首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A land-air parametrization scheme (LAPS) describes mass, energy and momentum transfer between the land surface and the atmosphere. The scheme is designed as a software package which can be run as part of an atmospheric model or a stand-alone scheme. A single layer approach is chosen for the physical and biophysical scheme background. The scheme has six prognostic variables: two temperatures (one for the canopy vegetation and one for soil surface), one interception storage, and three soil moisture storage variables. The scheme's upper boundary conditions are: air temperature, water vapour pressure, wind speed, radiation and precipitation at some reference level within the atmospheric boundary layer. The sensible and latent heat are calculated using resistance representation. The evaporation from the bare soil is parametrized using the scheme. The soil part is designed as a three-layer model which is used to describe the vertical transfer of water in the soil.The performances of the LAPS scheme were tested using the results of meteorological measurements over a maize field at the experimental site De Sinderhoeve (The Netherlands). The predicted partitioning of the absorbed radiation into sensible and latent heat fluxes is in good agreement with observations. Also, the predicted leaf temperature agrees quite well with the observed values.With 9 Figures  相似文献   

2.
Summary A radiative transfer model has been used to determine the large scale effective 6.6 GHz and 37 GHz optical depths of the vegetation cover. Knowledge of the vegetation optical depth is important for satellite-based large scale soil moisture monitoring using microwave radiometry. The study is based on actual observed large scale surface soil moisture data and observed dual polarization 6.6 and 37 GHz Nimbus/SMMR brightness temperatures over a 3-year period. The derived optical depths have been compared with microwave polarization differences and polarization ratios in both frequencies and with Normalized Difference Vegetation Index (NDVI) values from NOAA/AVHRR. A synergistic approach to derive surface soil emissivity from satellite observed brightness temperatures by inverse modelling is described. This approach improves the relationship between satellite derived surface emissivity and large scale top soil moisture fromR 2=0.45 (no correction for vegetation) toR 2=0.72 (after correction for vegetation). This study also confirms the relationship between the microwave-based MPDI and NDVI earlier described and explained in the literature.List of Symbols f frequency [Hz] - f i(p) fractional absorption at polarizationp - h surface roughness - h h cos2 - H horizontal polarization - n i complex index of refraction - p polarization (H orV) - R s microwave surface reflectivity - T B(p) brightness temperature at polarizationp - T * normalized brightness temperature - T polarization difference (T v-T H) - T s temperature of soil surface - T c temperature of canopy - T max daily maximum air temperature - T min daily minimum air temperature - V vertical polarization - soil moisture distribution factor; also used for the constant to partition the influence of bound and free water components to the dielectric constant of the mixture - empirical complex constant related to soil texture - microwave transmissivity of vegetation (=e ) - * effective transmissivity of vegetation (assuming =0) - microwave emissivity - s emissivity of smooth soil surface - rs emissivity of rough soil surface - vs emissivity of vegetated surface - soil moisture content (% vol.) - K dielectric constant [F·m–1] - K fw dielectric constant of free water [F·m–1] - K ss dielectric constant of soil solids [F·m–1] - K m dielectric constant of mixture [F·m–1] - K o permittivity of free space [8.854·10–12 F·m–1] - high frequency limit ofK wf [F·m–1] - wavelength [m] - incidence angle [degrees from nadir] - polarization ratio (T H/T V) - b soil bulk density [gr·cm–3] - s soil particle density [gr·cm–3] - R surface reflectivity in red portion of spectrum - NIR surface reflectivity in near infrared portion of spectrum - eff effective conductivity of soil extract [mS·cm–1] - vegetation optical depth - 6.6 vegetation optical depth at 6.6 GHz - 37 vegetation optical depth at 37 GHz - * effective vegetation optical depth (assuming =0) - single scattering albedo of vegetation With 12 Figures  相似文献   

3.
Summary We study the response of the land-surface to prescribed atmospheric forcing for 31 May 1978 at Cabauw, Netherlands, using the land-surface scheme from the Coupled Atmospheric boundary layer-Plant-Soil (CAPS) model. Results from model runs show realistic daytime surface fluxes are produced using a canopy conductance formulation derived from Cabauw data (for 1987, a different year), and un-tuned parameterizations of root density (near-uniform with depth) and soil heat flux (reduced thermal conductivity through vegetation). Sensitivity of model-calculated surface heat fluxes to initial values of soil moisture is also examined. Results of this study provide the land-surface base state for a coupled land–atmosphere modeling study.  相似文献   

