首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
大尺度电离层行扰的GPS观测   总被引:4,自引:0,他引:4       下载免费PDF全文
利用日本境内的高空间分辨率的双频GPS台站资料,观测研究了发生于2000年7月中旬太阳强活动期间的一次大尺度电离层行扰. 结果表明:在7月15日11:00UT-1:00UT期间观测区域的电离层中出现了大尺度电离层行扰. 在15:00UT之前,扰动周期为2h左右,在15:00UT以后,扰动周期为1h左右;总电子含量扰动幅度的变化范围约为1-2TECU;通过对15:00-17:00UT之间总电子含量扰动曲线同相位点的分析,发现这期间的电离层行扰的扰动速度约为600-700m/s,扰动波长在2200km左右,扰动传播的方向几乎沿着经线从高纬向低纬传播. 该行扰与此次强太阳活动有直接的关系,因其发生在7月15日的磁暴急始之前数小时,因此与磁暴本身没有因果关系,应与磁暴之前先期到达地球空间的高能质子流有关.  相似文献   

2.
The variation of the first Schumann resonance (SR) frequency spectra observed from the recorded data over Kolkata (22.56°N, 88.5°E) during a solar proton event (SPE) on July 14, 2000 has been presented. It shows increase in frequency during X-ray bursts and decrease during the period of occurrence of an SPE. The results from some other locations for the same event are also reported. The severe X-ray bursts recorded just before the proton event exhibit enhancement in frequency of the first mode due to enhancement of ionization in the D-region of the ionosphere. Some attempts are made to explain the observed variation during solar proton events in terms of the perturbations within the Earth–ionosphere waveguide on the basis of two-layer-model.  相似文献   

3.
A study of the geomagnetic storm of July 13–14, 1982, and its ionospheric response is presented using the low-latitude magnetic index, Dst, and interpreted using solar wind interplanetary data: proton number density, solar wind flow speed, interplanetary magnetic field southward component B Z , and solar wind dynamic pressure. The F2 region structure response to the geomagnetic storm was studied using foF2 data obtained during the storm from a network of various ionosonde stations. Our results appear to show simultaneous abrupt depletion of foF2 that occurred at all latitudes in both the East Asian and African/European longitudinal zone during the period: 18:00–19:00 UT on July 13 and is as result of an abrupt increase in the dynamic pressure between 16:00 and 17:00 UT. The dynamic pressure increased from 3.21 to 28.07 nPa within an hour. The aforementioned abrupt depletion of foF2 simultaneously resulted in an intense negative storm with peak depletion of foF2 at about 19:00 at all the stations in the East Asian longitudinal zone. In the African/European longitudinal zone, this simultaneous abrupt depletion of foF2 resulted in intense negative storm that occurred simultaneously at the low latitude stations with peak depletion at about 20:00 UT on July 13, while the resulting negative storm at the mid latitude stations recorded peak depletion of foF2 simultaneously at about 2:00 UT on July 14. The present results indicate that most of the stations in the three longitudinal zones showed some level of simultaneity in the depletion of foF2 between 18:00 UT on July 13 and 2:00 UT on July 14. The depletion of foF2 during the main phase of the storm was especially strongly dependent on the solar wind dynamic pressure.  相似文献   

4.
文中选了5 个典型活动区, 分析了这些活动区的磁场, 与活动区相应的CMEs, 太阳爆发事件和太阳质子事件我们发现, 对于E ≥10meV 的太阳质子事件有相应的源活动区, 源耀斑和CME; 活动区矢量磁场有剪切, 磁场剪切越强质子事件越强; 多数在质子耀斑发生前出现磁流浮现; 太阳10cm 射电爆发持续时间长文中结果还佐证了Shealy 等的结果: X 射线耀斑的长持续时间与CME 的发生正相关另外,在5 个活动区中, 有三个大耀斑发生前没有明显的磁剪切作为它们的先兆, 它们是非质子源耀斑这是Moore, Hagyard 和Davis 的磁场强剪切是耀斑产生的必要条件的反例  相似文献   

5.
The relations between sunspot numbers and earthquakes (M≧6), solar 10.7 cm radio flux and earthquakes, solar proton events and earthquakes have been analyzed in this paper. It has been found that: (1) Earthquakes occur frequently around the minimum years of solar activity. Generally, the earthquake activities are relatively less during the peak value years of solar activity, some say, around the period when magnetic polarity in the solar polar regions is reversed. (2) the earthquake frequency in the minimum period of solar activity is closely related to the maximum annual means of sunspot numbers, the maximum annual means of solar 10.7 cm radio flux and solar proton events of a whole solar cycle, and the relation between earthquake and solar proton events is closer than others. (3) As judged by above interrelationship, the period from 1995 to 1997 will be the years while earthquake activities are frequent. In the paper, the simple physical discussion has been carried out. These results supported the exploration and studies of some researchers to a certain extent. This work is supported by Foundation of the Chinese Academy of Sciences (major item).  相似文献   

