首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Copper is widely used in modern technology, but declining ore grades and depletion of natural deposits have raised concerns regarding sustainable demand-supply balance in the long term. The vulnerability to primary copper supply restrictions amplifies for countries dependant on imports, notably many EU Member States. Recycling of post-consumer scrap can provide a valuable source of essential material to the European industry. However, a considerable fraction of collected and processed copper old scrap is exported, while the remaining fraction is either not recovered or lost due to nonfunctional recycling undermining the implementation of a circular economy. In this work, material flow analysis, regression analysis, and life cycle assessment are combined to explore the possible evolution of four scenarios of copper demand in Europe to year 2050 and the potentials for greenhouse gas emissions reduction under material circularity conditions.The results show that for three of the four scenarios, secondary production would not comply with the carbon dioxide emissions reduction target of 50% below 2000 levels neither in case of combined aggressive recycling, moderate decarbonization of electricity, and energy efficiency improvements. In particular, for the scenario that describes a “business as usual” approach, the modelled future domestic demand can only be met by increasing primary inputs and, despite strong efforts to improve recycling at end-of-life, the fraction of old scrap in total metal demand seems likely to achieve 65% at best. Should that scenario ensue, the GHG emissions embodied in EU copper demand might result in an emissions gap of more than 15 TgCO2eq or about +260% the carbon dioxide reduction target. In contrast, the lowest environmental impacts are associated with a scenario emphasizing green technology and more equitable lifestyles. In that scenario, the secondary copper flows will gradually approach the expected demand, laying the foundation for achieving a circular economy with considerable potential for preserving natural capital and mitigating climate change. This possible future, however, requires dramatic changes in the current pattern of material production and consumption, as we discuss.  相似文献   

2.
In this paper, we present four model-based scenarios exploring the potential for resource efficiency for energy, land and phosphorus use, and implications for resource depletion, climate change and biodiversity. The scenarios explored include technological improvements as well as structural changes in production systems and lifestyle changes. Many of such changes have long lead times, requiring up front and timely investments in infrastructure, innovative incentive structures and education. For simulating the scenarios we applied the IMAGE modelling framework, with a time horizon until 2050.Our findings confirm a large potential for more efficient resource use: our (no new policies) baseline scenario shows a global increase, between 2010 and 2050, by 80% of primary energy use, 4% of arable land and 40% of phosphorus fertilisers. These numbers are reduced to +25% (primary energy), −9% (arable land) and +9% (phosphorus) in the global resource efficiency scenario. Baseline developments and resource efficiency opportunities vary strikingly among regions, resources and sectors. Phosphorus use, for example, is expected to increase most on croplands in developing countries, whereas the largest potential for phosphorus use efficiency lies in the livestock sector and urban sewage treatment in industrialised countries. Consequently, while resource efficiency resonates well as a general notion in policy thinking, concrete policies need to be region-specific, resource-specific and sector-specific.Efficiency efforts on one resource tend to contribute to efficient use of other resources and to benefit the environment. There are also trade-offs, however, and the synergies analysed do not make problem-specific policies redundant: in 2050, the global resource efficiency scenario presents higher phosphorus use and higher use of fossil fuels than in 2010; greenhouse gas emission targets are met by half; and biodiversity loss slows down but is not halted. Moreover, part of the efficiency gains in land and phosphorus use is sacrificed when this scenario is combined with ambitious climate policy, due to the substantial resource requirements for the deployment of bio-energy—albeit much less than in a scenario without more efficient resource use.  相似文献   

3.
In this study a scenario model is used to examine if foreseen technological developments are capable of reducing CO2 emissions in 2050 to a level consistent with United Nations Framework Convention on Climate Change (UNFCCC) agreements, which aim at maximizing the temperature rise to 2 °C compared to pre-industrial levels. The model is based on a detailed global environmentally extended supply–use table (EE SUT) for the year 2000, called EXIOBASE. This global EE SUT allows calculating how the final demand in each region drives activities in production sectors, and hence related CO2 emissions, in each region. Using this SUT framework, three scenarios have been constructed for the year 2050. The first is a business-as-usual scenario (BAU), which takes into account population, economic growth, and efficiency improvements. The second is a techno-scenario (TS), adding feasible and probable climate mitigation technologies to the BAU scenario. The third is the towards-2-degrees scenario (2DS), with a demand shift or growth reduction scenario added to the TS to create a 2 °C scenario. The emission results of the three scenarios are roughly in line with outcomes of typical scenarios from integrated assessment models. Our approach indicates that the 2 °C target seems difficult to reach with advanced CO2 emission reduction technologies alone.