4.
We explore climate-vegetation interactions in mid-Holocene North Africa with a suite of community climate system model (CCSM2) simulations. The CCSM includes synchronously coupled atmosphere, ocean, sea ice, land, and vegetation models. The CCSMs present-day precipitation for North Africa compares well with simulations of other models and observations. Mid-Holocene data reveal a wetter and greener Sahara compared to the present. The CCSM exhibits a greater, closer to the expected, precipitation increase than other models, and in response, grasses advance from 18.75° to 22.5°N in much of North Africa. Precipitation is enhanced locally by the northward advance of grasses, but suppressed regionally mainly due to an insufficient albedo decrease with the expansion of vegetation. Prior studies have always lowered the surface albedo with the expansion of vegetation in North Africa. In the CCSMs mid-Holocene simulations, the albedo decreases more because wetter soils are simulated darker than drier soils than due to expanding vegetation. These results isolate albedo as the key ingredient in obtaining a positive precipitation-vegetation feedback in North Africa. Two additional simulations support this conclusion. In the first simulation, the deserts sandy soil textures are changed to loam to represent increased organic matter. Soil water retention and grass cover increase; albedo decreases somewhat. Precipitation responds with a small, yet widespread, increase. In the second simulation, a darker soil color is prescribed for this region. Now the monsoon advances north about 4°. These results illustrate a North African monsoon highly sensitive to changes in surface albedo and less sensitive to changes in evapotranspiration.  相似文献   

5.
The primary goal of this investigation is to focus on a realistic scenario for simulating impacts on regional African climate of future deforestation in a greenhouse-warmed world. Combined effects of plausible land-cover change and greenhouse warming are assessed by time-slice simulations with an atmospheric general circulation model (AGCM) for the middle of the twenty first century. Three time-slice integrations have been performed with the ARPEGE-Climat AGCM incorporating a zooming technique to achieve a resolution of about 100 km over Africa. A control run for the current climate is forced by observed climatological sea surface temperatures (SSTs) and the observed vegetation distribution is specified from a new vegetation database, in order to improve the geographical distribution and properties of the vegetation cover. Future SST changes are derived from a transient coupled atmosphere–ocean simulation for scenario B2 of the International Panel on Climate Change (IPCC). Future vegetation changes are specified from a simulation of scenario B2 with the Integrated Model to Assess the Global Environment (IMAGE) developed at the National Institute of Public Health and the Environment in the Netherlands (RIVM). The results show that land surface processes can locally modulate greenhouse warming effects for African climate, with reductions of surface transpiration and small increases of surface temperature. Deforestation of tropical Africa has overall only a marginal effect on precipitation because of a compensatory increase in moisture convergence. Energy budget analyses show that increases in surface temperature are produced both by increases of greenhouse gases (GHG) concentration from the increase in downward atmospheric longwave radiation, and by African tropical deforestation from the resulting reduction in transpiration. This study indicates that realistic land-use changes, though of smaller amplitude than greenhouse gas forcing, may have a small regional effect in projections of future climate.  相似文献   

6.
Moments, up to order six, of the velocity derivative have been measured in both the atmospheric surface layer and in turbulent jet flows in the laboratory. The exponent which characterises the behaviour of dissipation fluctuations was determined from the autocorrelation of these fluctuations and found to be constant (0.20), independent of Reynolds number. Using this value of , the lognormal model satisfactorily represents the experimental variation with Reynolds number of the measured moments. When moments of ordern are plotted against those of ordern + 1, the scatter in the data is reduced considerably and the adequacy of the lognormal model vis-à-vis other models is more convincingly established.  相似文献   

7.
Whether in classical networks such as meteorological networks of in more recent ones of atmospheric chemistry, a wealth of data is at hand. These data have been evaluated in a manner depending on the purpose of the network. However, much more information is hidden in these time series and waits for discovery. Only the imagination of scientists is needed. Four examples are given which lead to new information about the atmospheric aerosol and the behaviour of the atmosphere. These examples are: Atmospheric turbidity from sunshine recordings, Meteorological drainage area from the variance of observations, Location of point sources from air mass trajectories, and Total vertical ozone from turbidity measurements.  相似文献   

