首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paleoclimatic variability at frequencies ranging from 10–4 cycle per year (cpy) to 10–5 cpy is investigated using a set of four deep-sea cores from the Atlantic, Pacific and Indian Oceans. Dominant features are the presence of orbital frequencies corresponding to mean periods of 117.7, 43.6, 24.9 and 19.3 kyr. These are statistically significant according to such advanced spectral tools as Blackman-Tukey, maximum entropy and the highly efficient Thomson technique. However, the main purpose of this paper is methodological, describing the statistical analyses of time series with modern methods in order to stress their relative power, advantages and disadvantages. The more advanced statistical methods confirm the coincidence of the dominant periods in the deep sea cores and those in the astronomical elements, including combination tones. Three frequency bands of high paleoclimatic variability centred at 15.4, 13 and 10.8 kyr are indeed also detected. These two last periods are very close to those predicted by the climatic non-linear model of Ghil and Le Treut and found by Pestiaux et al. and Yiou et al.  相似文献   

2.
In this study, statistical techniques are employed to decompose climate signals around southern Africa into the dominant temporal frequencies, with the aim of modelling and predicting area-averaged rainfall. In the rainfall time series over the period 1900–1999, the annual cycle accounts for 83% of variance. Residual spectral energy cascades from biennial (42%) to interannual (20%) to decadal bands (3%). Regional climate signals are revealed through a multi-taper singular value decomposition analysis of sea surface temperature and sea level pressure fields over the Atlantic and Indian Oceans, in conjunction with southern Africa rainfall. Rossby wave action in the South Indian Ocean dominates the biennial scale variability. El Niño-Southern Oscillation (ENSO) and related Indian Ocean dipole patterns are important for interannual variability. Significant sea temperature and pressure fluctuations occurring 6–12 months prior to rainfall contribute biennial and interannual indices to a multi-variate model that demonstrates useful predictive skill.  相似文献   

3.
A number of transient climate runs simulating the last 120?kyr have been carried out using FAMOUS, a fast atmosphere–ocean general circulation model (AOGCM). This is the first time such experiments have been done with a full AOGCM, providing a three-dimensional simulation of both atmosphere and ocean over this period. Our simulation thus includes internally generated temporal variability over periods from days to millennia, and physical, detailed representations of important processes such as clouds and precipitation. Although the model is fast, computational restrictions mean that the rate of change of the forcings has been increased by a factor of 10, making each experiment 12?kyr long. Atmospheric greenhouse gases (GHGs), northern hemisphere ice sheets and variations in solar radiation arising from changes in the Earth’s orbit are treated as forcing factors, and are applied either separately or combined in different experiments. The long-term temperature changes on Antarctica match well with reconstructions derived from ice-core data, as does variability on timescales longer than 10 kyr. Last Glacial Maximum (LGM) cooling on Greenland is reasonably well simulated, although our simulations, which lack ice-sheet meltwater forcing, do not reproduce the abrupt, millennial scale climate shifts seen in northern hemisphere climate proxies or their slower southern hemisphere counterparts. The spatial pattern of sea surface cooling at the LGM matches proxy reconstructions reasonably well. There is significant anti-correlated variability in the strengths of the Atlantic meridional overturning circulation (AMOC) and the Antarctic Circumpolar Current (ACC) on timescales greater than 10?kyr in our experiments. We find that GHG forcing weakens the AMOC and strengthens the ACC, whilst the presence of northern hemisphere ice-sheets strengthens the AMOC and weakens the ACC. The structure of the AMOC at the LGM is found to be sensitive to the details of the ice-sheet reconstruction used. The precessional component of the orbital forcing induces ~20?kyr oscillations in the AMOC and ACC, whose amplitude is mediated by changes in the eccentricity of the Earth’s orbit. These forcing influences combine, to first order, in a linear fashion to produce the mean climate and ocean variability seen in the run with all forcings.  相似文献   

