首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
通过横穿青藏高原近 80 0 0km长的 4条天然地震层析剖面 ,获得 4 0 0km深度以上的地壳和地幔速度图像及地震波各向异性 ,揭示了青藏高原 4 0 0km深度范围内的地壳和地幔结构特征。地幔速度图像显示 ,青藏高原腹地的深地幔中存在以大型低速异常体为特征的地幔羽 ,其可能通过热通道与大面积分布的可可西里新生代高钾碱性火山作用有成因联系 ;阿尔金、康西瓦、金沙江、嘉黎及雅鲁藏布江等走滑断裂可下延至 30 0~ 4 0 0km深度 ,显示了低速高热物质组成的垂向低速异常带特征及大型超岩石圈或地幔剪切带的产出 ;发现康西瓦、东昆仑—金沙江、班公湖—怒江和雅鲁藏布缝合带下部存在不连续的高速异常带 ,可以解释为青藏高原地体拼合及碰撞过程中可能保留的加里东、古特提斯和中特提斯大洋岩石圈“化石”残片 ,是“拆沉”的地球物理证据。印度大陆岩石圈的巨厚俯冲板片以 15~ 2 0°倾角向北插入唐古拉山下 30 0km深处 ,并被高热物质组成的地幔剪切带分开。结合新的横穿喜马拉雅及青藏高原的地幔层析资料 ,提出青藏高原碰撞动力学新模式 :青藏高原南部印度岩石圈板片的翻卷式陆内超深俯冲 ,北缘克拉通向南的陆内俯冲 ,腹地深部的地幔羽上涌 ,以及地幔范围内的高原“右旋隆升”及物质向东及北东方向运动及挤出。  相似文献   

2.
大兴安岭东南部油气资源勘查区重磁异常初步解释   总被引:2,自引:0,他引:2  
区域重磁异常的初步解释表明,西拉木伦河以北的松辽盆地外围地区存在诸多中、新生代盆地,发育3条NW向深大断裂和近NEE向的弧形构造.1∶20万重力异常显示,本区中、新生代盆地边界具有较明显的梯度异常特征,1∶5万航磁异常可较为清晰地勾画中新生代火成岩的分布.重、磁、电剖面联合反演揭示,中生代地层厚度1~4km,古生界规模宏大,厚度可达4~6km,是本区寻找油气的重要层位;古生界含油气盆地基底为志留系及更老地层;大兴安岭NE向展布的花岗岩具有蘑菇状侵入特征.通过重、磁异常联合反演,消除火成岩影响,得出突泉和扎鲁特地区的中生代基底深度1.5~4km,古生代的基底深度为2~6km.  相似文献   

3.
花海盆地—北山构造带南部位于青藏高原东北缘以北地区,是特提斯洋和古亚洲洋两大构造域的交接部位,自新元古代晚期以来经历了多期次、多阶段的板块裂解-俯冲-碰撞-拼合的演化历史,尤其是中生代以来的逆冲推覆和走滑作用,以及受新生代以来印度板块和欧亚板块碰撞的远程效应影响,导致青藏高原东北缘的向北扩展,形成了现今复杂的地质地貌结构。其地壳结构记录了多期构造作用的叠加,上地壳结构更是促进我们理解青藏高原东北缘向外的扩展机制及其对周缘块体的改造作用的天然记录本。本文利用2018年中国地质科学院在北山构造带南部完成的180 km深反射地震剖面的初至波(Pg震相)数据,通过层析成像反演方法,获得了花海盆地—北山构造带4 km深度范围内的上地壳P波速度结构。其主要特征为:花海盆地、总口子盆地和扎格高脑盆地均表现为较低的速度和较小的垂向速度梯度;研究区内的晚古生代花岗岩体具有明显的高速异常和较大的垂向速度梯度特征;左行走滑的阿尔金断裂带在花海盆地内表现为向北倾的高角度走滑性质,深度至少切穿花海盆地基底;北山南缘断裂带的推测隐伏区呈现速度等值线下凹的低速异常特征。同时,反演揭示的多处低速异常区指示了北山构造带南部的多处断层发育情况。  相似文献   

4.
松潘-阿坝地区深部电性特征   总被引:3,自引:0,他引:3  
陈高  吴健生  于鹏 《地球科学》2006,31(6):857-860,878
针对青藏高原东部特殊的“三角形”区域——松潘-阿坝地区,通过两条测线的MT资料分析和反演,对其深部电性特征进行了揭示,发现松潘-阿坝区中深层构造较为稳定,层状特点明显,地下电性横向变化小,具有稳定地块的特点.这里存在壳内低阻层,厚度近10~20km;深部(岩石圈地幔内部)的电性结构也有两种类型:高阻异常区和具有幔内低阻层的次高阻异常区,全区岩石圈厚度在120km左右,其四周由深断裂与邻区接触.该区深部电性特征不同于龙门山隆起的电性结构,也不同于西秦岭构造带,后者具有高阻基底,岩石圈厚度或更薄或加厚.  相似文献   

