首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epistemic uncertainty in ground motion prediction relations is recognized as an important factor to be considered in probabilistic seismic hazard analysis (PSHA), together with the aleatory variability that is incorporated directly into the hazard calculations through integration across the log-normal scatter in the ground motion relations. The epistemic uncertainty, which is revealed by the differences in median values of ground motion parameters obtained from relations derived for different regions, is accounted for by the inclusion of two or more ground motion prediction relations in a logic-tree formalism. The sensitivity of the hazard results to the relative weights assigned to the branches of the logic-tree, is explored through hazard analyses for two sites in Europe, in areas of high and moderate seismicity, respectively. The analyses reveal a strong influence of the ground motion models on the results of PSHA, particularly for low annual exceedance frequencies (long return periods) and higher confidence levels. The results also show, however, that as soon as four or more relations are included in the logic-tree, the relative weights, unless strongly biased towards one or two relations, do not significantly affect the hazard. The selection of appropriate prediction relations to include in the analysis, therefore, has a greater impact than the expert judgment applied in assigning relative weights to the branches of the logic-tree.  相似文献   

2.
The discrete nature of the numerical methods utilized in 1D site response analysis and calculation of the response spectra (e.g., frequency domain, Duhamel integral, and Newmark β methods) introduces time-step dependence in the resulting solution. Using an input ground motion with too large of a time-step leads to under-prediction of high-frequency characteristics of the system response due to limitations in the numerical solution of single and multiple degree of freedom systems. In order to reduce potential errors, using a sampling rate at least ten times greater than the maximum considered frequency is recommended. The preferred alternative is selection of input ground motions with a sufficiently small time step to avoid introducing numerical errors. However, where such motions are not available, then the time step of the ground motion can be reduced through interpolation. This paper demonstrates that the use of Fourier transform zero-padded interpolation is the preferred approach to obtain a ground motion with an adequate time step for the calculation of the elastic acceleration response spectra, and to analyze site response using either frequency or time domain methods.  相似文献   

3.
地震动强度对场地地震反应的影响   总被引:5,自引:2,他引:3  
通过对场地地震反应的研究发现,地震动强度不同,同样的场地对地震动的影响也不同,得到的反应谱形状也不同。目前我国抗震设计规范中不同烈度下的设计反应谱形状完全一致,没有考虑地震动强弱对相同场地反应谱形状的影响。  相似文献   

4.
Introduction A good deal of attention was paid to the amplification response of soil layers under the earthquake waves,especially by the engineering seismologists.  相似文献   

5.
This paper presents a series of analyses for the evaluation of the ground response of two NEHRP class D sites, subjected to shaking by a large number of strong ground-motion records. The two investigated sites have very distinct profiles, but they are characterised by almost identical Vs30 values. The site response analyses are performed using various methods of analysis and input parameters in order to explore the sensitivity of the ground response estimates and to identify the dominating parameters. Equivalent linear analysis is performed using different sets of dynamic soil properties curves, while nonlinear analysis is performed using different target dynamic soil curves, viscous damping formulations and fitting procedures for the constitutive model parameters. Particular focus is given to the sensitivity of the response when soil sites are subjected to high-intensity shaking, a subject of particular interest when the prediction of surface ground motions with low annual probabilities of exceedance is the target of probabilistic seismic hazard analyses (PSHA). The site response analysis results of this paper are incorporated into the probabilistic framework of Bazzurro and Cornell [1] in our companion paper in order to assess their impact on the final soil surface hazard calculation.  相似文献   

6.
为了研究场地条件和断层距对地震动参数及其与结构响应参数相关性的影响,本文基于NGA数据库中5 266条水平分量地震动记录,采用皮尔森相关系数,分析了不同场地条件和断层距下地震动参数之间的相关性及其与结构响应参数的关系。结果表明,场地条件和断层距对绝大部分地震动参数相关性会产生明显影响,但存在一些参数的相关性几乎不受场地条件和断层距的影响;以四层钢筋混凝土框架结构为例,发现在不同场地条件和断层距下,结构响应参数与地震动参数的相关性变化明显,这表明在研究结构响应与地震动参数相关性时需要考虑场地条件与断层距的影响。  相似文献   