Policy relevance

The overall outlook in this scenario study is not optimistic. We show that CO2 emissions from steel and cement production and air and sea transport will become dominant in 2050. They are difficult to reduce further. Using biofuels in air and sea transport will probably be problematic due to the fact that agricultural production largely will be needed to feed a rising global population and biofuel use for electricity production grows substantially in 2050. It seems that a more pervasive pressure towards emission reduction is required, also influencing the basic fabric of society in terms of types and volumes of energy use, materials use, and transport. Reducing envisaged growth levels, hence reducing global gross domestic product (GDP) per capita, might be one final contribution needed for moving to the 2 °C target, but is not on political agendas now.  相似文献   


4.
Climate strongly affects energy supply and demand in the Pacific Northwest (PNW) and Washington State (WA). We evaluate potential effects of climate change on the seasonality and annual amount of PNW hydropower production, and on heating and cooling energy demand. Changes in hydropower production are estimated by linking simulated streamflow scenarios produced by a hydrology model to a simulation model of the Columbia River hydro system. Changes in energy demand are assessed using gridded estimates of heating degree days (HDD) and cooling degree days (CDD) which are then combined with population projections to create energy demand indices that respond both to climate, future population, and changes in residential air conditioning market penetration. We find that substantial changes in the amount and seasonality of energy supply and demand in the PNW are likely to occur over the next century in response to warming, precipitation changes, and population growth. By the 2040s hydropower production is projected to increase by 4.7–5.0% in winter, decrease by about 12.1–15.4% in summer, with annual reductions of 2.0–3.4%. Larger decreases of 17.1–20.8% in summer hydropower production are projected for the 2080s. Although the combined effects of population growth and warming are projected to increase heating energy demand overall (22–23% for the 2020s, 35–42% for the 2040s, and 56–74% for the 2080s), warming results in reduced per capita heating demand. Residential cooling energy demand (currently less than one percent of residential demand) increases rapidly (both overall and per capita) to 4.8–9.1% of the total demand by the 2080s due to increasing population, cooling degree days, and air conditioning penetration.  相似文献   

5.
Sea level rise (SLR) is among the climate-change-related problems of greatest concern, threatening the lives and property of coastal residents and generating far-reaching economic and ecological impacts. We project that SLR will lead to an increase in the rate of new housing construction to replace destroyed structures, impact global wood products supply and demand conditions, and cause changes in global forest sector carbon mitigation potential. Findings indicate that 71 million new units will be built by 2050 to accommodate the SLR-affected global population. More than two-thirds of these new units are projected to be in Asia. The estimated extra wood products needed to build these new residential units is 1,659 million m3, assuming that all these structures would be built mainly with wood, representing a 4 % increase in total wood consumption, compared to projected reference level global wood products consumption. Increased timber removals to meet this higher construction wood demand (alternative scenario) is shown to deplete global forest carbon by 2 % by 2050 compared to the reference scenario. However, all such projected declines in forest biomass carbon could be more than offset by increased carbon sequestration in harvested wood products, avoided emissions due to substitution of wood for non-wood materials in construction, and biomass regrowth on forestland by 2050, with an estimated net emissions reduction benefit of 0.47 tCO2e/tCO2e of extra wood used in SLR-related new houses over 30 years. The global net emissions reduction benefit increased to 2.13 tCO2e/tCO2e of extra wood when price-induced changes in forest land area were included.  相似文献   

6.
Addressing the challenges of global warming requires interventions on both the energy supply and demand side. With the supply side responses being thoroughly discussed in the literature, our paper focuses on analyzing the role of end use efficiency improvements for Indian climate change mitigation policy and the associated co-benefits, within the integrated assessment modeling framework of Global Change Assessment Model (GCAM). Six scenarios are analyzed here in total- one no climate policy and two climate policy cases, and within each of these one scenario with reference end use energy technology assumptions and another with advance end use energy technology assumptions has been analyzed. The paper has some important insights. Final energy demand and emissions in India are significantly reduced with energy efficiency improvements, and the role of this policy is important especially for the building and transportation sector under both reference and climate policy scenarios. Though energy efficiency policy should be an integral part of climate policy, by itself it is not sufficient for achieving mitigation targets, and a climate policy is necessary for achieving mitigation goals. There are significant co-benefits of energy efficiency improvements. Energy security for India is improved with reduced oil, coal and gas imports. Significant reduction in local pollutant gases is found which is important for local health concerns. Capital investment requirement for Indian electricity generation is reduced, more so for the climate policy scenarios, and finally there are significant savings in terms of reduced abatement cost for meeting climate change mitigation goals.  相似文献   

