共查询到20条相似文献,搜索用时 0 毫秒
1.
V. Mariani M. Tanganelli S. Viti M. De Stefano 《Bulletin of Earthquake Engineering》2016,14(3):805-819
It is well known that the axial load plays an important role in the evaluation of the structural capacity of RC columns. In existing buildings this problem can be even more significant than in new ones, since the material can easily present poor mechanical properties. The paper is aimed at the investigation of the role of the axial load variation on the seismic performance of RC columns of a case-study, i.e. a doubly symmetric 4-storey RC building. The effects of the axial load variation have been checked on the first storey columns, by comparing the seismic response, measured in terms of chord rotation and shear force, with the corresponding capacity. The sensitivity of the seismic performance to the axial load is evaluated with special attention on the type of analysis adopted to determine the seismic response and on considering a wide range of values for the concrete strength. The study points out a non-negligible effect of the axial load variation on the seismic response of the case-study building, especially when combined to concrete strength variability. 相似文献
2.
The seismic retrofitting of a high-rise RC building, recently realized in Italy using the seismic isolation technique, is examined in terms of cost of the intervention (compared to the replacement cost of the building), seismic performances and expected benefits (compared to the building in the as-built configuration), expressed in terms of reduction of direct and indirect seismic losses in case of attainment of different limit states.In the paper, the comparison of the building performance before and after seismic retrofitting is performed in terms of Expected Annual Loss (EAL), applying a direct displacement-based loss assessment approach. The results show a considerable reduction of the EAL (approximately of 70%), passing from the as-built to the retrofitted configuration. The time needed to get the balance between costs of the intervention and benefits due to EAL reduction turns out to be of the order of 13 years. 相似文献
3.
A proper characterization of concrete strength is essential to correctly model existing RC structures, whose seismic performance is affected by the poor quality of materials. The purpose of this work is to evaluate the effect of incorrect assumptions for concrete strength and the adequacy of current Codes provisions (Eurocodes, FEMA). Even the effects of the non homogeneity of concrete strength within the building is considered due to its high variability; in fact, buildings can experience an irregular seismic response, both in plan and in elevation. In this work the effects of irregularity in plan due to the strength variability of concrete is analyzed on a case study, a four storey RC framed building, designed for vertical loads only. The variability of concrete strength has been evaluated using the data of an extensive investigation developed by REGIONE TOSCANA on a large sample of RC framed buildings. 相似文献
4.
An alternative approach for the seismic rehabilitation of existing RC buildings using seismic isolation 下载免费PDF全文
Usually, buildings with seismic isolation are designed to comply with an operational building performance level after strong earthquakes. This approach, however, may limit the use of seismic isolation for the seismic rehabilitation of existing buildings with low lateral strength or substandard details, because it often requires invasive strengthening measures in the superstructure or the use of expensive custom‐made devices. In this paper, an alternative approach for the seismic rehabilitation of existing buildings with seismic isolation, based on the acceptance of limited plastic deformations in the superstructure under strong earthquakes, is proposed and then applied to a real case study, represented by a four‐storey RC frame building. Nonlinear response‐time histories analyses of an accurate model of the case‐study building are carried out to evaluate the seismic performances of the structure, comparing different rehabilitation strategies with and without seismic isolation. Initial costs of the intervention and possible (future) repair costs are then estimated. Based on the results of this study, values of the behavior factor (i.e. response modification factor) higher than those adopted in the current codes for base‐isolated buildings are tentatively proposed. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
In the present paper, the seismic upgrading of existing reinforced concrete (RC) structures by means of steel and pure aluminium shear panels is examined. After a preliminary experimental evaluation of the performance of the bare RC structure, a design approach based on the capacity spectrum method has been developed according to the procedure provided in the ATC 40 American guidelines. First, the geometrical configuration of the applied shear panels has been defined according to simplified analytical relationships, while appropriate steel members have been designed to allow the insertion of shear panels in the existing RC structure. Then, complex finite element models have been implemented in order to check the reliability of the proposed design procedure. Also, a numerical evaluation of the global response of the upgraded structure has been processed aiming at evaluating the interaction between the RC structure and the metal devices. Finally, the effectiveness of the applied shear panels has been proven by means of full‐scale experimental tests, which confirmed the significant improvement of the RC structure performance, in terms of strength, stiffness and deformation capacity. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
6.