4.
We document the characteristic time scales of variability for seven climate indices whose time-dependent behavior is sensitive to some aspect of the El Niño/Southern Oscillation (ENSO). The ENSO sensitivity arises from the location of these long-term records on the periphery of the Indian and Pacific Oceans. Three of the indices are derived principally from historical sources, three others consist of tree-ring reconstructions (one of summer temperature, and the other two of winter rainfall), and one is an annual record of oxygen isotopic composition for a high-elevation glacier in Peru. Five of the seven indices sample at least portions of the Medieval Warm Period (~ A.D. 950 to 1250).Time series spectral analysis was used to identify the major time scales of variability among the different indices. We focus on two principal time scales: a high frequency band (~ 2–10 yr), which comprises most of the variability found in the modern record of ENSO activity, and a low frequency band to highlight variations on decadal to century time scales (11 <P < 150 yr). This last spectral band contains variability on time scales that are of general interest with respect to possible changes in large-scale air-sea exchanges. A technique called evolutive spectral analysis (ESA) is used to ascertain how stable each spectral peak is in time. Coherence and phase spectra are also calculated among the different indices over each full common period, and following a 91-yr window through time to examine whether the relationships change.In general, spectral power on time scales of ~ 2–6 yr is statistically significant and persists throughout most of the time intervals sampled by the different indices. Assuming that the ENSO phenomenon is the source of much of the variability at these time scales, this indicates that ENSO has been an important part of interannual climatic variations over broad areas of the circum-Pacific region throughout the last millennium. Significant coherence values were found for El Niño and reconstructed Sierra Nevada winter precipitation at ~ 2–4 yr throughout much of their common record (late 1500s to present) and between 6 and 7 yr from the mid-18th to the early 20th century.At decadal time scales each record generally tends to exhibit significant spectral power over different periods at different times. Both the Quelccaya Ice Cap 18O series and the Quinn El Niño event record exhibit significant spectral power over frequencies ~ 35 to 45 yr; however, there is low coherence between these two series at those frequencies over their common record. The Sierra Nevada winter rainfall reconstruction exhibits consistently strong variability at periods of ~ 30–60 yr.  相似文献   

5.
Summary The Indian summer monsoon, one of the earth's most vigorous and energetic seasonally occurring weather events, influences the global atmospheric circulation. Its onset, duration, and intensity are governed by large- and meso-scale geophysical processes, such as surface solar heating and air-sea interactions. In this paper, using innovative combinations of satellite sensor data, we investigate some of these fundamental processes which are closely tied to clouds and control the monsoon system's evolution. The study, which focuses on the monsoon period of June, 1979, examines the low-frequency variability of clouds and their effects on air-sea processes through an analysis of the complex influence clouds play on the surface heat and water budgets. First, the effects of clouds on both the solar and longwave components of the surface radiation budget are assessed using a cloud radiative forcing parameter. While the effects of clouds on the long-wave irradiance act in a manner opposite to their effects on the shortwave irradiance, only a partial compensation is found to take place and the net effect results in a maximum cloud forcing of 60 Wm–2 in the southwestern Arabian Sea. Second, employing satellite-derived precipitation and evaporation estimates, the paper analyzes the net surface fresh water budget variability around the monsoon onset. This budget is important in that fresh water affects the upper ocean density distribution and, consequently, the thermohaline circulation. Two regions are found to dominate the analysis: the western Arabian Sea, where evaporation is dominant by more than 10 mm day–1, and the eastern Arabian Sea, where precipitation is dominant by more than 10 mm day–1. Thus, a strong zonal gradient of fresh water at the surface is established during the monsoon. The last topic investigated is the intraseasonal variability of convection as analyzed using a cloud parameter indicative of deep convection. Cloud oscillations of 30–50 days, associated with the different phases of the monsoon, are found to propagate northward in the eastern Indian Ocean and eastward in the Bay of Bengal. Our analysis not only supports the hypothesis that the 30–50-day oscillation is driven by deep convection but also, and more importantly, suggests that the ocean thermal forcing is modulated by 30–50-day oscillations through cloud-induced surface radiative forcing. Although the results presented are limited in scope and preliminary because of the diffculty in quantifying the accuracy of the parameters examined, they do demonstrate: 1) the role of clouds in modulating the surface heat and water budgets, 2) the advantage of using combinations of multi-sensor and multi-platform satellite observations to quantify interrelated surface heat/water budget processes, and 3) the potential to examine the intraseasonal variability of air-sea interaction processes associated with the monsoon, even though these processes are not directly measurable from space.With 6 FiguresB. DiJulio passed away in September 1990.  相似文献   