7.
A methodology has been proposed which can be used to reduce the number of ground motion records needed for the reliable prediction of the median seismic response of structures by means of incremental dynamic analysis (IDA). This methodology is presently limited to predictions of the median IDA curve only. The reduction in the number of ground motion records needed to predict the median IDA curve is achieved by introducing a precedence list of ground motion records. The determination of such a list is an optimization problem, which is solved in the paper by means of (1) a genetic algorithm and (2) a proposed simple procedure. The seismic response of a simple, computationally non‐demanding structural model has been used as input data for the optimization problem. The presented example is a three‐storey‐reinforced concrete building, subjected to two sets of ground motion records, one a free‐field set and the other a near‐field set. It is shown that the median IDA curves can be predicted with acceptable accuracy by employing only four ground motion records instead of the 24 or 30 records, which are the total number of ground motion records for the free‐field and near‐field sets, respectively. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
不同类别场地地震动参数的计算分析   总被引:45,自引:2,他引:45  
基于188个工程场地计算剖面及场地地震反应分析的等线性化波动分析方法,通过对场地地震反应的计算及计算结果的分析,研究了4类场地条件对场地地震动影响的特点及规律,给出了每一类场地地震动参数变化的经验关系。  相似文献   

9.
In this study, a total of 115,246 ground motions recorded during earthquakes of Moment magnitudes ranging from M_w 5.0 to M_w 9.0 are analyzed statistically. A total of 21 ground motion parameters characterising the recorded acceleration time histories are used in the analysis. Classification of these parameters through statistical correlation is reported and a parameter called "distance from zero-amplitude axis," or dZ-A, is formulated in the principal component space. The ability for dZ-A to rate the damage potentials of strong motion records is evaluated through correlation of dZ-A with Japan Meteorological Agency(JMA) instrumental seismic intensities. This parameter can be used to rate damage potential of any strong motion record irrespective of the magnitude and location of the earthquake. It can also be used in selecting ground motion records of appropriate damage potential in seismic design and probabilistic analysis.  相似文献   

10.
In this paper, a numerical sensitivity analysis of the site effect on dynamic response of pipelines embedded in some idealised soil deposits resting on a halfspace covering a wide range of soil profiles encountered in practice and subjected to vertically propagating shear waves, is presented. The power spectrum of the lateral differential displacement between two distant points due to the site effect is formulated analytically by using an analytical amplification function of a viscoelastic inhomogenous soil profile overlying either a compliant halfspace or a bedrock, represented by a more realistic continuous model. Also, Kanai-Tajimi spectrum parameters are estimated and expressed analytically from the soil profile model. Finally, results in the form of stochastic response spectrum of pipelines, for different key soil and pipeline parameters, are given and discussed.  相似文献   

11.
A semi-empirical approach using fore- or after-shockrecords as Green's functions is applicable to thesimulation of strong ground motion, however suchrecords are obviously not available for predictionpurposes. Thus we have predicted ground motion fora hypothetical large earthquake from other minorevents by adopting a distance correction based ongeometrical spreading. Another difficulty inprediction is fault modeling. Surface traces weresimplified as fault models 27, 46, 55, and 77 km inlength. Further, the actual fault rupture may beinhomogeneous, so an asperity distribution isassumed. This asperity model assumes thatdislocation and stress drop are double than theaverage values. Although, the near field term isneglected in our simulation, no significantdifference was seen in the motions estimated byindividual models for periods up to 2.0 seconds. This indicates that the dependence of source size issmall for strong motion, perhaps as a result of therandom summation of high-frequency phases.  相似文献   

