首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
头社盆地位于中国台湾省中部,东亚季风区的最前沿,对东亚季风的响应十分敏感,研究其中晚全新世以来古植被、重建古气候序列,探讨其气候与东亚夏季风的关系具有重要的科学意义。文章对头社盆地泥炭—湖泊沉积的AMS14C测年、体积磁化率测试的基础上,基于孢粉记录,重建晚全新世来植被变化,恢复古气候。结果表明全新世中晚期以来分六个阶段:6.2~6.0 cal ka BP,气候凉干,植被类型是亚热带常绿阔叶林;6.0~4.0 cal ka BP,气候转暖湿,植被类型为含较多热带成分的亚热带常绿阔叶林;4.0~2.2 cal ka BP,气候相对凉干,植被类型转为亚热带常绿阔叶林;2.2~1.9 cal ka BP,气候又变暖湿;1.9~1.7 cal ka BP,气候快速冷干事件,森林退化;1.7~1.3 cal ka BP,气候重转温暖湿润,植被类型为接近现代的沼泽草原。整体上6.2~2.2 cal ka BP的气候变化是由温暖湿润向温凉干燥转变的趋势,这是全新世中晚期以来的太阳辐射量减少所导致的,太阳辐射量的减少导致热带辐合南移,进而导致东亚夏季风减弱,而2.2 cal ka BP之后气候波动较大,可能是在东亚夏季风减弱的背景下,ENSO活动加强与人类活动的干扰下耦合的结果。  相似文献   

2.
This article is a detailed pollen analysis and accurate AMS chronology of the Lateglacial of two coastal sites in western Norway. The area was deglaciated around 14 600 cal. yr BP or shortly before. The earliest vegetation was open, with a pioneer mosaic of vegetation on mineral soils, including snowbed communities, and plants on wind-blown ridges. Later, more stable vegetation developed with Empetrum as an important constituent. Scattered tree birches were established in the area in the last part of the Bølling/Allerød (GI-1). The pollen record from Vassnestjern indicates three short-lasting cold periods: c . 14 050 to 13 900, 13 800 to 13 700 and 13 150 to 13 000 cal. yr BP. It has been suggested that the last-mentioned period, detected at both sites, corresponds with the Gerzensee/Killarney Oscillation. From about 12 750 cal. yr BP, the vegetation was affected by the Younger Dryas (GS-1) cooling, which caused the vegetation to break up and humus-soil communities to disappear. In the early Holocene, the humus-soil communities re-established and open birch forests developed. This Lateglacial vegetation development is broadly similar to the reconstructed vegetation development in other parts of southwestern Norway.  相似文献   

3.

贵州西部位于北亚热带云贵高原山地湿润-半湿润气候区,西南季风是该区域水汽来源的主要气候系统。贵州六盘水娘娘山有连片分布的垫状泥炭沼泽沉积,较完整记录了过去的植被和气候历史,是研究气候-植被-火灾-人类活动变化的理想场所。本研究以六盘水娘娘山1999 m海拔的一处泥炭湿地钻孔上部52 cm岩芯为研究材料,通过AMS 14C测年获得年代框架,采用孢粉和炭屑分析,重建了该地区晚全新世气候变化和人类活动叠加影响下的植被演替及火灾活动历史。结果表明:3500~3100 cal.a B.P. 期间,当地亚热带常绿阔叶林繁盛,火灾活动为气候控制为主的森林火灾,但火灾活动并未改变阔叶林的总体面貌;3100~600 cal.a B.P. 期间,气候呈变干趋势,阔叶类木本植物显著减少,当地植被从亚热带常绿阔叶林转变为疏林草地和针叶类疏林,极可能是趋于冷干的气候环境的结果;大约600 cal.a B.P. 之后,当地植被演变为开阔林,同时,出现大颗粒炭屑(>125 μm)以及伴人花粉的明显增加,表明人类农业活动高强度的刀耕火种已经扩张到较高海拔山区。区域对比显示,西南地区在3500 cal.a B.P. 以来,主要以区域性火灾为主,而3100 cal.a B.P. 以后的火灾活动受到气候变干和人类活动的双重影响,特别是600 cal.a B.P. 以来,人类活动(刀耕火种)成为局地火灾和植被更替的主要因素。