6.
Summary The structure and variability of the inter-tropical convergence zone (ITCZ) in the SW Indian Ocean in the austral summer is investigated. The ITCZ is identified by satellite microwave (SSMI) precipitable water (PW) values > 5 g cm–2, minimum outgoing longwave radiation (OLR) values < 220 W m–2 and the pattern of convergence in the low level (850 hPa) winds. According to OLR climatology, the ITCZ lies over 15°S latitude to the west of Madagascar (40–50°E), but near 10°S to the east of 60°E. Inter-annual and intra-seasonal variability is induced by the interaction of the convective NW monsoon and subsident easterly trades. Symptoms of the structure and variability are presented using tropical cyclone (TC) tracks, axes of PW exceedences and OLR, 850hPa wind and PW fields in the period 1988–1990. The shape and intensity of the ITCZ is modulated by the strength of the NW monsoon off east Africa and by standing vortices in the SW Indian Ocean. The topography of Madagascar imparts a distinctive break in convective characteristics, and distinguishes the SE African ITCZ from its maritime counterpart.With 6 Figures  相似文献   

7.
Sea surface temperature (SST) variations include negative feedbacks from the atmosphere, whereas SST anomalies are specified in stand-alone atmospheric general circulation simulations. Is the SST forced response the same as the coupled response? In this study, the importance of air–sea coupling in the Indian and Pacific Oceans for tropical atmospheric variability is investigated through numerical experiments with a coupled atmosphere-ocean general circulation model. The local and remote impacts of the Indian and Pacific Ocean coupling are obtained by comparing a coupled simulation with an experiment in which the SST forcing from the coupled simulation is specified in either the Indian or the Pacific Ocean. It is found that the Indian Ocean coupling is critical for atmospheric variability over the Pacific Ocean. Without the Indian Ocean coupling, the rainfall and SST variations are completely different throughout most of the Pacific Ocean basin. Without the Pacific Ocean coupling, part of the rainfall and SST variations in the Indian Ocean are reproduced in the forced run. In regions of large mean rainfall where the atmospheric negative feedback is strong, such as the North Indian Ocean and the western North Pacific in boreal summer, the atmospheric variability is significantly enhanced when air–sea coupling is replaced by specified SST forcing. This enhancement is due to the lack of the negative feedback in the forced SST simulation. In these regions, erroneous atmospheric anomalies could be induced by specified SST anomalies derived from the coupled model. The ENSO variability is reduced by about 20% when the Indian Ocean air–sea coupling is replaced by specified SST forcing. This change is attributed to the interfering roles of the Indian Ocean SST and Indian monsoon in western and central equatorial Pacific surface wind variations.  相似文献   