7.
Both supply and demand side changes are necessary to achieve a sustainable food system. However, the weight accorded to these depends on one’s view of what the priority goals are for the food system and the extent to which production systems versus consumption patterns are open to change. Some stakeholders see the problem as one of ‘not enough food’ and focus on the need to sustainably increase supply, while others consider the resource demanding and ‘greedy’ consumption patterns of the Western world as the main problem and emphasize the need to shift diets. In this study global land use and greenhouse gas emissions are estimated for a set of scenarios, building on four ‘livestock futures’ reflecting these different perspectives. These scenarios are: further intensification of livestock systems; a transition to plant-based eating; a move towards artificial meat and dairy; and a future in which livestock production is restricted to the use of ‘ecological leftovers’ i.e. grass from pastures, food waste and food and agricultural byproducts. Two dietary variants for each scenario are modelled: 1) a projected diet following current trends and 2) a healthy diet with more fruits and vegetables and fewer animal products, vegetable oils and sugar. Livestock production in all scenarios (except the baseline scenario) was assumed to intensify to current levels of intensive production in North-Western Europe. For each scenario, several variant assumptions about yield increases and waste reductions were modelled. Results show that without improvements in crop productivity or reductions on today’s waste levels available cropland will only suffice if production of all protein currently supplied by animal foods is replaced by (hypothetical) artificial variants not requiring any land. With livestock intensities corresponding to current ones in North-Western Europe and with yield gaps closed by 50% and waste reduced by 50%, available cropland will suffice for all scenarios that include a reduction of animal products and/or a transition to poultry or aquaculture. However, in the scenario based on an extrapolation of current consumption patterns (animal product amounts and types consumed in proportions corresponding to the current average consumption in different world regions) and with livestock production based on feed from cropland, available cropland will not be enough. The scenario that makes use of pastures for ruminant production and food waste for pigs, uses considerably less cropland and could provide 40–56 kg per capita per year of red meat. However, such a livestock future would not reduce GHG emissions from agriculture on current levels. This study confirms previous research that to achieve a sustainable food future, action is needed on all fronts; improved supply and reduced demand and waste.  相似文献   

8.
We quantify the current water use of China’s thermoelectric power sector with plant-level data. We also quantify the future implications for cooling water use of different energy supply scenarios at both a regional and national levels. Within China, water withdrawal and consumption are projected to exceed 280 and 15 billion m3 respectively by 2050 if China does not implement any new policies, up from current levels of 65.2 and 4.64 billion m3. Improving energy efficiency or transforming the energy infrastructure to renewable, or low-carbon, sources provides the opportunity to reduce water use by over 50%. At a regional level, central and eastern China account for the majority of the power sector’s water withdrawals, but water consumption is projected to increase in many regions under most scenarios. In high-renewable and low-carbon scenarios, concentrated solar power and inland nuclear power, respectively, constitute the primary fresh water users. Changing cooling technology, from open-loop to closed-loop in the south and from closed-loop to air cooling in the north, curtails the power sector’s water withdrawal considerably while increasing water consumption, particularly in eastern and central China. The power sector’s water use is predicted to exceed the regional industrial water quota under the ‘3 Red Line’ policy in the east under all scenarios, unless cooling technology change is facilitated. The industrial water quota is also likely to be violated in the central and the northern regions under a baseline scenario. Moreover, in line with electricity production, the power sector’s water use peaks in the winter when water availability is lowest. Water-for-energy is a highly contextual issue – a better understanding of its spatio-temporal characteristics is therefore critical for development of policies for sustainable cooling water use in the power sector.  相似文献   

9.
2010—2100年淮河径流量变化情景预估   总被引:2,自引:0,他引:2       下载免费PDF全文
根据淮河流域14个气象站点1964—2007年观测降水量与温度数据和ECHAM5/MPI-OM模式在3种排放情景下对该流域2001—2100年的气候预估,利用人工神经网络模型预估淮河蚌埠站2010—2100年逐月径流量变化。计算结果表明:3种排放情景下2010—2100年淮河径流量年际变化幅度差异较大,SRES-A2情景总体处于波动上升趋势,其中2051—2085年上升趋势显著;SRES-A1B情景2024—2037年年平均流量显著降低;SRES-B1情景年平均流量的变率甚小。季节分析表明:春季径流量在2010—2100年变幅最小,距平百分率在-15.1%~18.6%之间小幅波动。夏季平均流量在2040年代前呈下降趋势,之后小幅波动上升。秋、冬季平均流量SRES-A2和SRES-A1B情景变幅显著,其中,秋季SRES-A2情景2060年代距平百分率下降达50.6%,为3种情景下各季节径流量降幅之最;冬季SRES-A1B情景2050年代其增幅达到54.7%,亦为上升幅度之最。  相似文献   