  相似文献   

4.
利用哈尼湖钻孔剖面深837~304cm高分辨率的123个孢粉数据和序列中的8个14C测年数据重建中国东北地区13.1~4.5cal.kaB.P.的植被与气候历史:13.1~11.9cal.kaB.P.植被变化明显,整个时段气温较低,后期有回暖趋势,在12.8~12.1cal.kaB.P.的快速变干可能是新仙女木事件在本区的体现;11.9~10.0cal.kaB.P.孢粉显示为以云杉、冷杉等针叶树为主,气候湿冷;10.0~8.2cal.kaB.P.针叶林逐步演替为落叶阔叶林,为升温阶段;8.2~4.5cal.kaB.P.落叶阔叶林进一步发展,气候温暖湿润。同时孢粉序列也反映出,东北地区在气候变暖后发生了一系列的冷暖干湿波动,大致可与我国北方和南方其他地区的气候事件对应。经频谱分析表明,本区在研究期间存在1100a,700a,500a及300a的气候变化的准周期。  相似文献   

5.
A pollen record from Lago Condorito (41°45'S, 73°07'W) shows prominent vegetation and climate changes at millennial time‐scales, superimposed on multimillennial trends in temperature and westerly activity in northwest Patagonia during the past 15 000 yr. The record shows that evergreen temperate rainforests have dominated the landscape over this interval, with floristic changes ranging from cold‐resistant North Patagonian forests with podocarp conifers to Valdivian forests with thermophilous, summer‐drought resistant species. The long‐term trend shows that cool‐temperate and humid conditions prevailed between 15 000 and 11 000 cal. yr BP, followed by an extreme warm and dry phase between 11 000 and 7600 cal. yr BP, and subsequent cooling events and increase in precipitation that peaked at ca. 5000 cal. yr BP, when Southern Hemisphere alpine glaciers achieved their first Neoglacial maximum. Modern conditions were established at ca. 1800 cal. yr BP, following a warm and dry phase between ca. 2900 and 1800 cal. yr BP. These results suggest that millennial‐scale climate variability during deglacial and post‐glacial times also affected the mid‐latitude region of the South Pacific, supporting the idea that changes in the tropical Pacific might be a key factor in the initiation and/or propagation of millennial‐scale climate variability at regional, hemispheric and global scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Zhou, W., Yu, S.‐Y., Burr, G. S., Kukla, G. J., Jull, A. J. T., Xian, F., Xiao, J., Colman, S. M., Yu, H., Liu, Z. & Kong, X. 2010: Postglacial changes in the Asian summer monsoon system: a pollen record from the eastern margin of the Tibetan Plateau. Boreas, Vol. 39, pp. 528–539. 10.1111/j.1502‐3885.2010.00150.x. ISSN 0300‐9483. A new pollen record constrained by 32 AMS radiocarbon dates from the Hongyuan peatland in the Zoige Basin reveals the long‐term dynamics of an alpine wetland ecosystem on the eastern margin of the Tibetan Plateau over the last 13 500 years. Changes in pollen assemblages and influxes suggest that local vegetation has experienced three distinct stages, from alpine coniferous forest–meadow (13 500–11 500 cal. a BP), through alpine coniferous forest (11 500–3000 cal. a BP), back to alpine coniferous forest–meadow (3000 cal. a BP–present). This record reflects an ecosystem response along a transition zone where the South Asian and East Asian monsoon systems may have had different palaeoclimatic influences. A comparison of this record with other pollen records across the Tibetan Plateau shows common features with regard to large‐scale Holocene climatic changes, but highlights a pattern of regional temporal and spatial variability that depends on the topography and position relative to the South Asian and East Asian monsoon fronts.  相似文献   

7.
A high-resolution Younger Dryas–late Holocene record of climate and environment from the Malangen fjord has been established on the basis of two marine sediment cores. Five pollen-spore assemblage zones have been defined covering the period c . 11 500 cal. yr BP (10 200 14C yr BP) to c . 1600 cal. yr BP (1600 14C yr BP) with a hiatus of c . 2000 cal. years between c . 10 200 and 8100 cal. yr BP (9000 and 7300 14C yr BP). The Holocene vegetation development from pioneer vegetation to forest development, identified in the marine pollen record, correlates well with pollen records from terrestrial sections of northern Norway. The marine pollen record was also correlated directly with marine proxy records of the bottom water temperature investigated in the same sediment cores. Correlation between the marine and terrestrial proxies suggests that changes in the influx of warm Atlantic Water to the fjord led to an instant change in the vegetation of the surrounding land area. The results thus support a strong link between marine and atmospheric mean climatic states in the North Atlantic region throughout the Holocene.  相似文献   