8.
The effect of changes in zonal and meridional atmospheric moisture transports on Atlantic overturning is investigated. Zonal transports are considered in terms of net moisture export from the Atlantic sector. Meridional transports are related to the vigour of the global hydrological cycle. The equilibrium thermohaline circulation (THC) simulated with an efficient climate model is strongly dependent on two key parameters that control these transports: an anomaly in the specified Atlantic–Pacific moisture flux (Fa) and atmospheric moisture diffusivity (Kq). In a large ensemble of spinup experiments, the values of Fa and Kq are varied by small increments across wide ranges, to identify sharp transitions of equilibrium THC strength in a 2-parameter space (between Conveyor On and Off states). Final states from this ensemble of simulations are then used as the initial states for further such ensembles. Large differences in THC strength between ensembles, for identical combinations of Fa and Kq, reveal the co-existence of two stable THC states (Conveyor On and Off)—i.e. a bistable regime. In further sensitivity experiments, the model is forced with small, temporary freshwater perturbations to the mid-latitude North Atlantic, to establish the minimum perturbation necessary for irreversible THC collapse in this bistable regime. A threshold is identified in terms of the forcing duration required. The model THC, in a Conveyor On state, irreversibly collapses to a Conveyor Off state under additional freshwater forcing of just 0.1 Sv applied for around 100 years. The irreversible collapse is primarily due to a positive feedback associated with suppressed convection and reduced surface heat loss in the sinking region. Increased atmosphere-to-ocean freshwater flux, under a collapsed Conveyor, plays a secondary role.  相似文献   

9.
Summary The study examines regional atmospheric model (RM) simulations of the mean June–September (JJAS) climate and the implications of the mean state for the model representation of African wave disturbances (AWD). Two simulations are made with a version of the RM that computes soil moisture with multivariate functions that statistically relate it to rainfall, surface temperature, albedo, vegetation and terrain slope. These simulations differ according to the assignment of ground temperatures (Tg). While the control experiment is based on the fully interactive computation of soil moisture, the second experiment tests the response to fixed Tg whose seasonal means are more realistic than in the control within a swath along the Gulf of Guinea coast. A third simulation is made with the RM coupled to a sophisticated land surface process model (RM2). Results show a rather acute sensitivity of the mean circulation to land surface processes. The more realistic meridional temperature gradient created by fixing Tg in turn increased the vertical wind shear over West Africa and eliminated unrealistic westerly circulation at 700mb. AWD composites were transformed from intense closed cyclonic circulations with copious rainfall to more realistic open waves that organized more moderate precipitation maxima. Lower vorticity variances in the specified change experiment imply that the open waves were characterized by more moderate vorticity extremes. Corresponding spectral amplitudes for 3–6 day periodicities of the 700mb meridional wind were 40–80% of control values within the swath of maximum AWD activity. From among the three simulations, RM2 achieved seasonal mean precipitation, temperature, energy flux and circulation distributions that, despite some unrealistic features, were closest to observational evidence. RM2 AWD were much less intense and favored slightly longer periods. Results demonstrate that discrepancies in modeled ground temperatures caused by underestimating the cloudiness that intercepts short wave solar flux along a narrow swath of the West African coast have far-reaching consequences for the simulation of both the mean summer climate and individual synoptic disturbances. The study implies that this cooling along the Gulf of Guinea coast prevents AWD from developing into more intense storms with heavier precipitation.  相似文献   

10.
A two-dimensional mesoscale soil-atmosphere model is used to simulate the triggering of atmospheric convection by horizontally varying soil water content. The variation is periodic with a wavelength between 4 and 40 km, which is considered a realistic scale for the variation of land surface characteristics. Three stages of convection can be clearly discerned: a short initial stage when convection sets in and where the size of the conective cells is determined by , a mature stage with well developed cells whose size is still determined by , and a decay/transformation stage, characterized by the formation of narrow regions of strong updrafts and wide regions of moderate downdrafts, independent of . Parameters relevant for the transition are given, and the importance of the feedback between soil and atmosphere is demonstrated. The dependence of convective parameters, e.g., height of the convective layer, vertical velocity and fluxes of heat and moisture on is investigated. The calculations of the mature stage are compared with the predictions of a linear model.  相似文献   