Extensive studies have confirmed the good performance of the N2 method, recommended by Eurocode8, when performing pushover
analyses in regular structures. However, this procedure shows lack of accuracy in predicting the torsional motion of plan-asymmetric
buildings. In order to overcome this problem, Peter Fajfar and his team have proposed an extension of the method based on
a combination of a pushover analysis and of an elastic response spectrum analysis. Since definitive answers about this topic
have not yet been reached, this paper intends to proceed the study applying the extended N2 method to real existing RC buildings.
Three real plan-asymmetric buildings with three, five and eight storeys were assessed. The results obtained with the extended
N2 method were compared with the ones evaluated by means of the original N2 and with the nonlinear dynamic analysis through
the use of semi-artificial ground motions. The analyses were performed for different seismic intensities in order to evaluate
the torsional response of the building through different stages of structural inelasticity. The results obtained show that
the extended N2 method generally reproduces in a very good fashion the real torsional behavior of the analyzed buildings.
The conclusions herein outlined, added to the ones already published by the aforementioned authors, seem to confirm that the
extended N2 method can be introduced in the next version of Eurocode8 as a nonlinear static procedure capable of accurately
predicting the torsional response of plan-asymmetric buildings. 相似文献
7.
Effects of vertical irregularity and thickness of unreinforced masonry infill on the robustness of RC framed buildings 下载免费PDF全文
Presence of irregularities in reinforced concrete (RC) buildings increases seismic vulnerability. During severe seismic shaking, such buildings may suffer disproportionate damage or even collapse that can be minimized by increasing robustness. Robustness is a desirable property of structural systems that can mitigate susceptible buildings to disproportionate collapse. In this paper, the effects of vertical irregularity and thickness of unreinforced masonry infill on the robustness of a six‐story three‐bay RC frame are quantified. Nonlinear static analysis of the frame is performed, and parametric study is undertaken by considering two parameters: absence of masonry infill at different floors (i.e., vertical irregularities) and infill thickness. Robustness has been quantified in terms of stiffness, base shear, ductility, and energy dissipation capacity of the frame. It was observed that the infill thickness and vertical irregularity have significant influence on the response of RC frame. The response surface method is used to develop a predictive equation for robustness as a function of the two parameters. The predictive equation is validated further using 12 randomly selected computer simulations. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
The feasibility and efficiency of a seismic retrofit solution for existing reinforced concrete frame systems, designed before the introduction of modern seismic‐oriented design codes in the mid 1970s, is conceptually presented and experimentally investigated. A diagonal metallic haunch system is introduced at the beam–column connections to protect the joint panel zone from extensive damage and brittle shear mechanisms, while inverting the hierarchy of strength within the beam–column subassemblies and forming a plastic hinge in the beam. A complete step‐by‐step design procedure is suggested for the proposed retrofit strategy to achieve the desired reversal of strength hierarchy. Analytical formulations of the internal force flow at the beam–column‐joint level are derived for the retrofitted joints. The study is particularly focused on exterior beam–column joints, since it is recognized that they are the most vulnerable, due to their lack of a reliable joint shear transfer mechanism. Results from an experimental program carried out to validate the concept and the design procedure are also presented. The program consisted of quasi‐static cyclic tests on four exterior, ? scaled, beam–column joint subassemblies, typical of pre‐1970 construction practice using plain round bars with end‐hooks, with limited joint transverse reinforcement and detailed without capacity design considerations. The first (control specimen) emulated the as‐built connection while the three others incorporated the proposed retrofitted configurations. The experimental results demonstrated the effectiveness of the proposed solution for upgrading non‐seismically designed RC frames and also confirmed the applicability of the proposed design procedure and of the analytical derivations. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
9.