8.
Wen, R. L., Xiao, J. L., Chang, Z. G., Zhai, D. Y., Xu, Q. H., Li, Y. C. & Itoh, S. 2009: Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas, 10.1111/j.1502‐3885.2009.00125.x. ISSN 0300‐9483. Quantitative palaeoclimatic reconstruction with the weighted averaging partial least squares method was applied to the pollen profile from Hulun Lake in northeastern Inner Mongolia. The data provide a detailed history of variations in precipitation and temperature over the northeastern margin of the East Asian summer monsoon during the Holocene. A warm and dry climate prevailed over the lake region until c. 8000 cal. BP. During the period c. 8000–4400 cal. BP, precipitation increased markedly and temperature gradually declined. The interval between c. 4400 and 3350 cal. BP was marked by extremely dry and relatively cold conditions. Precipitation recovered from c. 3350 to 1000 cal. BP, with temperatures rising c. 3350–2050 cal. BP and dropping c. 2050–1000 cal. BP. During the last 500 years, the climate of the lake region displayed a general trend of warming and wetting. While Holocene temperature variations in the mid‐high latitude monsoonal margin were controlled by changes in summer solar radiation in the Northern Hemisphere, they could also be related to the strength of the East Asian summer monsoon. The lack of precipitation during the early Holocene could be attributed to the weakened summer monsoon resulting from the existence of remnant ice sheets in the Northern Hemisphere. Changes in the monsoonal precipitation during the middle to late Holocene would have been associated with the ocean–atmosphere interacting processes occurring in the western tropical Pacific.  相似文献   

9.
Two marine pollen diagrams for sediments off the southwest coast of India provide a 20,000-yr history of the nearby continental vegetation, determined by the monsoon climate, within the framework of the isotopic stratigraphy. Two important phases of the evolution of the monsoon climate are a very arid period about 22,000–18,000 yr B.P. and a very humid period culminating at 11,000 yr B.P. The very arid period corresponds to the lowest pollen representation of mangrove vegetation, which is used here as an indirect indicator of monsoonal runoff. This aridity is due to a very weak southwest airflow, a great reduction of summer monsoonal rainfall, and reduced runoff of the western Ghats rivers. The extension of the monsoon over India after the last glacial maximum has been a gradual process following the northward progression of the Intertropical Convergene Zone. The very humid period, corresponding to the highest pollen representation of mangrove vegetation and the heaviest summer rainfall, is a climatic response to the maximum summer insolation of the Northern Hemisphere at 11,000 yr B.P.  相似文献   

10.
Plant macrofossils from 38 packrat middens spanning the last ~ 33,000 cal yr BP record vegetation between ~ 650 and 900 m elevation along the eastern escarpment of the Sierra San Pedro Mártir, northern Baja California. The middens span most of the Holocene, with a gap between ~ 4600 and 1800 cal yr BP, but coverage in the Pleistocene is uneven with a larger hiatus between 23,100 and 14,400 cal yr BP. The midden flora is relatively stable from the Pleistocene to Holocene. Exceptions include Pinus californiarum, Juniperus californica and other chaparral elements that were most abundant > 23,100 cal yr BP and declined after 14,400 cal yr BP. Despite being near the chaparral/woodland-desertscrub ecotone during glacial times, the midden assemblages reflect none of the climatic reversals evident in the glacial or marine record, and this is corroborated by a nearby semi-continuous pollen stratigraphy from lake sediments. Regular appearance of C4 grasses and summer-flowering annuals since 13,600 cal yr BP indicates occurrence of summer rainfall equivalent to modern (JAS average of ~ 80–90 mm). This casts doubt on the claim, based on temperature proxies from marine sediments in the Guaymas Basin, that monsoonal development in the northern Gulf and Arizona was delayed until after 6200 cal yr BP.  相似文献   