12.
Uncertainty factors have substantial influences on the numerical simulations of earthquakes. However, most simulation methods are deterministic and do not sufficiently consider those uncertainty factors. A good approach for predicting future destructive earthquakes that is also applied to probabilistic hazard analysis is studying those uncertainty factors, which is very significant for improving the reliability and accuracy of ground-motion predictions. In this paper, we investigated several uncertainty factors, namely the initial rupture point, stress drop, and number of sub-faults, all of which display substantial influences on ground-motion predictions, via sensitivity analysis. The associated uncertainties are derived by considering the uncertainties in the parameter values, as those uncertainties are associated with the ground motion itself. A sensitivity analysis confirms which uncertainty factors have large influences on ground motion predictions, based upon which we can allocate appropriate weights to those uncertainty factors during the prediction process. We employ the empirical Green function method as a numerical simulation tool. The effectiveness of this method has been previously validated, especially in areas with sufficient earthquake record data such as Japan, Southwest China, and Taiwan, China. Accordingly, we analyse the sensitivities of the uncertainty factors during a prediction of strong ground motion using the empirical Green function method. We consequently draw the following conclusions. (1) The stress drop has the largest influence on ground-motion predictions. The discrepancy between the maximum and minimum PGA among three different stations is very large. In addition, the PGV and PGD also change drastically. The Arias intensity increases exponentially with an increase in the stress drop ratio of two earthquakes. (2) The number of sub-faults also has a large influence on various ground-motion parameters but a small influence on the Fourier spectrum and response spectrum. (3) The initial rupture point largely influences the PGA and Arias intensity. We will accordingly pay additional attention to these uncertainty factors when we conduct ground-motion predictions in the future.  相似文献   

13.
A relatively simple and straightforward procedure is given for representing analytically defined or data-based covariance kernels of arbitrary random processes in a compact form that allows its convenient use in later analytical random vibration response studies. The method is based on the spectral decomposition of the random process by the orthogonal Karhunen-Loeve expansion and the subsequent use of least-squares approaches to develop an approximating analytical fit for the data-based eigenvectors of the underlying random process. The resulting compact analytical representation of the random process is then used to derive a closed-form solution for the non-stationary response of a damped SDOF harmonic oscillator. The utility of the method for representing the excitation and calculating the mean-square response is illustrated by the use of an ensemble of acceleration records from the 1971 San Fernando earthquake.  相似文献   

14.
汶川8.0级地震强震动加速度记录的初步分析   总被引:13,自引:0,他引:13  
本文对国家强震动台网中心收集的2008年5月12目14时28分04秒汶川8.0级地震中获取的420组三分量加速度记录进行了处理和初步分析。在分析前对原始加速度记录进行整理、转换数据格式、零线校正、录入原数据,形成标准格式的未校正加速度数据;在这次地震中布设在龙门山断裂带及其周围地区有50多个台站获得了大于100 Gal的加速度记录,有46组三分量加速度记录的断层距小于100km,使中国大陆近断层区域所获得的强震动加速度记录的数量成倍增加。本文依据这批数据对汶川大地震强震动特性进行了初步分析,给出了此次地震断层附近地区的PGA衰减规律,并利用此规律模拟断层附近的加速度峰值,绘制了PGA分布图;给出了汶川地震断层附近的加速度反应谱、上盘效应、速度大脉冲效应等地震动特征,这些特征可作为抗震设计规范修订的依据及灾区重建时参考;最后展望了这批强震动加速度记录的应用前景。  相似文献   

15.
刘培玄  李小军  周正华 《地震学报》2022,44(6):1083-1098
以强震动台站结构类型作为控制因素,基于集中质量显式时域动力有限元方法,系统地分析了不同场地条件下观测室结构(砌体观测房、半地下观测室、玻璃钢罩观测室)对地震动的影响。通过对北京地球观象台院内并址观测实验台站捕获的地脉动和两次地震事件数据的处理并结合数值模拟结果,分析得到不同类型观测室对地震动的影响规律。结果表明:观测室结构对地震动的影响是客观存在的,由于观测室结构自振周期和体量不同,不同观测室对地震动的影响频带和影响程度亦存在差异,相较于其它结构对地震动的影响,玻璃钢罩观测室的影响频带较窄、影响程度最小。  相似文献   