Melina Bosco Edoardo M. Marino Pier Paolo Rossi 《Bulletin of Earthquake Engineering》2013,11(5):1423-1445
This paper describes a new method for the evaluation of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ of uncoupled torsional to lateral frequencies in real multi-storey buildings. The above-mentioned parameters greatly affect the lateral-to-torsional coupling of the response of asymmetric systems and thus are of paramount importance in the assessment of the in-plan irregularity of buildings. The proposed method, which is a generalization of that suggested by Calderoni et al. (Earthq Spectra 18(2):219–231, 2002), allows the calculation of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ from the structural response to arbitrary distributions of forces and torsional couples. The effectiveness of the method is validated on some regularly and non-regularly asymmetric buildings characterised by different in-plan irregularity. The analyses demonstrate that the results of the method are rigorous in the case of regularly asymmetric systems and only slightly depend upon the heightwise distribution of the forces in the case of non-regularly asymmetric systems. Finally, the values of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ resulting from the proposed method are compared to those obtained by means of the procedure suggested by Makarios and Anastassiadis in (Struct Des Tall Spec Build 7(1):33–55, 1998a; Struct Des Tall Spec Build 7(1):57–71, 1998b) . 相似文献
10.
A multiple rocking wall-frame(MRWF) system,in which the wall panels are directly connected to the adj acent beams and foundation is presented herein.In the MRWF system,the unbonded post-tensioned(PT) tendons are used to promote the self-centering ability,and O-shaped steel dampers are applied to enhance the energy dissipation capacity and reparability of the structure.First,analytical equations are proposed to determine the behavior of the O-shaped dampers.Then,the MRWF system is numerically eva... 相似文献
11.
Ali Reza Keyvani Boroujeni Majid Sadeghazar 《地震工程与工程振动(英文版)》2006,5(2):297-307
The Iranian Guideline for Seismic Rehabilitation of Existing Buildings (GSREB), which is currently used for vulnerability assessment of existing buildings in Iran, is evaluated in this paper. The vulnerability of sample buildings of a variety stories with special steel moment resisting frames, designed according to the Standard No.2800 requirements, is assessed by GSREB. In the vulnerability assessment, different analysis methods were used and the results, in terms of usage ratio, defined as the ratio of the strength/deformation demand to the corresponding capacity, are compared. Numerical results show that some columns of these buildings do not satisfy the life safety performance criteria in the design hazard level. Moreover, the target displacement estimated by the Displacement Coefficient Method (DCM) is larger than the maximum displacement calculated by nonlinear dynamic analysis. 相似文献
12.
Performance-Based Seismic Design is now widely recognized as the pre-eminent seismic design and assessment methodology for
building structures. In recognition of this, seismic codes may require that buildings achieve multiple performance objectives
such as withstanding moderate, yet frequently occurring earthquakes with minimal structural and non-structural damage, while
withstanding severe, but rare earthquakes without collapse and loss of life. These objectives are presumed to be satisfied
by some codes if the force-based design procedures are followed. This paper investigates the efficacy of the Eurocode 8 force-based
design provisions with respect to RC frame building design and expected seismic performance. Four, eight, and 16-storey moment
frame buildings were designed and analyzed using the code modal response spectrum analysis provisions. Non-linear time-history
analyses were subsequently performed to determine the simulated seismic response of the structures and to validate the Eurocode
8 force-based designs. The results indicate the design of flexural members in medium-to-long period structures is not significantly
influenced by the choice of effective member stiffness; however, calculated interstorey drift demands are significantly affected.
This finding was primarily attributed to the code’s enforcement of a minimum spectral ordinate on the design spectrum. Furthermore,
design storey forces and interstorey drift demand estimates (and therefore damage), obtained by application of the code force-based
design procedure varied substantially from those found through non-linear time-history analysis. Overall, the results suggest
that though the Eurocode 8 may yield life-safe designs, the seismic performance of frame buildings of the same type and ductility
class can be highly non-uniform. 相似文献
13.