8.
We report fossil coral records from the Seychelles comprising individual time slices of 14–20 sclerochronological years between 2 and 6.2 kyr BP to reconstruct changes in the seasonal cycle of western Indian Ocean sea surface temperature (SST) compared to the present (1990–2003). These reconstructions allowed us to link changes in the SST bimodality to orbital changes, which were causing a reorganization of the seasonal insolation pattern. Our results reveal the lowest seasonal SST range in the Mid-Holocene (6.2–5.2 kyr BP) and around 2 kyr BP, while the highest range is observed around 4.6 kyr BP and between 1990 and 2003. The season of maximum temperature shifts from austral spring (September to November) to austral autumn (March to May), following changes in seasonal insolation over the past 6 kyr. However, the changes in SST bimodality do not linearly follow the insolation seasonality. For example, the 5.2 and 6.2 kyr BP corals show only subtle SST differences in austral spring and autumn. We use paleoclimate simulations of a fully coupled atmosphere–ocean general circulation model to compare with proxy data for the Mid-Holocene around 6 kyr BP. The model results show that in the Mid-Holocene the austral winter and spring seasons in the western Indian Ocean were warmer while austral summer was cooler. This is qualitatively consistent with the coral data from 6.2 to 5.2 kyr BP, which shows a similar reduction in the seasonal amplitude compared to the present day. However, the pattern of the seasonal SST cycle in the model appears to follow the changes in insolation more directly than indicated by the corals. Our results highlight the importance of ocean–atmosphere interactions for Indian Ocean SST seasonality throughout the Holocene. In order to understand Holocene climate variability in the countries surrounding the Indian Ocean, we need a much more comprehensive analysis of seasonally resolved archives from the tropical Indian Ocean. Insolation data alone only provides an incomplete picture.  相似文献   

9.
W. May 《Climate Dynamics》2004,22(2-3):183-204
In this study the simulation of the variability and extremes of daily rainfall during the Indian summer monsoon for the present-day and the future climate is investigated. This is done on the basis of a global time-slice experiment (TSL) with the ECHAM4 atmospheric general circulation model (GCM) at a high horizontal resolution of T106. The first time-slice (period: 1970–1999) represents the present-day climate and the second (2060–2089) the future climate. Moreover, observational rainfall data from the Global Precipitation Climatology Project (GPCP, 1997–2002) and rainfall data from the ECMWF re-analysis (ERA, 1958–2001) are considered. ERA reveals serious deficiencies in its representation of the variability and extremes of daily rainfall during the Indian summer monsoon. These are mainly a severe overestimation of the frequency of wet days over the oceans and in the Himalayas, where also the rainfall intensity is overestimated. Further, ERA shows unrealistically heavy rainfall events over the tropical Indian Ocean. The ECHAM4 atmospheric GCM at a horizontal resolution of T106, on the other hand, simulates the variability and extremes of daily rainfall in good agreement with the observations. The only marked deficiencies are an underestimation of the rainfall intensity on the west coast of the Indian peninsula and in Bangladesh, an overestimation over the tropical Indian Ocean, due to an erroneous northwestward extension of the tropical convergence zone, and an overestimation of the frequency of wet days in Tibet. Further, heavy rainfall events are relatively strong in the centre of the Indian peninsula. For the future, TSL predicts large increases in the rainfall intensity over the tropical Indian Ocean as well as in northern Pakistan and northwest India, but decreases in southern Pakistan, in the centre of the Indian peninsula, and over the western part of the Bay of Bengal. The frequency of wet days is markedly increased over the tropical Indian Ocean and decreased over the northern part of the Arabian Sea and in Tibet. The intensity of heavy rainfall events is generally increased in the future, with large increases over the Arabian Sea and the tropical Indian Ocean, in northern Pakistan and northwest India as well as in northeast India, Bangladesh, and Myanmar.  相似文献   

10.
The impact of Indian Ocean Dipole (IOD) mode events on austral surface air temperature (SAT) variability was studied both by statistical analysis of observed/assimilated data and experiments with a mechanistic baroclinic atmospheric model.During the period of analysis (January 1958–December 1999), IOD events had the strongest impact on SAT anomalies during austral spring and hence, the analysis was focussed on this season. IOD events induced large scale, intercontinental correlations of SAT anomalies amongst Australia, Africa and South America. Surface temperature consistently rose (fell) abnormally and coherently in the subtropical regions of these continents during positive (negative) IOD events. Variability during non-IOD years was considerably weaker than during IOD years over these regions.Analysis of stream function anomalies at the 200 hPa level (source: NCEP/NCAR reanalysis) revealed a Rossby-wave train extending from the eastern Indian Ocean into the subtropical regions of the Pacific and Atlantic oceans. Further, the diagnosed Rossby-wave activity flux emanated from the eastern Indian Ocean and propagated along the subtropical and subpolar jet streams qualitatively in agreement with linear wave dynamics. Experiments with idealized forcing in a primitive equation mechanistic atmospheric model suggested that tropical convective anomalies in the Indian Ocean during IOD events likely affects the austral subtropics through stationary Rossby-wave propagation.  相似文献   