16.
为了研究强地震作用下,场地类别对于地震动幅频特性的影响,本文统计了3 579条日本地震动的时程,并针对场地类别的不同,分别从基岩和土层的峰值加速度幅值特性角度,以及从标准化反应谱和平均加速度反应谱等频谱特性的角度研究其幅频衰减特性,最后给出了各类场地峰值加速度衰减曲线。结果表明,土层对于地震动幅值和频谱的放大作用会随着场地类别的变软而增加,并且场地越软,远场的长周期特性越明显。利用平均加速度反应谱可以有效地反映频谱中的长周期成分。  相似文献   

17.
回顾总结了近20年国内外关于地震动场地调整系数的主要研究成果,重点分析强震动观测和数值理论方法在考虑场地条件对地震动参数影响方面的效果,总结各类方法的适用性和优缺点,结合国内外相关规范条文对比分析国内外的主要成果,得出我国软土的场地调整系数值小于国际水平,并进一步分析了造成这种差异的原因。最后基于目前国际地震区划工作的发展趋势以及各行业相关规范的新技术需求,对新一代区划图的研究工作进行了展望。  相似文献   

18.
基于强震动记录确定的场地卓越周期   总被引:1,自引:0,他引:1  
本文介绍了3种根据场地强震动记录获取场地卓越周期的方法: ① 地表记录的傅里叶谱分析法; ② 地表水平/垂直傅里叶谱比法; ③ 地表/地下傅里叶谱比法. 基于日本强震动观测台网KiK-net中两个基岩台站和两个Ⅲ类场地台站获取的数百条强震动记录, 分别使用上述3种方法确定场地的卓越周期, 并对比分析各种方法的优缺点及其适用情况. 结果表明: 对于基岩场地, 由于记录信息复杂, 局部场地条件对地震动影响较小, 地震动自身特性突出, 导致3种方法所得到的结果均比较分散; 对于土层场地, 场地条件影响比较显著, 3种方法基本都可以得到一个较为准确的数值; 但对于某些场地, 地表水平/垂直傅里叶谱比法所得结果存在不确定性, 相比之下, 地表/地下傅里叶谱比法则能给出一个更为准确的场地卓越周期值.   相似文献   

19.
唐山响堂三维场地影响观测台阵   总被引:10,自引:0,他引:10  
1994年7月中国地震局工程力学研究所在唐山余震区响堂镇建成了我国第一个三维场地影响观测台阵。该台阵目前有四个测点,分别布设在基岩地表、土层地表、地下17m和地下32m处。它安装了分辨率为16位的井下数字观测系统,主机和从机同步运行,系统时钟采用Omega导航信号自动校对(精度1ms),地震数据采用固态方式(CMOS)存储,每个测点均布设一组 量力平衡式加速度计。该台阵自投入运行至1997年12月  相似文献   

20.
天津滨海场地土类别特征及其对地震动的影响   总被引:3,自引:0,他引:3  
本文按照三种规范(中国建筑抗震设计规范(GBS0011-2001)、美国FEMA-NEHRP规范(2000)、欧洲结构抗震规范(EUROCODE 8,1998)),利用钻孔和剪切波速资料,对天津滨海地区的场地土类别进行研究。通过场地地震动效应分析,研究该场地土对地震动的影响。结果表明,对于滨海场地,简单的场地类别划分难以反映软土场地的实际情况;滨海软土场地对地震动加速度的幅值和频谱的影响非常明显,其对峰值加速度的放大倍数高达1.9,但受土的非线性变形影响,随地震动输入的增大其放大倍数呈非线性降低;软土场地使得加速度反应谱谱形变宽,特征周期变大,变化幅度在0.1s—0.4s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号