11.
We present a late glacial pollen record (17,700 to 8500 cal yr BP) from a Lake Naleng sediment core. Lake Naleng is located on the southeastern Tibetan Plateau (31.10°N 99.75°E, 4200 m) along the upper tree-line. Variations in the summer monsoon are evident from shifts in vegetation that correspond to late glacial climate trends from other monsoon-sensitive regions. Alpine steppe was recorded between 17,700 and 14,800 cal yr BP, indicating low effective moisture at the study site. Expansion of alpine meadows followed by advances in the position of tree-line around Lake Naleng suggest that climate became warmer and wetter between ∼ 14,800 and 12,500 cal yr BP, probably representing an enhancement of the Asian monsoon. Climatic cooling and reduced effective moisture are inferred from multivariate analysis and the upward retreat of tree-line between ∼ 12,500 and 11,700 cal yr BP. The timing and nature of these shifts to warm, wet and then cold, dry climatic conditions suggest that they correspond to the Bølling/Allerød and Younger Dryas intervals. Abies-Betula forests, representing warm and moist conditions, spread during the early Holocene.  相似文献   

12.
A pollen record from Huguangyan Maar Lake documents regional palaeovegetation and palaeoclimate changes in southern China over the last 30 000 years. Huguangyan Maar Lake is located close to the South China Sea (SCS) coastline and is influenced by the East Asian Monsoon (EAM). The pollen assemblages show a succession of vegetation and climate changes. During the Last Glaciation, 30–15.8 cal. ka BP, the Huguangyan area was dominated by subtropical evergreen‐deciduous forest with grassland surrounding the lake, indicating a colder and drier climate than today. During 15.8–11 cal. ka BP, the study area experienced several climatic fluctuations. From 11 to 2 cal. ka BP, the climate shifted to warmer and wetter conditions. After the Holocene Optimum in the early Holocene, the temperature and precipitation decreased. The sediment record of the last 2000 years cannot be used to interpret natural palaeoclimate changes due to the intense anthropogenic influences. Overall, however, the Huguangyan pollen archive highlights the rapid responses of subtropical vegetation to insolation changes in southern China.  相似文献   

13.
Pollen-assemblage data from a sediment core from Hulun Lake in northeastern Inner Mongolia describe the changes in the vegetation and climate of the East Asian monsoon margin during the Holocene. Dry steppe dominated the lake basin from ca. 11,000 to 8000 cal yr BP, suggesting a warm and dry climate. Grasses and birch forests expanded 8000 to 6400 cal yr BP, implying a remarkable increase in the monsoon precipitation. From 6400 to 4400 cal yr BP, the climate became cooler and drier. Chenopodiaceae dominated the interval from 4400 to 3350 cal yr BP, marking extremely dry condition. Artemisia recovered 3350-2050 cal yr BP, denoting an amelioration of climatic conditions. Both temperature and precipitation decreased 2050 to 1000 cal yr BP as indicated by decreased Artemisia and the development of pine forests. During the last 1000 yr, human activities might have had a significant influence on the environment of the lake region. We suggest that the East Asian summer monsoon did not become intensified until 8000 cal yr BP due to the existence of remnant ice sheets in the Northern Hemisphere. Changes in the monsoon precipitation on millennial to centennial scales would be related to ocean-atmosphere interactions in the tropical Pacific.  相似文献   

14.
Jiang, W., Guiot, J., Chu, G., Wu, H., Yuan, B., Hatté, C. & Guo, Z. 2009: An improved methodology of the modern analogues technique for palaeoclimate reconstruction in arid and semi-arid regions. Boreas , 10.1111/j.1502-3885.2009.00115.x. ISSN 0300-9483.
This study presents an improved method of the plant functional type modern analogues technique (PFT-MAT) in which environmental proxies and a moisture index (α, i.e. ratio of actual evapotranspiration to potential evapotranspiration) are used to constrain the selection of modern analogues. The method is tested using high-resolution, precisely dated palaeorecords (pollen, Pediastrum and δ18O of authigenic carbonate) from Lake Bayanchagan, northern China. The unconstrained and constrained PFT-MAT produces general agreement for Holocene climate changes, with a wet period between 11 000 and 5500 cal. yr BP and a warm interval between 11 000 and 8000 cal. yr BP. However, there are significant differences in the details of their reconstruction. The constrained PFT-MAT generally yields smaller error bars for the reconstructed climate parameters than the unconstrained PFT-MAT. In addition, three prominent climatic events are identified from the constrained reconstructions; namely, a cold event around 8400 cal. yr BP and two warm events around 6000 and 2000 cal. yr BP, which is consistent with other regional palaeoclimatic records. Our data show that changes in tree components correlate well with α variations during the entire Holocene, with the highest tree components and highest α values between 8000 and 5500 cal. yr BP, indicating the dominant role of α in the growth of trees in northern China rather than single temperature or precipitation. The improved PFT-MAT is therefore an efficient method for quantitative reconstructions of palaeoclimate in arid and semi-arid regions.  相似文献   

15.