11.
Results are first presented from an analysis of a global coupled climate model regarding changes in future mean and variability of south Asian monsoon precipitation due to increased atmospheric CO2 for doubled (2 × CO2) and quadrupled (4 × CO2) present-day amounts. Results from the coupled model show that, in agreement with previous studies, mean area-averaged south Asian monsoon precipitation increases with greater CO2 concentrations, as does the interannual variability. Mechanisms producing these changes are then examined in a series of AMIP2-style sensitivity experiments using the atmospheric model (taken from the coupled model) run with specified SSTs. Three sets of ensemble experiments are run with SST anomalies superimposed on the AMIP2 SSTs from 1979–97: (1) anomalously warm Indian Ocean SSTs, (2) anomalously warm Pacific Ocean SSTs, and (3) anomalously warm Indian and Pacific Ocean SSTs. Results from these experiments show that the greater mean monsoon precipitation is due to increased moisture source from the warmer Indian Ocean. Increased south Asian monsoon interannual variability is primarily due to warmer Pacific Ocean SSTs with enhanced evaporation variability, with the warmer Indian Ocean SSTs a contributing but secondary factor. That is, for a given interannual tropical Pacific SST fluctuation with warmer mean SSTs in the future climate, there is enhanced evaporation and precipitation variability that is communicated via the Walker Circulation in the atmosphere to the south Asian monsoon to increase interannual precipitation variability there. This enhanced monsoon variability occurs even with no change in interannual SST variability in the tropical Pacific.  相似文献   

12.
Interannual variations of subsurface influence on SST in the Indian Ocean show strong seasonality. The subsurface influence on SST confines to the southern Indian Ocean (SIO) in boreal winter and spring; it is observed on both sides of the equator in boreal summer and fall. Interannual long Rossby waves are at the heart of this influence, and contribute significantly to the coupled climate variability in the tropical Indian Ocean (TIO). Principal forcing mechanism for the generation of these interannual waves in the Indian Ocean and the relative influence of two dominant interannual signals in the tropics, namely El Niño and Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), are also discussed. Two distinct regions dominated by either of the above climate signals are identified. IOD dominates the forcing of the off-equatorial Rossby waves, north of 10°S, and the forcing comes mainly from the anomalous Ekman pumping associated with the IOD. However, after the demise of IOD activity by December, Rossby waves are dominantly forced by ENSO, particularly south of 10°S.It is found that the subsurface feedback in the northern flank of the southern Indian Ocean ridge region (north of 10°S) significantly influences the central east African rainfall in boreal fall. The Indian Ocean coupled process further holds considerable capability of predicting the east African rainfall by one season ahead. Decadal modulation of the subsurface influence is also noticed during the study period. The subsurface influence north of 10°S coherently varies with the IOD, while it varies coherently with the ENSO south of this latitude.  相似文献   

