images from the Wide Field Planetary Camera (WF/PC2) on board the Hubble Space Telescope ( HST ), confirming their cluster nature and providing estimates of their effective radii of 2–3 pc. The number of YMCs in M51 is compatible with extrapolation of a power-law luminosity function with exponent ∼−2 from a Milky Way-like population of open clusters. Both the SFR and T L ( U ) of M51 are similar to those of other cluster-rich spiral galaxies like NGC 1313 and M83.  相似文献   

10.
The discovery of protoglobular cluster candidates in many present-day mergers allows us to understand better the possible effects of a merger event on the globular cluster system of a galaxy, and to foresee the properties of the end-product. By comparing these expectations with the properties of globular cluster systems of elliptical galaxies at the present time we can constrain merger models. The observational data indicate that (i) every gaseous merger induces the formation of new star clusters, and (ii) the number of new clusters formed in such a merger increases with the gas content of the progenitor galaxies. Low-luminosity (about M V  > −21), discy ellipticals are generally thought to be the result of a gaseous merger. As such, new globular clusters are expected to form but have not been detected to date. We investigate various reasons for the non-detection of subpopulations in low-luminosity ellipticals, i.e. absence of an old population, absence of a new population, destruction of one of the populations and, finally, an age–metallicity conspiracy that allows old and new globular clusters to appear indistinguishable at the present epoch. All of these possibilities lead us to a similar conclusion, namely that low-luminosity ellipticals did not form recently ( z  < 1) in a gas-rich merger, and might not have formed in a major merger of stellar systems at all. High-luminosity ellipticals do reveal globular cluster subpopulations. However, it is difficult to account for the two populations in terms of mergers alone and, in particular, we can rule out scenarios in which the second subpopulation is the product of a recent, gas-poor merger.  相似文献   

11.
This paper explores if, and to what an extent, the stellar populations of early-type galaxies can be traced through the colour distribution of their globular cluster (GC) systems. The analysis, based on a galaxy sample from the Virgo Advanced Camera for Surveys data, is an extension of a previous approach that has been successful in the cases of the giant ellipticals NGC 1399 and NGC 4486, and assumes that the two dominant GC populations form along diffuse stellar populations sharing the cluster chemical abundances and spatial distributions. The results show that (a) integrated galaxy colours can be matched to within the photometric uncertainties and are consistent with a narrow range of ages; (b) the inferred mass to luminosity ratios and stellar masses are within the range of values available in the literature; (c) most GC systems occupy a thick plane in the volume space defined by the cluster formation efficiency, total stellar mass and projected surface mass density. The formation efficiency parameter of the red clusters shows a dependency with projected stellar mass density that is absent for the blue globulars. In turn, the brightest galaxies appear clearly detached from that plane as a possible consequence of major past mergers; (d) the stellar mass–metallicity relation is relatively shallow but shows a slope change at   M *≈ 1010 M  . Galaxies with smaller stellar masses show predominantly unimodal GC colour distributions. This result may indicate that less massive galaxies are not able to retain chemically enriched interstellar matter.  相似文献   

12.
We have derived ages and metallicities from co-added spectra of 131 globular clusters associated with the giant elliptical galaxy NGC 4472. Based upon a calibration with Galactic globular clusters, we find that our sample of globular clusters in NGC 4472 span a metallicity range of approximately −1.6≤[Fe/H]≤0 dex. There is evidence of a radial metallicity gradient in the globular cluster system which is steeper than that seen in the underlying starlight. Determination of the absolute ages of the globular clusters is uncertain, but formally, the metal-poor population of globular clusters has an age of 14.5±4 Gyr and the metal-rich population is 13.8±6 Gyr old. Monte Carlo simulations indicate that the globular cluster populations present in these data are older than 6 Gyr at the 95 per cent confidence level. We find that within the uncertainties, the globular clusters are old and coeval, implying that the bimodality seen in the broadband colours primarily reflects metallicity and not age differences.  相似文献   