Ambient noise as the new source for urban engineering seismology and earthquake engineering: a case study from Beijing metropolitan area 下载免费PDF全文
In highly populated urban centers, traditional seismic survey sources can no longer be properly applied due to restrictions in modern civilian life styles. The ambient vibration noise, including both microseisms and microtremor, though are generally weak but available anywhere and anytime, can be an ideal supplementary source for conducting seismic surveys for engineering seismology and earthquake engineering. This is fundamentally supported by advanced digital signal processing techniques for effectively extracting the useful information out from the noise. Thus, it can be essentially regarded as a passive seismic method. In this paper we first make a brief survey of the ambient vibration noise, followed by a quick summary of digital signal processing for passive seismic surveys. Then the applications of ambient noise in engineering seismology and earthquake engineering for urban settings are illustrated with examples from Beijing metropolitan area. For engineering seismology the example is the assessment of site effect in a large area via microtremor observations. For earthquake engineering the example is for structural characterization of a typical reinforced concrete high-rise building using background vibration noise. By showing these examples we argue that the ambient noise can be treated as a new source that is economical, practical, and particularly valuable to engineering seismology and earthquake engineering projects for seismic hazard mitigation in urban areas. 相似文献
14.
Nikos D Lagaros 《地震工程与工程振动(英文版)》2008,7(1):45-56
15.
An intensification of auroral luminosity referred to as an auroral break-up often accompanies the onset of geomagnetic pulsation (Pi 2) at the dip-equator. One such auroral break-up occurred at 2239 UT on 16 June, 1986, being accompanied by weak substorm activity (AE≈50 nT) which was recorded in all-sky image of Syowa Station, Antarctica (66.2°S, 71.8°E in geomagnetic coordinates). The associated Pi 2 magnetic pulsation was detected by a fluxgate magnetometer in the afternoon sector at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L = 1.00). In spite of the large separation of the two stations in longitude and latitude, the auroral break-up and subsequent luminosity modulation were seen to be correlated with the wave form of the ground Pi 2 pulsation. This occurred in such a way that the luminosity maximum was seen to occur at the phase of maximum amplitudes of Pi 2 wave form. We argue that the observed correlation could be interpreted as indicating a Pi 2-modulation of a field-aligned acceleration of the low energy electrons that may occur near the equator of the midnight magnetosphere. 相似文献
16.
Crew variability in topographic surveys for monitoring wadeable streams: a case study from the Columbia River Basin 下载免费PDF全文
Sara Bangen Joe Wheaton Nicolaas Bouwes Chris Jordan Carol Volk Michael B. Ward 《地球表面变化过程与地形》2014,39(15):2070-2086
Digital elevation models (DEMs) derived from ground‐based topographic surveys have become ubiquitous in the field of fluvial geomorphology. Their wide application in spatially explicit analysis includes hydraulic modeling, habitat modeling, and morphological sediment budgeting. However, there is a lack of understanding regarding the repeatability and precision of DEMs derived from ground‐based surveys conducted by different, and inherently subjective, observers. This is of particular concern when we consider the proportion of studies and monitoring programs that are implemented across multiple sites and over time by different observers. We used a case study from the Columbia Habitat Monitoring Program (CHaMP), where seven field crews sampled the same six sites, to quantify the magnitude and effect of observer variability on DEMs interpolated from total station surveys. We quantified the degree to which DEM‐derived metrics and measured geomorphic change were repeatable. Across all six sites, we found an average elevation standard deviation of 0.05 m among surveys, and a mean total range of 0.16 m. A variance partition between site, crew, and unexplained errors for several topographically derived metrics showed that crew variability never accounted for > 1.5% of the total variability. We calculated minor geomorphic changes at one site following a relatively dry flow year between 2012 and 2011. Calculated changes were minimal (unthresholded net changes ±1–3 cm) with six crews detecting an indeterminate sediment budget and one crew detecting a minor net erosional sediment budget. While crew variability does influence the quality of topographic surveys, this study highlights that when consistent surveying methods are employed, the data sets are still sufficient to support derivation of topographic metrics and conduct basic geomorphic change detection. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