13.
In this study, we analysed decadal and long-term steric sea level variations over 1966–2007 period in the Indo-Pacific sector, using an ocean general circulation model forced by reanalysis winds. The simulated steric sea level compares favourably with sea level from satellite altimetry and tide gauges at interannual and decadal timescales. The amplitude of decadal sea level variability (up to ~5 cm standard deviation) is typically nearly half of the interannual variations (up to ~10 cm) and two to three times larger than long-term sea level variations (up to 2 cm). Zonal wind stress varies at decadal timescales in the western Pacific and in the southern Indian Ocean, with coherent signals in ERA-40 (from which the model forcing is derived), NCEP, twentieth century and WASWind products. Contrary to the variability at interannual timescale, for which there is a tendency of El Niño and Indian Ocean Dipole events to co-occur, decadal wind stress variations are relatively independent in the two basins. In the Pacific, those wind stress variations drive Ekman pumping on either side of the equator, and induce low frequency sea level variations in the western Pacific through planetary wave propagation. The equatorial signal from the western Pacific travels southward to the west Australian coast through equatorial and coastal wave guides. In the Indian Ocean, decadal zonal wind stress variations induce sea level fluctuations in the eastern equatorial Indian Ocean and the Bay of Bengal, through equatorial and coastal wave-guides. Wind stress curl in the southern Indian Ocean drives decadal variability in the south-western Indian Ocean through planetary waves. Decadal sea level variations in the south–western Indian Ocean, in the eastern equatorial Indian Ocean and in the Bay of Bengal are weakly correlated to variability in the Pacific Ocean. Even though the wind variability is coherent among various wind products at decadal timescales, they show a large contrast in long-term wind stress changes, suggesting that long-term sea level changes from forced ocean models need to be interpreted with caution.  相似文献   

14.
Pathways of intraseasonal variability in the Indonesian Throughflow region   总被引:2,自引:0,他引:2  
The recent INSTANT measurements in the Indonesian archipelago revealed a broad spectrum of time scales that influence Indonesian Throughflow (ITF) variability, from intraseasonal (20–90 days) to interannual. The different time scales are visible in all transport and property fluxes and are the result of remote forcing by both the Pacific and Indian Ocean winds, and local forcing generated within the regional Indonesian seas. This study focuses on the time-dependent three-dimensional intraseasonal variability (ISV) in the ITF region, in particular at the locations of the INSTANT moorings at the Straits of Lombok, Ombai and Timor. Observations from the INSTANT program in combination with output from the Bluelink ocean reanalysis provide a comprehensive picture about the propagation of ISV in the ITF region. The reanalysis assimilates remotely sensed and in situ ocean observations into an ocean general circulation model to create a hindcast of ocean conditions. Data from the reanalysis and observations from the INSTANT program reveal that deep-reaching subsurface ISV in the eastern Indian Ocean and ITF is closely linked with equatorial wind stress anomalies in the central Indian Ocean. Having traveled more than 5000 km in about 14 days, the associated Kelvin waves can be detected as far east as the Banda Sea. ISV near the Straits of Ombai and Timor is also significantly influenced by local wind forcing from within the ITF region. At the INSTANT mooring sites the ocean reanalysis agrees reasonably well with the observations. Intraseasonal amplitudes are about ±1.0 °C and ±0.5 m/s for potential temperature and velocity anomalies. Associated phases of ISV are very similar in observations and the reanalysis. Where differences exist they can be traced back to likely deficits in the reanalysis, namely the lack of tidal dissipation, insufficient spatial resolution of fine-scale bathymetry in the model in narrow straits or errors in surface forcing.  相似文献   

15.
Coupled variability and air-sea interaction in the South Atlantic Ocean   总被引:2,自引:1,他引:2  
A total of 52 years of data (1949–2000) from the NCEP/NCAR reanalysis are used to investigate mechanisms involved in forcing and damping of sea surface temperature (SST) variability in the South Atlantic Ocean. Organized patterns of coupled ocean–atmosphere variability are identified using EOF and SVD analyses. The leading mode of coupled variability consists of an SST pattern with a strong northeast–southwest gradient and an SLP monopole centered at 15°W, 45°S. The anomalous winds associated with this monopole generate the SST pattern through anomalous latent heat flux and mixed layer deepening. Other heat flux components and anomalous Ekman transport play only a secondary role. Once established, the SST pattern is attenuated through latent heat flux. The higher SST modes are also induced by anomalous winds and destroyed by latent heat flux. It thus appears that the coupled variability in the South Atlantic Ocean consists of atmospheric circulation anomalies that induce SST anomalies through anomalous latent heat fluxes and wind-induced mixed layer deepening. These SST anomalies are destroyed by latent heat flux with no detectable systematic feedback onto the atmospheric circulation. Atmospheric variability in the South Atlantic is found to be largely independent of that elsewhere, although there is a weak relation with ENSO (El Niño-Southern Oscillation).  相似文献   