13.
The impact of stochastic gas motions on the metal distribution in cluster cores is evaluated. Peaked abundance profiles are a characteristic feature of clusters with cool cores, and abundance peaks are probably associated with the brightest cluster galaxies (BCGs), which dwell in cluster cores. However, the width of the abundance peaks is significantly broader than the BCG light distribution, suggesting that some gas motions are transporting metals originating from within the BCG. Assuming that this process can be treated as diffusive, and using the brightest X-ray cluster A426 (Perseus) as an example, we estimate that a diffusion coefficient of the order of  2 × 1029 cm2 s−1  is needed to explain the width of the observed abundance profiles. Much lower (higher) diffusion coefficients would result in too peaked (too shallow) profiles. Such diffusion could be produced by stochastic gas motions, and our analysis provides constraints on the product of their characteristic velocity and their spatial coherence scale. We speculate that the activity of the supermassive black hole of the BCG is driving the stochastic gas motions in cluster cores. When combined with the assumption that the dissipation of the same motions is a key gas heating mechanism, one can estimate both the velocity and the spatial scale of such diffusive processes.  相似文献   

14.
We present near-infrared K -band spectroscopy of 21 elliptical or cD brightest cluster galaxies (BCGs), for which we have measured the strength of the 2.293-μm CO stellar absorption feature. We find that the strength of this feature is remarkably uniform among these galaxies, with a smaller scatter in equivalent width than for the normal elliptical population in the field or clusters. The scatter for BCGs is 0.156 nm, compared with 0.240 nm for Coma cluster ellipticals, 0.337 nm for ellipticals from a variety of other clusters, and 0.422 nm for field ellipticals. We interpret this homogeneity as being the result of a greater age, or more uniform history of star formation in BCGs than in other ellipticals; only a small fraction of the scatter can be caused by metallicity variations, even in the BCGs. Notwithstanding the small scatter, correlations are found between CO strength and various galaxy properties, including R -band absolute magnitude, which could improve the precision of these galaxies as distance indicators in measurements of cosmological parameters and velocity flows.  相似文献   

15.
We investigate the old globular cluster (GC) population of 68 faint  ( M V > −16 mag)  dwarf galaxies located in the halo regions of nearby (≲12 Mpc) loose galaxy groups and in the field environment based on archival Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) images in F606W and F814W filters. The combined colour distribution of 175 GC candidates peaks at  ( V − I ) = 0.96 ± 0.07 mag  and the GC luminosity function turnover for the entire sample is found at   M V ,TO=−7.6 ± 0.11 mag  , similar to the old metal-poor Large Magellanic Cloud (LMC) GC population. Our data reveal a tentative trend of   M V ,TO  becoming fainter from late- to early-type galaxies. The luminosity and colour distributions of GCs in dIrrs show a lack of faint blue GCs (bGCs). Our analysis reveals that this might reflect a relatively younger GC system than typically found in luminous early-type galaxies. If verified by spectroscopy, this would suggest a later formation epoch of the first metal-poor star clusters in dwarf galaxies. We find several bright (massive) GCs which reside in the nuclear regions of their host galaxies. These nuclear clusters have similar luminosities and structural parameters as the peculiar Galactic clusters suspected of being the remnant nuclei of accreted dwarf galaxies, such as M54 and ωCen. Except for these nuclear clusters, the distribution of GCs in dIrrs in the half-light radius versus cluster mass plane is very similar to that of Galactic young halo clusters, which suggests comparable formation and dynamical evolution histories. A comparison with theoretical models of cluster disruption indicates that GCs in low-mass galaxies evolve dynamically as self-gravitating systems in a benign tidal environment.  相似文献   

16.
We have determined the absolute magnitude at maximum light of SN 1992A by using the turnover magnitude of the globular cluster luminosity function of its parent galaxy, NGC 1380. A recalibration of the peak of the turnover magnitude of the Milky Way clusters using the latest Hipparcos results has been made with an assessment of the complete random and systematic error budget. The following results emerge: a distance to NGC 1380 of 18.6 ± 1.4 Mpc, corresponding to ( m  −  M )  31.35 ± 0.16, and an absolute magnitude of SN 1992A at maximum of M B (max)  −18.79 ± 0.16. Taken at face value, SN 1992A seems to be more than half a magnitude fainter than the other SNe Ia for which accurate distances exist. We discuss the implications of this result and present possible explanations. We also discuss the Phillips relationship between rate of decline and the absolute magnitude at maximum, on the basis of nine SNe Ia, the individual distances of which have been obtained with Cepheids and the globular cluster luminosity function. The new calibration of this relationship, applied to the most distant SNe of the Calan–Tololo survey, yields H 0 = 62 ± 6 km s−1 Mpc−1.  相似文献   