11.
Atmospheric response to soil-frost and snow in Alaska in March   总被引:2,自引:0,他引:2  
Summary A hydro-thermodynamic soil-vegetation model including soil freezing/thawing (soil-frost) and snow-metamorphism has been integrated into the PennState/NCAR Mesoscale Meteorological Model MM5 in a two-way coupled mode. A hierarchy of simulations with and without the soil-frost module, each combined with and without the snow module, shows the influence of snow-cover and soil-frost on weather in Alaska. Herein the landscape is featured as it is typically by mesoscale models.Theoretical considerations suggest that organic soil types should be considered in mesoscale modeling because of their different thermal and hydrological behavior as compared to mineral soils. The Ludwig-Soret and Dufour effects are small, but increase appreciably during freezing/thawing and snow-melt.The snow and soil-frost processes have a demonstrable impact on the surface thermal and hydrological regimes and on the near-surface atmospheric conditions even on the short (synoptic) timescales. The presence of snow-cover results in a highly stable stratification. In cloud-free areas, the enhanced loss of radiant energy and cooling of the air over snow-cover lead to a positive feedback to relatively colder, drier conditions. In cloudy areas, a positive feedback to warmer, moister conditions develops over snow-cover. As the changes in atmospheric humidity and temperature caused by snow-cover propagate into the pressure field, sea level pressure is lower by more than 1hPa in the simulations with snow-cover. Although the effect of soil-frost alone is an order of magnitude smaller, the soil-frost snow system leads to an increase of the pressure difference to 1.2hPa. The changes in the pressure field alter wind speed and direction slightly.Soil-frost results in soil temperature differences of 2–5K in the upper soil layers, while snow results in differences of 3–10K. Soil-frost has a notably greater impact in cloud-free than cloudy areas. When a snow-cover is present, frozen soil enhances the insulating effect of a snow-cover in cloudy areas, but reduces it in cloud-free areas. In cloudy areas, soil-frost without snow-cover leads to cooler, drier atmospheric conditions relative to no frost. In cloudy areas, soil-frost under a snow-cover reduces the water supply to the atmosphere as compared to snow-covered conditions without soil-frost. The combined effects of soil-frost and snow increase precipitation locally by as much as 12.2mm/ 48h. If mesoscale modeling does not consider the soil-frost snow system, predicted water vapor fluxes will be too high in cloud-free areas, and too low in cloudy areas.  相似文献   

12.
Soil texture can be heterogeneous; however for land surface-atmospheric modeling purposes, it is often considered homogeneous at a particular point and described by empirical equations which have been formulated to describe average hydraulic and thermodynamic processes in the soil. Large deviations in the variables and coefficients used in these empirical equations have been previously documented. One of the coefficients is varied by plus-and-minus one standard deviation about its mean, and tested in a coupled atmospheric-plant-soil model. Results of model simulations show that the effects on surface fluxes and boundary-layer development are larges for dry to moderate values of soil moisture, particularly for bare soil conditions.  相似文献   

13.
Parameterization of evaporation from a non-plant-covered surface is very important in the hierarchy strategy of modelling land surface processes. One of the representations frequently used in its computation is the resistance formulation. The performance of the evaporation schemes using the , , and their combination resistance approaches to parameterize evaporation from bare soil surfaces is discussed. For that purpose, the nine schemes, based on a different dependence of and on volumetric soil moisture content and its saturated value, are used.The tests of performances of the considered schemes are based on time integrations by the land surface module (BARESOIL) using observed data. The 23 data sets at a bare surface experimental site in Rimski anevi, Yugoslavia on chernozem soil, were used for the resistance algorithm evaluation. The quality of the schemes was compared with the observed values of the latent heat flux using several statistical parameters.  相似文献   

14.
Summary A combined GCM analogue model and GCM land surface representation is used to investigate the influences of climatology and land surface parameterisation on modelled Amazonian vegetation change. This modelling structure (called IMOGEN) captures the main features of the changes in surface climate as estimated by a GCM with enhanced atmospheric greenhouse gas concentrations. Advantage is taken of IMOGENs computational speed which allows multiple simulations to be carried out to assess the robustness of the GCM results.The timing of forest dieback is found to be sensitive to the initial pre-industrial climate, as well as uncertainties in the representation of land-atmosphere CO2 exchange. Changing from a Q 10 form for plant dark and maintanence respiration (as used in the coupled GCM runs) to a respiration proportional to maximum photosynthesis, reduces the biomass lost from Amazonia in the 21st century. Replacing the GCM control climate (which has about 25% too little rain in the annual mean over Amazonia) with an observed climatology increases the CO2 concentration at which rainfall drops to critical levels, and thereby further delays the dieback. On the other hand, calibration of the canopy photosynthesis model against Amazonian flux data tends to lead to earlier forest dieback. Further advances are required in both GCM rainfall simulation and land-surface process representation before a clearer picture will emerge on the timing of possible Amazonian forest dieback. However, it seems likely that these advances will overall lead to projections of later forest dieback as GCM control climates become more realistic.  相似文献   