6.
分析了1988~2006年中62个典型的太阳质子事件,发现其归一化后峰值流量变化具有很好的统计规律,根据该规律提出了一种对太阳质子事件峰值流量进行预报的方法.试验预报结果表明,太阳质子事件峰值流量的预报值和实测值都在同一个量级以内,平均相对误差为32%,预报误差在可接受范围内.本文方法对于日常预报业务而言是实用和可行的.  相似文献   

7.
A Polish-made vertical ionosonde (VI) has been operated at the Kandilli Observatory in Istanbul, for almost one year (May 1993 - April 1994) as part of the COST 238, PRIME Project, The critical frequencies were obtained for every half-hour interval. The data obtained during this campaign, on the descending branch of solar cycle 22, and the data measured earlier in Istanbul for cycle 20 were analysed and the characteristic behaviour of the F2 region ionosphere over Istanbul has been determined. This is a unique data set for this area. Several markers of the solar cycle activities in terms of the daily relative sunspot numbers, F10.7 cm solar radio flux and solar flare index, and the magnetic daily index of Ap were then used to seek the possible influence of the solar and ionospheric activities on the critical frequencies observed in Istanbul. It was found that the solar flare index, as a solar activity index, was more reliable in determining quiet ionospheric days. It is shown that the minimum and maximum time values of the solar activity are more convenient for ionospheric prediction and modelling.  相似文献   

8.
A new rocket range, SvalRak, was opened in November 1997 at Ny-Ålesund (79°N) in the Svalbard archipelago. The first instrumented rocket was launched on 20 November, 1997, at 1730 UT during geomagnetically quiet conditions. The payload was instrumented to measure plasma parameters in the mesosphere and lower thermosphere, but the payload only reached an altitude of 71 km. This resulted in a very flat trajectory through the lower D-region. The positive ion concentrations were larger than expected, and some unexpected plasma irregularities were observed below 71 km. The irregularities were typically 100 m in spatial extent, with plasma densities a factor of two to five above the ambient background. In the dark polar night the plasma below 71 km must consist mainly of positive and negative ions and the only conceivable ionising radiation is a flux of energetic particles. Furthermore only relativistic electrons have the large energies and the small gyro radii required in order to explain the observed spatial structure. The source of these electrons is uncertain.  相似文献   

9.
日冕物质抛射(CME)的规模和对地有效性是地磁暴预报中重点关注的特征.本项研究的目的是通过对行星际高能质子通量和能谱的特征与演化规律的分析,得到CME对粒子的加速能力,评估CME可能对地磁场造成的影响.在工作中,统计分析了ACE/EPAM的1998-2010年的质子数据,对质子能谱进行了拟合,得到了能谱指数,并对能谱指数及其变化特征所对应的CME和地磁暴进行了相关统计.通过研究发现:(1)能谱指数随着太阳活动水平而变化,高年最大,达到-2.6,而且涨落幅度也达到±0.4,而在太阳活动低年则稳定在-3.0左右;(2)CME对粒子的加速对应着能谱指数的升高,幅度达到20%时,CME引起地磁暴的可能性较大;(3)冕洞高速流到达地球时,高能质子通量也会升高,但能谱指数同时会有下降;(4)以2004年全年的能谱指数为例,对能谱指数在地磁暴预报中的应用进行了评估,结论认为,能谱指数的升高是CME引发地磁暴的必要条件,可以作为地磁暴预报的参数使用.  相似文献   

10.
A statistical analysis of F-region and topside auroral ion upflow events is presented. The study is based on observations from EISCAT Common Programmes (CP) 1 and 2 made between 1984 and 1996, and Common Programme 7 observations taken between 1990 and 1995. The occurrence frequency of ion upflow events (IUEs) is examined over the altitude range 200 to 500 km, using field-aligned observations from CP-1 and CP-2. The study is extended in altitude with vertical measurements from CP-7. Ion upflow events were identified by consideration of both velocity and flux, with threshold values of 100 m s–1 and 1013 m–2 s–1, respectively. The frequency of occurrence of IUEs is seen to increase with increasing altitude. Further analysis of the field-aligned observations reveals that the number and nature of ion upflow events vary diurnally and with season and solar activity. In particular, the diurnal distribution of upflows is strongly dependent on solar cycle. Furthermore, events identified by the velocity selection criterion dominate at solar minimum, whilst events identified by the upward field-aligned flux criterion dominated at solar maximum. The study also provides a quantitative estimate of the proportion of upflows that are associated with enhanced plasma temperature. Between 50 and 60% of upflows are simultaneous with enhanced ion temperature, and approximately 80% of events are associated with either increased F-region ion or electron temperatures.  相似文献   