10.
Drastic reductions of greenhouse-gas (GHG) emissions are required to meet the goal of the 2015 Paris climate accord to limit global warming to 1.5–2.0 °C over pre-industrial levels. We introduce the material stock-flow framework as a novel way to develop scenarios for future GHG emissions using methods from social metabolism research. The basic assumption behind our exploratory scenario approach is that nearly all final energy is required to either expand and maintain stocks of buildings, infrastructures and machinery or to provide services by using them. Distinguishing three country groups, we develop GDP- and population-driven scenarios for the development of these material stocks and the corresponding energy requirements based on historically calibrated model parameters. We analyze the results assuming different future pathways of CO2 emissions per unit of primary energy. The resulting cumulative carbon emissions from 2018 to 2050 range from 361 Gt C in the lower GDP-driven to 568 GtC in the higher population-driven scenario. The findings from the population-driven scenarios point towards the huge implications of a hypothetical convergence of per-capita levels of material stocks assuming current trajectories of technological improvements. Results indicate that providing essential services with a considerably lower level of material stocks could contribute to large reductions in global resource demand and GHG emissions. A comparison of different stock levels in 2050 demonstrates that complying with ambitious climate targets requires much faster declines of CO2 emissions per unit of primary energy if growth of material stocks is not limited.  相似文献   

11.
The feasibility of two low-carbon society (LCS) scenarios, one with and one without nuclear power and carbon capture and storage (CCS), is evaluated using the AIM/Enduse[Global] model. Both scenarios suggest that achieving a 50% emissions reduction target (relative to 1990 levels) by 2050 is technically feasible if locally suited technologies are introduced and the relevant policies, including necessary financial transfers, are appropriately implemented. In the scenario that includes nuclear and CCS options, it will be vital to consider the risks and acceptance of these technologies. In the scenario without these technologies, the challenge will be how to reduce energy service demand. In both scenarios, the estimated investment costs will be higher in non-Annex I countries than in Annex I countries. Finally, the enhancement of capacity building to support the deployment of locally suited technologies will be central to achieving an LCS.

Policy relevance

Policies to reduce GHG emissions up to 2050 are critical if the long-term target of stabilizing the climate is to be achieved. From a policy perspective, the cost and social acceptability of the policy used to reduce emissions are two of the key factors in determining the optimal pathways to achieve this. However, the nuclear accident at Fukushima highlighted the risk of depending on large-scale technologies for the provision of energy and has led to a backlash against the use of nuclear technology. It is found that if nuclear and CCS are used it will be technically feasible to halve GHG emissions by 2050, although very costly. However, although the cost of halving emissions will be about the same if neither nuclear nor CCS is used, a 50% reduction in emissions reduction will not be achievable unless the demand for energy service is substantially reduced.  相似文献   

12.
We use a physically-based water and energy balance model to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country skiing, and snowmobiling season lengths under baseline and future climates, using data from five climate models and two emissions scenarios. Projected season lengths are combined with baseline estimates of winter recreation activity, entrance fee information, and potential changes in population to monetize impacts to the selected winter recreation activity categories for the years 2050 and 2090. Our results identify changes in winter recreation season lengths across the United States that vary by location, recreational activity type, and climate scenario. However, virtually all locations are projected to see reductions in winter recreation season lengths, exceeding 50% by 2050 and 80% in 2090 for some downhill skiing locations. We estimate these season length changes could result in millions to tens of millions of foregone recreational visits annually by 2050, with an annual monetized impact of hundreds of millions of dollars. Comparing results from the alternative emissions scenarios shows that limiting global greenhouse gas emissions could both delay and substantially reduce adverse impacts to the winter recreation industry.  相似文献   