This paper presents the results of an experimental study on the determination of damping characteristics of bare, masonry infilled, and carbon fiber reinforced polymer retrofitted infilled reinforced concrete (RC) frames. It is well known that the masonry infills are used as partitioning walls having significant effect on the damping characteristics of structures as well as contribution to the lateral stiffness and strength. The main portion of the input energy imparted to the structure during earthquakes is dissipated through hysteretic and damping energies. The equivalent damping definition is used to reflect various damping mechanisms globally. In this study, the equivalent damping ratio of carbon fiber reinforced polymer retrofitted infilled RC systems is quantified through a series of 1/3‐scaled, one‐bay, one‐story frames. Quasi‐static tests are carried out on eight specimens with two different loading patterns: one‐cycled and three‐cycled displacement histories and the pseudo‐dynamic tests performed on eight specimens for selected acceleration record scaled at three different PGA levels with two inertia mass conditions. The results of the experimental studies are evaluated in two phases: (i) equivalent damping is determined for experimentally obtained cycles from quasi‐static and pseudo‐dynamic tests; and (ii) an iterative procedure is developed on the basis of the energy balance formulation to determine the equivalent damping ratio. On the basis of the results of these evaluations, equivalent damping of levels of 5%, 12%, and 14% can be used for bare, infilled, and retrofitted infilled RC frames, respectively. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
18.
Displacement capacity of masonry buildings as a basis for the assessment of behavior factor: an experimental study 总被引:1,自引:2,他引:1
The results of shaking table tests of a series of 1:5 scale masonry building models have been used for the assessment of values
of structural behavior factor q for masonry structures, seismic force reduction factors proposed for the calculation of design seismic loads by Eurocode
8, European standard for the design of structures for earthquake resistance. Six models have been tested, representing prototype
buildings of two different structural configurations and built with two different types of masonry materials. The study indicated
that the reduction of seismic forces for the design depends not only on the type of masonry construction system, but also
on structural configuration and mechanical characteristics of masonry materials. It has been also shown that besides displacement
and energy dissipation capacity, damage limitation requirement should be taken into account when evaluating the values of
behavior factor. On the basis of analysis of experimental results a conclusion can be made, that the values at the upper limit
of the proposed range of values of structural behavior factor q for unreinforced and confined masonry construction systems are adequate, if pushover methods are used and the calculated
global ductility of the structure is compared with the displacement demand. In the case where elastic analysis methods are
used and significant overstrength is expected, the proposed values are conservative. However, additional research and parametric
studies are needed to propose the modifications. 相似文献
19.
20.
Jorge M. Proença António S. Gago Filipa Chaves 《Bulletin of Earthquake Engineering》2018,16(1):377-395
The present paper aims to contribute to the knowledge concerning the seismic assessment of load bearing masonry buildings with reinforced concrete slabs. The final goal of the present research was to propose a simple, yet accurate, methodology to assess the seismic safety of existing masonry buildings. The methodology here presented was based on the so-called ICIST/ACSS methodology with major improvements such as the extension to load bearing masonry wall buildings and the consideration of the effects of one of the most common strengthening solutions for masonry walls, here referred to as reinforced plastering mortar, as well as the possibility of considering four levels of increasing refinement: global, by alignment, by wall panel and by wall element. An extended research was performed on the existing methodologies to evaluate the seismic structural risk of load bearing masonry buildings, briefly describing methodologies similar to the one proposed, namely all of those that have in common the fact that they are based in the physical comparison between the resisting and acting shear forces at all storeys and along the two orthogonal horizontal directions. A case study is presented to check the applicability of the proposed methodology. The case study showed that the proposed methodology is relatively simple to apply and has a sufficiently good accuracy when compared with alternative methodologies. The degree of refinement of the analysis (global, by alignment, by wall panel and by wall element) must be taken into consideration and successively more complex analyses may be required when the results of simpler analyses are inconclusive. 相似文献