11.
12.
2001年4月2日, 太阳爆发了一个近年来X射线通量最大的一次耀斑并伴有质子事件, 利用“资源一号”卫星星内粒子探测器和神舟二号飞船X射线探测器的观测资料, 对这一事件的高能粒子响应进行了特例研究. “资源一号”卫星运行于太阳同步轨道, 高度约800km, 和宁静时期的统计结果对比, 这次耀斑后, 星内粒子探测器在地球极盖区(地球开磁场区)观测到耀斑粒子的出现, 这是宁静时期没有的; 神舟二号飞船轨道高度400km, 倾角为42°, X射线探测器在42°中高纬地区也观测到高能电子通量比宁静时明显的增加, 这表明, 太阳耀斑引起的近地空间辐射环境的变化遍及纬度约40°以上的区域, 甚至在40°N附近400 km左右的高度上仍然有响应. 但是, 中高纬度、极光带和极盖区的粒子来源, 加速机制和响应方式却不一定相同, 需要分别讨论. 资料分析和对比还表明, 质子事件的强度并不一定和耀斑的X射线通量成正比, 因此, 近地空间高能粒子对耀斑的响应也不是完全决定于X射线强度.  相似文献   

13.
Schumann resonances (SR) are the electromagnetic oscillations of the spherical cavity bounded by the electrically conductive Earth and the conductive but dissipative lower ionosphere (Schumann in Z Naturforsch A 7:6627–6628, 1952). Energetic emissions from the Sun can exert a varied influence on the various parameters of the Earth’s SR: modal frequencies, amplitudes and dissipation parameters. The SR response at multiple receiving stations is considered for two extraordinary solar events from Solar Cycle 23: the Bastille Day event (July 14, 2000) and the Halloween event (October/November 2003). Distinct differences are noted in the ionospheric depths of penetration for X-radiation and solar protons with correspondingly distinct signs of the frequency response. The preferential impact of the protons in the magnetically unshielded polar regions leads to a marked anisotropic frequency response in the two magnetic field components. The general immunity of SR amplitudes to these extreme external perturbations serves to remind us that the amplitude parameter is largely controlled by lightning activity within the Earth–ionosphere cavity.  相似文献   

14.
At dip equatorial stations in the Indian zone, spread-F conditions are known to develop preferentially around midnight during the June solstice (northern summer) months of low solar activity, in association with a distinct increase in F layer height. It is currently held that this onset of spread-F far away from the sunset terminator is due to the generalised Rayleigh-Taylor instability mechanism, with the gravitational and cross-field instability factors (and hence F layer height) playing important roles. We have studied the quarter-hourly ionograms of Kodaikanal (10.2°N; 77.5°E; dip 4°N) for the northern summer months (May-August) of 1994 and 1995 to ascertain the ambient ionospheric conditions against which the post-midnight onset of spread-F takes place. A data sample of 38 nights with midnight onset of spread-F and 34 nights without spread-F is used for the purpose. It is found that a conspicious increase in F layer height beginning around 2100 LT occurs on nights with spread-F as well as without spread-F. This feature is seen in the nocturnal pattern of F layer height on many individual nights as well as of average F layer height for the two categories of nights. The result strongly suggests that the F layer height does not play a pivotal role in the midnight onset of spread-F during the June solstice of solar minimum. The implications of this finding are discussed.  相似文献   

15.
We present the results of a Schumann resonance monitoring campaign held at Lehta observatory, Karelia, Russia during July–August, 1998. Three electromagnetic (EM) field components were recorded simultaneously: the vertical electric and two orthogonal magnetic fields. This paper demonstrates advantages of the Poynting vector (PV) technique when studying the space–time dynamics of the worldwide thunderstorm activity from a single observatory. Analysis of the diurnal PV patterns revealed a night-time peak in African thunderstorm activity. This maximum occurs around 02:00–03:00 UT and reaches 1/3 of regular afternoon level. The Schumann resonance structure was discovered in the spectra of the wave arrival angles.  相似文献   