13.
交通部门在中长期具有很高的碳排放增长潜力,对我国低碳转型有重要影响。构建自下而上的能源系统模型PECE-LIU2017及其交通模块,设置未来交通发展的基准、NDC和低碳3个情景,深入分析交通需求背后的驱动因子及发展趋势,制定交通部门中长期低碳发展路径。结果显示,随着经济发展和人均收入水平提高,未来我国交通需求将持续增长。NDC情景下,交通部门有望在2038年左右达峰。在低碳情景下,我国交通部门2050年CO2排放将从基准情景30亿t降低为6亿t,并在2030年左右达峰,为我国中长期低碳发展目标贡献17.5%的累计减排量。2016—2050年低碳交通固定投资需求为15.7万亿元人民币,占我国中长期低碳投资总需求的53%。通过提高燃油经济性、推广新能源汽车以及发挥城市公共出行最大潜力,交通部门能够以技术可行的方式实现低碳转型,并对我国长期低碳发展战略做出重要贡献。  相似文献   

14.
A model of the U.S. automobile market is used to test the role that natural gas vehicles (NGVs) might play in reducing greenhouse-gas emissions. Since natural gas (primarily methane) emits less CO2 per unit of energy than petroleum products, NGVs are an obvious pathway to lower CO2 emissions. High-and low-demand scenarios are used to forecast the emissions from unrestricted growth and a modest program of conservation, respectively. Based on these scenarios, a reference scenario is developed that projects a possible future path of automobile use and efficiency. It is found that without a dramatic increase in automobile use, fuel consumption and greenhouse-gas emissions from automobiles in the United States will probably decrease in the future, provided that efficiency continues to improve at modest rates. In theory, NGVs can help shift emissions even further down.A second objective is to quantify the role that leaking methane might play in offsetting some of the greenhouse advantages of NGVs. To do this, a simple atmospheric chemistry model is applied to the reference scenario; several leak rates and feedback factors are used to test the sensitivity of the projected green-house forcing from now until 2050. Committed warming beyond 2050 is not included, and the results should be interpreted with that in mind.It is highly unlikely that switching automobiles from gasoline to natural gas will appreciably lower future greenhouse forcing. Constraints on vehicle miles travelled as well as continued improvements in vehicle efficiency will make a much larger contribution towards controlling global warming.  相似文献   

15.
长江口海平面上升预测及其对滨海湿地影响   总被引:1,自引:0,他引:1  
选择吴淞站和吕四站2个验潮站数据,通过统计学方法进行长江口海平面上升预测,从而构建了一套长江口地区较完备的海平面上升情景库:以2013年为基准年份,其最佳预测值的范围在2030年、2050年、2100年分别为50~217 mm,118~430 mm,256~1215 mm。以此情景库为基础,探究海平面上升变化对长江口滨海湿地的影响,结果表明:随着海平面上升值的增加,长江口滨海湿地的面积不断减少;在基于验潮站数据作趋势外推得到的情景下,湿地面积减少较平缓,而在考虑全球变暖背景的情景下,湿地面积减少迅速;且不论在何种情景下,时间尺度越大,湿地减少的面积越大。  相似文献   

16.
In recent decades there has been a sustained and substantial shift in human diets across the globe towards including more livestock-derived foods. Continuing debates scrutinize how these dietary shifts affect human health, the natural environment, and livelihoods. However, amidst these debates there remain unanswered questions about how demand for livestock-derived foods may evolve over the upcoming decades for a range of scenarios for key drivers of change including human population, income, and consumer preferences. Future trends in human population and income in our scenarios were sourced from three of the shared socioeconomic pathways. We used scenario-based modeling to show that average protein demand for red meat (beef, sheep, goats, and pork), poultry, dairy milk, and eggs across the globe would increase by 14% per person and 38% in total between the year 2020 and the year 2050 if trends in income and population continue along a mid-range trajectory. The fastest per person rates of increase were 49% in South Asia and 55% in sub-Saharan Africa. We show that per person demand for red meat in high-income countries would decline by 2.8% if income elasticities of demand (a partial proxy for consumer preferences, based on the responsiveness of demand to income changes) in high-income countries decline by 100% by 2050 under a mid-range trajectory for per person income growth, compared to their current trajectory. Prices are an important driver of demand, and our results demonstrate that the result of a decline in red meat demand in high-income countries is strongly related to rising red meat prices, as projected by our scenario-based modeling. If the decline in the income elasticity of demand occurred in all countries rather than only in high-income countries, then per person red meat demand in high-income countries would actually increase in 2050 by 8.9% because the income elasticity-driven decline in global demand reduces prices, and the effect of lower prices outweighs the effect of a decline in the income elasticity of demand. Our results demonstrate the importance of interactions between income, prices, and the income elasticity of demand in projecting future demand for livestock-derived foods. We complement the existing literature on food systems and global change by providing quantitative evidence about the possible space for the future demand of livestock-derived foods, which has important implications for human health and the natural environment.  相似文献   