17.
We present a photometric study of the globular cluster systems (GCSs) of the Fornax cluster galaxies NGC 1374, NGC 1379 and NGC 1387. The data consist of images from the wide-field MOSAIC imager of the Cerro Tololo Inter-American Observatory (CTIO) 4-m telescope, obtained with Washington C and Kron–Cousins R filters. The images cover a field of  36 × 36 arcmin2  , corresponding to  200 × 200 kpc2  at the Fornax distance. Two of the galaxies, NGC 1374 and NGC 1379, are low-luminosity ellipticals while NGC 1387 is a low-luminosity lenticular. Their cluster systems are still embedded in the cluster system of NGC 1399. Therefore, the use of a large field is crucial and some differences to previous work can be explained by this. The colour distributions of all GCSs are bimodal. NGC 1387 presents a particularly distinct separation between red and blue clusters and an overproportionally large population of red clusters. The radial distribution is different for blue and red clusters, red clusters being more concentrated towards the respective galaxies. The different colour and radial distributions point to the existence of two globular cluster subpopulations in these galaxies. Specific frequencies are in the range   SN = 1.4–2.4  , smaller than the typical values for elliptical galaxies. These galaxies might have suffered tidal stripping of blue globular clusters by NGC 1399.  相似文献   

18.
We present results from two high-resolution hydrodynamical simulations of protocluster regions at   z ≃ 2.1  . The simulations have been compared to observational results for the so-called Spiderweb galaxy system, the core of a putative protocluster region at   z = 2.16  , found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with   M 200≃ 1014  h −1 M  (C1) and a rich cluster with   M 200≃ 2 × 1015  h −1 M  (C2) at   z = 0  . The simulated protoclusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared with the observed velocities. We argue that the Spiderweb complex resembles the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing active galactic nuclei feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.  相似文献   

19.
The large majority of extragalactic star cluster studies performed to date essentially use multicolour photometry, combined with theoretical stellar synthesis models, to derive ages, masses, extinction estimates and metallicities. M31 offers a unique laboratory for studies of globular cluster (GC) systems. In this paper, we obtain new age estimates for 91 M31 GCs, based on improved photometric data, updated theoretical stellar synthesis models and sophisticated new fitting methods. In particular, we used photometric measurements from the Two Micron All Sky Survey (2MASS), which, in combination with optical photometry, can partially break the well-known age–metallicity degeneracy operating at ages in excess of a few Gyr. We show robustly that previous age determinations based on photometric data were affected significantly by this age–metallicity degeneracy. Except for one cluster, the ages of our other sample GCs are all older than 1 Gyr. Their age distribution shows populations of young- and intermediate-age GCs, peaking at ∼3 and 8 Gyr, respectively, as well as the 'usual' complement of well-known old GCs, i.e. GCs of similar age as the majority of the Galactic GCs. Our results also show that although there is significant scatter in metallicity at any age, there is a notable lack of young metal-poor and old metal-rich GCs, which might be indicative of an underlying age–metallicity relationship among the M31 GC population.  相似文献   

20.
An excellent candidate for a young elliptical, or 'protoelliptical' galaxy is NGC 1700. Here we present new B -, V - and I -band imaging using the Keck telescope, and reanalyse existing V - and I -band images from the Hubble Space Telescope . After subtracting a model of the galaxy from the Keck images, NGC 1700 reveals two symmetric tidal tail-like structures. If this interpretation is correct, it suggests a past merger event involving two spiral galaxies. These tails are largely responsible for the 'boxiness' of the galaxy isophotes observed at a radius of ∼13 kpc.
We also show that the B − I colour distribution of the globular cluster system is bimodal. The mean colour of the blue population is consistent with that of old Galactic globular clusters. Relative to this old, metal-poor population, we find that the red population is younger and more metal-rich. This young population has an age and metallicity similar to that inferred for the central stars, suggesting that both populations are associated with an episode of star formation triggered by the merger that may have formed the galaxy. We find that, although they have large errors, the majority of the age estimates of NGC 1700 are reasonably consistent and we adopt a 'best estimate' for the age of 3.0±1.0 Gyr. This relatively low age places NGC 1700 within the age range where there is a notable lack of obvious candidates for protoellipticals. The total globular cluster specific frequency is rather low for a typical elliptical, even after taking into account the fading of the galaxy over the next 10 Gyr. We speculate that NGC 1700 will eventually form a relatively 'globular cluster poor' elliptical galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号