大量研究表明,随着气候变暖,全球生态环境发生了巨大变化。然而,在相对温暖的气候条件下,假若发生重大降温事件,生态环境尤其是植被生态会如何响应,值得深入探讨。利用近年来发表的全新世高分辨率古气候记录以及孢粉记录的植被变化,对全新世中期7 ka(1 ka=1000 cal.a B.P.)前后的降温事件及其对植被生态的影响进行了综合分析。结果表明,7 ka前后降温事件在北半球很大范围都有记录,在季风边缘区伴随着气候的干旱,而在西风主导的区域总体表现为气候湿润。中国北方季风区山地以及高纬度地区表现为建群种的变化,如阔叶树种的减少以及针叶树种的增加;在季风边缘区总体表现为干旱气候下植被盖度的降低;而在西北内陆山地高山区域表现为林线的降低或树种的变化,低山地区森林下限表现为森林成分的增加以及耐旱树种的减少;在山前草原和盆地荒漠草原区域,植被的响应表现为植被盖度的增加和喜湿成分的增加。降温直接影响湿度较大的高山地区的森林成分和林线高度,而在低山干旱半干旱地区,降温则通过抑制蒸发、增加有效湿度影响植被盖度和组成。由于不同钻孔年代的不确定性、不同植被类型对气候变化的敏感性不同等,不同区域发生植被转型的时间不尽一致。全新世中期7 ka降温事件的触发机制有待深入研究,可能与大型火山喷发以及太阳活动变化有关,夏季太阳辐射的持续降低以及地球系统内部反馈也是共同的原因。

  相似文献   

16.
This article examines Holocene environmental change in Zhuye Lake in the marginal area of the Asian monsoon, NW China. Holocene environment records were obtained for the QTH01 and QTH02 sections in Zhuye Lake. The fluctuations in grain size, pollen, total organic carbon content and C/N ratios record notable environmental variation. The early Holocene (11.0 to 7.4 cal. kyr BP) was relatively arid, while vegetation coverage was sparse and primary productivity low. The optimal environment prevailed during the mid-Holocene (7.4 to 4.7 cal. kyr BP). Vegetation coverage was the densest and primary productivity the highest during the mid-Holocene. During the late Holocene (4.7 to 0 cal. kyr BP), the environment became arid, as shown by low lake level and sparse vegetation coverage. After 1.6 cal. kyr BP another strong aridification occurred. In this area, the environment was likely to have been influenced by both the Westerlies and the East Asian monsoon during the Holocene. During the early Holocene, the relatively arid environment lay in the background of the increasing East Asian monsoon and dry westerly wind. During the mid-Holocene, central Asia was controlled by the humid Westerlies, while a strong East Asian monsoon prevailed in Central China. The mid-Holocene optimum in this area benefited from an expanded East Asian monsoon and the humid Westerlies. Weakening of the East Asian monsoon caused aridification of the environment during the late Holocene. Intensification of this aridification after 1.6 cal. kyr BP might be correlated with appearance of the arid environments in the Westerly domain after ∼1.5 cal. kyr BP. These arid conditions might be affected by the decreased moisture content of the Westerlies.  相似文献   

17.
Pollen and plant macrofossil analyses from Svanåvatnet in northern Norway provide records of past vegetation and climate in this region from c . 8700 cal. yr BP until the present. Pollen accumulation rates and the presence of plant macrofossils indicate that Betula pubescens (birch) was present from c . 8600 cal. yr BP and Pinus sylvestris (pine) from c . 8200 cal. yr BP. Quantitative climate is reconstructed using modern pollen-climate transfer functions based on weighted-averaging partial least squares regression. A rapid increase in mean July temperature (Tjul) and mean annual precipitation (Pann) is inferred for the early Holocene. At times when tree abundance is at its highest and most diverse, inferred Tjul indicates maximum temperatures during the mid-Holocene of about 2°C warmer than at present. During the same time period, inferred Pann is 200–300 mm above present-day conditions until c . 3000 cal. yr BP. Mean January temperatures (Tjan) are reconstructed to be about 2°C warmer than today from 8000 to 3500 cal. yr BP. After 3500 cal. yr BP until today, a gradual decrease is seen in all the reconstructed climate parameters, together with a reduction in tree abundance and the development of a mosaic of open vegetation with grasses, dwarf shrubs and wet areas, and of woodland containing B. pubescens , P. sylvestris and Picea abies (spruce).  相似文献   