17.
Despite a clear need, little research has been carried out at the regional-level to quantify potential climate-related impacts to electricity production and delivery systems. This paper introduces a bottom-up study of climate change impacts on California's energy infrastructure, including high temperature effects on power plant capacity, transmission lines, substation capacity, and peak electricity demand. End-of-century impacts were projected using the A2 and B1 Intergovernmental Panel on Climate Change emission scenarios. The study quantifies the effect of high ambient temperatures on electricity generation, the capacity of substations and transmission lines, and the demand for peak power for a set of climate scenarios. Based on these scenarios, atmospheric warming and associated peak demand increases would necessitate up to 38% of additional peak generation capacity and up to 31% additional transmission capacity, assuming current infrastructure. These findings, although based on a limited number of scenarios, suggest that additional funding could be put to good use by supporting R&D into next generation cooling equipment technologies, diversifying the power generation mix without compromising the system's operational flexibility, and designing effective demand side management programs.  相似文献   

18.
两种气候变化情景下中国未来的粮食供给   总被引:4,自引:0,他引:4  
熊伟  居辉  许吟隆  林而达 《气象》2006,32(11):36-41
全球温室气体排放导致的全球温度的上升一直是国际社会关注的重点问题之一。利用IPCC(政府间气候变化专门委员会)SRES(排放情景特别报告)的A2(中-高)和B2(中-低)温室气体排放情景,结合区域气候模式PRECIS和CERES作物模型模拟和分析了未来不同的温室气体排放情景下,中国未来2020年、2050年和2080年各个时段粮食的供需情景,并结合未来社会经济的发展分析了气候变化对未来粮食供求的影响,探讨了不同的气候变化程度对未来中国粮食供应的影响。结果表明:如果不考虑CO2的肥效作用,未来我国三种主要粮食作物(小麦、水稻和玉米)均以减产为主,灌溉可以部分地减少减产幅度,如果单考虑CO2的肥效作用,三种作物的产量变化以增产为主。若保持959/6的粮食自给率,人口按照SRESA2和B2情景增长,到2030年的技术进步可使粮食年单产递增0.79/6以上,维持目前的种植比例和种植面积,B2情景下,气候变化对我国的粮食安全问题将不会构成威胁,而A2情景下,气候变化将会对我国可持续发展的粮食安全造成威胁。  相似文献   

19.
利用ECHAM5/MPI-OM气候模式预估2001-2050年长江流域不同排放情景(SRES-A2,A1B,B1)下径流深的变化,分析了长江流域地表水资源量的时空变化特征。结果表明:3种排放情景下长江流域多年平均地表水资源量相差不大,但不同排放情景下年际变化特征较为复杂,且变化趋势有所不同。其中,A2高排放情景下地表水资源量呈缓慢减小的趋势,A1B中等排放情景下变化趋势不明显,B1低排放情景下呈相对最为显著的增加趋势。地表水资源量年代际变化波动幅度也较大,2001-2030年3种情景下地表水资源量总体呈现下降特征,但从2030年起,则均表现出不同程度的增加,最高增幅达7.47%,其中尤以夏季和冬季增加显著。模式预估长江流域未来水资源量仍保持目前水平,水资源空间分布不均匀特征仍较为突出。  相似文献   

20.
2050年前长江流域地表水资源变化趋势   总被引:3,自引:0,他引:3  
 利用ECHAM5/MPI-OM气候模式预估2001-2050年长江流域不同排放情景(SRES-A2,A1B,B1)下径流深的变化,分析了长江流域地表水资源量的时空变化特征。结果表明:3种排放情景下长江流域多年平均地表水资源量相差不大,但不同排放情景下年际变化特征较为复杂,且变化趋势有所不同。其中,A2高排放情景下地表水资源量呈缓慢减小的趋势,A1B中等排放情景下变化趋势不明显,B1低排放情景下呈相对最为显著的增加趋势。地表水资源量年代际变化波动幅度也较大,2001-2030年3种情景下地表水资源量总体呈现下降特征,但从2030年起,则均表现出不同程度的增加,最高增幅达7.47%,其中尤以夏季和冬季增加显著。模式预估长江流域未来水资源量仍保持目前水平,水资源空间分布不均匀特征仍较为突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号