15.
Influence of heterogeneous land surfaces on surface energy and mass fluxes   总被引:1,自引:0,他引:1  
Summary Land-surface heterogeneity affects surface energy fluxes. The magnitudes of selected land-surface influences are quantified by comparing observations with model simulations of the FIFE (First ISLSCP Field Experiment) domain. Several plausible heterogeneous and homogeneous initial and boundary conditions are examined, although soilmoisture variability is emphasized. It turns out that simple spatial averages of surface variation produced biased flux values. Simulated maximum latent-heat fluxes were approximately 30 to 40 W m–2 higher, and air temperatures 0.4 °C lower (at noon), when computations were initialized with spatially averaged soil-moisture and leaf-area-index fields. The planetary boundary layer (PBL) height and turbulent exchanges were lower as well. It additionally was observed that (largely due to the nonlinear relationship between initial soil-moisture availability and the evapotranspiration rate), real latent-heat flux can be substantially less than simulated latent-heat flux using models initialized with spatially averaged soil-moisture fields. Differences between real and simulated fluxes also vary with the resolution at which real soil-moisture heterogeneity is discretized.With 8 Figures  相似文献   

16.
Summary The performance of evaporation schemes with and approach and their combination within resistance representation of evaporation from bare soil surface is discussed. For this purpose nine schemes, based on different functions of or , on the ratio of the volumetric soil moisture content and its saturated value are used.The quality of the chosen schemes has been evaluated using the results of time integration by the coupled soil moisture and surface temperature prediction model, BARESOIL, using in situ data. A sensitivity analysis was made using two sets of data derived from the volumetric soil moisture content of the top soil layer. One with values below the wilting point (0.17 m3m–3) and the second with values above 0.20m3m–3. Data sets were obtained at the experimental site Rimski anevi, Yugoslavia, from the bare surface of a chernozem soil.With 4 Figures  相似文献   

17.
A two-scale mixing formulation for the atmospheric boundary layer   总被引:1,自引:1,他引:0  
This study compares different simple mixing schemes for one-dimensional models and then focuses on the two-scale mixing approach. Two-scale mixing consists of local diffusion between adjacent grid levels and nonlocal mixing over the bulk of the boundary layer (nonlocal mixing). The latter represents nonlocal mixing by the boundary-layer scale eddies. A common example of two-scale mixing is the formulation of the turbulent heat transport in terms of an eddy diffusivity to represent small-scale diffusion and a countergradient correction to represent boundary-layer scale transport. Most existing two-scale approaches are applied to heat and moisture transport while momentum transport is simultaneously parameterized only in terms of a local diffusivity without nonlocal mixing. This study attempts to correct this inconsistency.The resulting model is compared with Lidar observations of spatially averaged winds which are found to be superior to radiosonde and aircraft data for determining the mean structure. The two-scale mixing correctly predicts the observed well mixed conditions for momentum while the original model based on a local diffusivity for momentum fails to produce a well mixed state. Unfortunately, the best value for the adjustable coefficient in the nonlocal mixing part of the two-scale approach appears to depend on baroclinity in a way which can not be completely resolved from existing data.  相似文献   

18.
The sensitivity of the development of the convective planetary boundary layer (PBL) and the surface layer are examined using a coupled surface parameterization and detailed PBL model. First, the coupling is verified against observations from the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE). Results of the sensitivity experiments indicate that the PBL is most sensitive to the amount of soil water content, and the proximity of the soil water content to critical soil texture values (field capacity and wilting point). While vegetation cover is not the most sensitive parameter at the surface, its influence on the surface energy and hydrologic balance is crucial. Model sensitivity to minimum stomatal resistance, type of soil parameterization and canopy height (surface roughness and displacement depth) is also discussed.  相似文献   

19.
The aerodynamic classification of the resistance laws above solid surfaces is based on the use of a so-called Reynolds roughness number Re s =h s u */, whereh s is the effective roughness height, -viscosity,u *-friction velocity. The recent experimental studies reported by Toba and Ebuchi (1991), demonstrated that the observed variability of the sea roughness cannot be explained only on the basis of the classification of aerodynamic conditions of the sea surface proposed by Kitaigorodskii and Volkov (1965) and Kitaigorodskii (1968) even though the latter approach gains some support from recent experimental studies (see for example Geernaertet al. 1986). In this paper, an attempt is made to explain some of the recently observed features of the variability of surface roughness (Toba and Ebuchi, 1991; Donelanet al., 1993). The fluctuating regime of the sea surface roughness is also described. It is shown that the contribution from the dissipation subrange to the variability of the sea surface can be very important and by itself can explain Charnock's (1955) regime.  相似文献   

20.
The function ()=(1+|z/L|2/3)1/2,where z is the height, L the Obukhov length, and a constant,is proposed for the nondimensional wind speed and temperaturegradients (flux-profile relationships) in anunstable surface layer. This function agrees quite well withboth wind speed and temperature data,has the theoretically correct behaviour in convective conditions,and leads to simple results when integrated to produce the mean profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号