18.
Pollen recovered from core tops of deep‐sea cores from offshore northwestern Western Australia were used to build climatic transfer functions applied to sediment samples from major rivers bordering the ocean in the same region and a deep‐sea core offshore Northwest Cape. Results show for the last 100 000 years, with a gap in the record spanning the 64 000 to 46 000 years interval, that from about 100 000 to 82 000 yr BP, climatic conditions represented by rainfall, temperature and number of humid months, were significantly higher than today's values. For the entire record, the coldest period occurred about 43 000 to 39 000 yr BP but it was wetter than today, whereas the Last Glacial Maximum saw a significant reduction in summer rainfall, interpreted as a result of the absence of monsoonal activity in the region. The Holocene can be divided into two distinct phases: one peaking around 6000 cal. yr BP with highest rainfall and summer temperatures; the second one commencing at 5000 cal. yr BP and showing a progressive decrease in summer rainfall in contrast to an increase in winter rainfall, paralleled by a progressive decrease in temperatures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
长江三角洲地区全新世气候和环境曾发生过大的变迁,新石器时代文化伴随着全新世气候最暖期的到来,以及三角洲的形成和发展而出现,并由此向前推衍,奠定了以稻作农业为基础的经济形态。通过研究本区与农作物相关的现代植物花粉形态和代表性表土花粉,揭示出部分用于指示人类活动的综合指标、不同植被带表土花粉的组合特征和用于半定量界定不同植被类型的比值区间。研究区自然区域全新世孢粉反映当时植被3个主要发展阶段,即亚热带常绿-落叶阔叶混交林(11000~9500cal.aB.P.)、中亚热带常绿阔叶林(9500~3900cal.aB.P.)和次生性质的亚热带针阔叶混交林(3900cal.aB.P.以来),其中8000~3900cal.aB.P.为全新世大暖期的鼎盛期,3900cal.aB.P.以来人类活动明显增强。人类活动区绰墩遗址孢粉植物群,反映新石器各主要文化期都以亚热带含针叶植物的常绿-落叶阔叶混交林为地带性植被,遗址周围一般都有较大面积的水域分布;  人类对植被的干预只是在后期才开始明显增强。区内人类文化几经兴衰,主要受制于环境的变迁,包括气候和地理状况的变化,以及由此产生的海平面升降和植被变化等。与此同时,人类活动的影响随着时间的推移而日趋加重,成为一种新的环境影响因素。  相似文献   

20.
Pollen analysis of a 33.21 m deep sediment core from Surinsar lake in Jammu region has revealed that between 9,500 and 7,700 yr BP (Pollen zone SL-I), the mixed oak-broad-leaved/chirpine forest occurred in the region under a warm and humid climate. The record of aquatic plants viz. Potamogeton, Typha and freshwater alga Botryococcus in appreciable numbers denotes the existence of the lake since the Early Holocene. Subsequently, mixed chirpine/oak-broad-leaved forests appeared in the area around 7,700 to 6,125 yr BP (Pollen zone SL-II) with the dominance of chirpine (Pinus cf. roxburghii) by the onset of cool and dry climate, attributed to decrease in monsoon rainfall. The expansion of oak and its broad-leaved associates between 6,125 and 4,330 yr BP (Pollen zone SL-III) suggests that the climate turned moderately humid and warm, presumably due to enhanced monsoonal effect. The region has witnessed a brief spell of pluvial environment between 4,330 and 4,000 yr BP (Pollen zone SL-IV) as evidenced by the presence of sandy layer at 15.4–14 m depths. The period of 4,000 to 2,100 yr BP (Pollen zone SL-V) is marked by the prevalence of cool and dry climate as depicted by a sharp decline in oak (Quercus cf. incana) and other broad-leaved taxa and a concurrent increase in chirpine. From 2,100 to 800 yr BP (Pollen zone SL-VI) no palaeofloristic inferences could be drawn due to paucity of pollen, however, the presence of sandy deposit at the corresponding level in lithocolumn implies a pluvial episode by this time. Since 800 yr BP to Present (Pollen zone SL-VII) the slight advance in the oak reflects the ameliorating trend of climate, despite the existing cool and dry climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号