16.
A detailed study of long-term variability of winds using 30 years of data from the European Centre for Medium-range Weather Forecasts global reanalysis (ERA-Interim) over the Indian Ocean has been carried out by partitioning the Indian Ocean into six zones based on local wind extrema. The trend of mean annual wind speed averaged over each zone shows a significant increase in the equatorial region, the Southern Ocean, and the southern part of the trade winds. This indicates that the Southern Ocean winds and the southeast trade winds are becoming stronger. However, the trend for the Bay of Bengal is negative, which might be caused by a weakening of the monsoon winds and northeast trade winds. Maximum interannual variability occurs in the Arabian Sea due to monsoon activity; a minimum is observed in the subtropical region because of the divergence of winds. Wind speed variations in all zones are weakly correlated with the Dipole Mode Index (DMI). However, the equatorial Indian Ocean, the southern part of the trade winds, and subtropical zones show a relatively strong positive correlation with the Southern Oscillation Index (SOI), indicating that the SOI has a zonal influence on wind speed in the Indian Ocean. Monsoon winds have a decreasing trend in the northern Indian Ocean, indicating monsoon weakening, and an increasing trend in the equatorial region because of enhancement of the westerlies. The negative trend observed during the non-monsoon period could be a result of weakening of the northeast trade winds over the past few decades. The mean flux of kinetic energy of wind (FKEW) reaches a minimum of about 100?W?m?2 in the equatorial region and a maximum of about 1500?W?m?2 in the Southern Ocean. The seasonal variability of FKEW is large, about 1600?W?m?2, along the coast of Somalia in the northern Indian Ocean. The maximum monthly variability of the FKEW field averaged over each zone occurs during boreal summer. During the onset and withdrawal of monsoon, FKEW is as low as 50?W?m?2. The Southern Ocean has a large variation of about 1280?W?m?2 because of strong westerlies throughout the year.  相似文献   

17.
The response of a two-dimensional thermohaline ocean circulation model to a random freshwater flux superimposed on the usual mixed boundary conditions for temperature and salinity is considered. It is shown that for a wide range of vertical and horizontal diffusivities and a box geometry that approximates the Atlantic Ocean, 200–300 yr period oscillations exist in the basic-state, interhemispheric meridional overturning circulation with deep convection in the north. These fluctuations can also be described in terms of propagating salinity anomalies which travel in the direction of the thermohaline flow. For large horizontal (K h = 15 × 103 m2/s) and small vertical (K v = 0.5 × 10–4 m2/s) diffusivities, the random forcing also excites deca-millennial oscillations in the basic structure of the thermohaline circulation. In this case, the meridional circulation pattern slowly oscillates between three different stages: a large positive cell, with deep convection in the North Atlantic and upwelling in the south; a symmetric two-cell circulation, with deep convection in both polar regions and upwelling near the equator; and a large negative cell, with deep convection in the South Atlantic and upwelling in the north. Each state can persist for 0 (10 kyr).  相似文献   