16.
本文基于2002年至2010年的GRACE卫星的观测密度统计分析南北极点的热层大气密度的世界时(即磁地方时)变化.研究发现:在9—11月份地球处于行星际磁场为背向太阳的扇区内(背向扇区)时,南极点热层密度在约17∶00 UT(13∶30 MLT)达到最大值,比日平均值高约22%;而在6—8月份,当地球处于行星际磁场为面向太阳的扇区内(面向扇区)时,北极点热层密度在06∶00 UT(12∶30 MLT)达到最大值,比日平均值高约13%.南极点的磁纬是-74°,其在15∶30 UT处于磁地方时正午,恰与极尖区位置重合.北极点在5∶30 UT处于磁地方时正午,此时北极点与极尖区位置最靠近.因此,极点热层大气密度的磁地方时变化可能是其周期性靠近极尖区的结果.南北极点热层密度的磁地方时变化分别在背向和面向扇区内更明显,这可能与行星际磁场By分量对南北半球密度的不同影响有关.统计结果还表明,极点热层大气密度的磁地方时变化在冬季半球内不明显.这可能是由于在冬季半球,沉降于极尖区的粒子相比夏季半球少、沉降高度低,因而能量沉降所引起的热层上部的密度增强较小.  相似文献   

17.
The occurrence frequency of SAR arcs during 1997–2006 has been analyzed based on the photometric observations at the Yakutsk meridian (Maimaga station, corrected geomagnetic coordinates: 57° N, 200° E). SAR arcs appeared in 114 cases (~500 h) during ~370 nights of observations (~3170 h). The occurrence frequency of SAR arcs increases to 27% during the growth phase of solar activity and has a clearly defined maximum ~36% at a decline of cycle 23. The SAR arc registration frequency corresponds to the variations in geomagnetic activity in this solar cycle. The dates, UT, and geomagnetic latitudes of photometric observations are presented for 1997–2006.  相似文献   

18.
通过功率谱分析和波阻抗函数计算,本文证实了Aureol 3卫星在电离层高度上(>600km)观测到的极低频(ELF)波场扰动是和舒曼共振相关的电磁振荡.与舒曼共振地面观测相比较,Aureol 3观测到的舒曼共振电场分量具有很好的谐振谱结构,峰值频率和各阶舒曼共振本征频率对应;磁场分量的高阶峰值频率偏离14, 20, 26Hz等舒曼共振本征频率;随着卫星高度的改变,电场与磁场谐振的一阶最大能量峰值并不会发生在同一频率,结合本文分析的数据,分别位于78Hz和10Hz;水平方向的磁场分量更接近南北方向的线极化而不是地球-电离层空腔中的椭圆极化;波阻抗随频率表现出不太规则的准正弦振荡,它会随着频率增加和飞行高度上升呈现减小的趋势.虽然舒曼共振信号和电离层密度梯度间的非线性作用可以解释舒曼共振空间观测的部分特征,但需加入其他机制,如电离层不稳定性,传播模式的耦合,进一步了解电离层高度上舒曼共振各种特征产生的原因.  相似文献   

19.
Specific type of energetic electron precipitation accompanied by a sharp increase in trapped energetic electron flux are found in the data obtained from low-altitude NOAA satellites. These strongly localized variations of the trapped and precipitated energetic electron flux have been observed in the evening sector near the plasmapause during recovery phase of magnetic storms. Statistical characteristics of these structures as well as the results of comparison with proton precipitation are described. We demonstrate the spatial coincidence of localized electron precipitation with cold plasma gradient and whistler wave intensification measured on board the DE-1 and Aureol-3 satellites. A simultaneous localized sharp increase in both trapped and precipitating electron flux could be a result of significant pitch-angle isotropization of drifting electrons due to their interaction via cyclotron instability with the region of sharp increase in background plasma density.  相似文献   

20.
We examine the geomagnetic field and space plasma disturbances developing simultaneously in the solar wind, in the inner and outer magnetosphere, and on the ground from 0730 to 2030 UT on April 11, 1997 during the recovery phase of a moderate magnetic storm. The fluctuations of the solar wind density, H-component of the geomagnetic field, and power of Pc1–2 (0.1–5 Hz) waves at middle and low latitudes evolve nearly simultaneously. These fluctuations also match very well with variations of density and flux of the magnetospheric plasma at the geosynchronous orbit, and of the geomagnetic field at the geosynchronous orbit and northern polar cap. The time delay between the occurrence of disturbances in different magnetosphere regions matches the time of fast mode propagation. These disturbances are accompanied by the generation of Pc1–2 waves at mid- and high-latitude observatories in nearly the same frequency range. A scenario of the evolution of wave phenomena in different magnetospheric domains is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号