18.
Summary The climatology and variability of summer convection and circulation over the tropical southwest Indian Ocean is investigated using satellite imagery, routine synoptic observations, outgoing longwave radiation (OLR) data, sea surface temperatures (SST) and areal averaged rainfall departures. OLR has a –0.90 correlation with rainfall departures and the OLR minimum (ITCZ) in January and February lies across the 10°S latitude, extending further south near Madagascar. The intensity of ITCZ convection is greatest in the longitudes 20–35°E over northern Zambia and is considerably reduced over the SW Indian Ocean. Spatial correlations are analyzed for standardized departures of OLR, rainfall and SST. The correlations change sign in a coherent fashion, creating a climatic dipole between southern Africa and the SW Indian Ocean. Interannual trends are examined through analysis of January–February zonal and meridional wind indices constructed from significantly correlated variables at Zimbabwe, Madagascar and Mauritius. Circulation variability is dominated by quasi-decadal cycles and a trend of inereasing westerly winds. Zonal wind shear alternates from easterly (barotropic) to westerly and together with SST appears to regulate the frequency and intensity of tropical cyclogenesis. Areally averaged rainfall departures exhibit 6.25 year cycles in NE Madagascar and 12.5 and 18.75 year cycles in SW Madagascar and Zimbabwe, respectively. Summer rainfall and meridional winds in NE Madagascar and Zimbabwe are out of phase and negatively correlated in most summers. The presence of synoptic weather systems is assessed using daily Hovmoller-type satellite imagery composites. Convective structure is dominated by transient waves in the 10°–20°S latitude band, with periods of 15–20 days common. The waves are more prominent in summers with increased easterly shear and contribute to fluctuations in rainfall over SE Africa.With 8 Figures  相似文献   

19.
Various proxy data reveal that in many regions of the Northern Hemisphere (NH), the middle Holocene (6 kyr BP) was warmer than the early Holocene (8 kyr BP) as well as the later Holocene, up to the end of the pre-industrial period (1800 AD). This pattern of warming and then cooling in the NH represents the response of the climate system to changes in orbital forcing, vegetation cover and the Laurentide Ice Sheet (LIS) during the Holocene. In an attempt to better understand these changes in the climate system, the McGill Paleoclimate Model (MPM) has been coupled to the dynamic global vegetation model known as VECODE (see Part I of this two-part paper), and a number of sensitivity experiments have been performed with the green MPM. The model results illustrate the following: (1) the orbital forcing together with the vegetation—albedo feedback result in the gradual cooling of global SAT from about 6 kyr BP to the end of the pre-industrial period; (2) the disappearance of the LIS over the period 8–6 kyr BP, associated with vegetation—albedo feedback, allows the global SAT to increase and reach its maximum at around 6 kyr BP; (3) the northern limit of the boreal forest moves northward during the period 8–6.4 kyr BP due to the LIS retreat; (4) during the period 6.4–0 kyr BP, the northern limit of the boreal forest moves southward about 120 km in response to the decreasing summer insolation in the NH; and (5) the desertification of northern Africa during the period 8–2.6 kyr BP is mainly explained by the decreasing summer monsoon precipitation.  相似文献   

20.
This study examines the emerging role of Indian Ocean sea surface temperature (SST) on the inter-annual variability (IAV) of Indian north-east monsoon rainfall (NEMR). The IAV of NEMR is associated with the warm SST anomaly over east Bay-of-Bengal (BoB) (88.5oE–98.5oE; 8.5oN–15.5oN) and cool SST anomaly over east equatorial Indian Ocean (80.5oE–103.5oE; 6.5oS–3.5oN). The gradient of SST between these boxes (i.e. northern box minus southern box) shows strong and robust association with the Indian NEMR variability in the recent decades. For establishing the teleconnections, SST, mean sea level pressure, North Indian Ocean tropical storm track, and circulation data have been used. The study reveals that during the positive SST gradient years, the inter-tropical convergence zone (ITCZ) shifts northwards over the East Indian Ocean. The tropical depressions, storms and cyclones formed in the North Indian Ocean moves more zonally and strike the southern peninsular India and hence excess NEMR. While, during the negative SST gradient years, the ITCZ shifts southwards over the Indian Ocean. The tropical depressions, storms and cyclones formed in the North Indian Ocean moves more northwestward direction and after crossing 15oN latitude re-curve to north-east direction towards head BoB and misses southern peninsular India and hence, deficient NEMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号