5.
本文根据INDEPTH-Ⅳ剖面所做的地质、地球物理探测所取得的资料,进行综合研究,提出了一个新的昆仑山造山模式,论述了:(1)在早二叠世松潘—甘孜洋向昆仑—柴达木地块下俯冲使地块南缘形成陆缘弧和弧后拉张区,使昆仑—柴达木地块在持续碰撞挤压过程中,分别形成了造山带与古近—新近纪盆地的不同构造演化特征;(2)昆仑地段老结晶基底在地块对挤中不断向上抬升成山,同时又受到强烈剥蚀,使老结晶基底及深成岩呈现在地表;南昆仑地块则沿昆仑地块中央断裂向北逆冲到北昆仑地块之上,断裂深10 km;昆仑地块没有发生向北逆冲推覆到柴达木地块上;(3)昆仑地块地壳增厚主要发生在中地壳(6.2~6.6 km/s),是中基性岩石层的增厚;(4)柴达木盆地作为昆仑弧弧后拉张地带,随昆仑造山隆升而下沉,新生界陆相沉积达12~14 km厚,由"沉积"与"挤入"两个作用造成了地壳增厚;结晶基底发生断陷形成新裂谷,裂谷宽度约12 km,深度约4 km,导电带显示裂谷通过断裂与深部发生热流体联系;(5)再次确定了,柴达木盆地莫霍界面深52 km,昆仑山的莫霍界面深65~70 km,莫霍界面台阶位于格尔木附近(185 km距离处);(6)松潘—甘孜地体复理石层厚度为10~14 km,其下面的6.2~6.3 km/s均匀速度层(同时有高导电性显示)是本地块所特有,推测为残留洋壳的堆积,约15 km厚;浅层通过古近—新近系风火山推覆系增厚,另在中地壳部位挤入了15 km厚岩层;(7)否定了亚洲岩石圈地幔向柴达木地块地幔岩石圈之下俯冲的模式,提出印度大陆地幔岩石圈从高喜马拉雅下拆离成两层,并沿高原地壳底部向北伸展,直到中祁连山之下,成为高原南北对挤过程中岩石圈地幔长度调节的新方式。  相似文献   

6.
昆仑山深部结构与造山机制   总被引:1,自引:0,他引:1       下载免费PDF全文
本文根据INDEPTH-Ⅳ剖面所做的地质?地球物理探测所取得的资料,进行综合研究,提出了一个新的昆仑山造山模式,论述了:(1)在早二叠世松潘—甘孜洋向昆仑—柴达木地块下俯冲使地块南缘形成陆缘弧和弧后拉张区,使昆仑—柴达木地块在持续碰撞挤压过程中,分别形成了造山带与古近—新近纪盆地的不同构造演化特征;(2)昆仑地段老结晶基底在地块对挤中不断向上抬升成山,同时又受到强烈剥蚀,使老结晶基底及深成岩呈现在地表;南昆仑地块则沿昆仑地块中央断裂向北逆冲到北昆仑地块之上,断裂深10 km;昆仑地块没有发生向北逆冲推覆到柴达木地块上;(3)昆仑地块地壳增厚主要发生在中地壳(6.2~6.6 km/s),是中基性岩石层的增厚;(4)柴达木盆地作为昆仑弧弧后拉张地带,随昆仑造山隆升而下沉,新生界陆相沉积达12~14 km厚,由“沉积”与“挤入”两个作用造成了地壳增厚;结晶基底发生断陷形成新裂谷,裂谷宽度约12 km,深度约4 km,导电带显示裂谷通过断裂与深部发生热流体联系;(5)再次确定了,柴达木盆地莫霍界面深52 km,昆仑山的莫霍界面深65~70 km,莫霍界面台阶位于格尔木附近(185 km距离处);(6)松潘—甘孜地体复理石层厚度为10~14 km,其下面的6.2~6.3 km/s 均匀速度层(同时有高导电性显示)是本地块所特有,推测为残留洋壳的堆积,约15 km厚;浅层通过古近—新近系风火山推覆系增厚,另在中地壳部位挤入了15 km厚岩层;(7)否定了亚洲岩石圈地幔向柴达木地块地幔岩石圈之下俯冲的模式,提出印度大陆地幔岩石圈从高喜马拉雅下拆离成两层,并沿高原地壳底部向北伸展,直到中祁连山之下,成为高原南北对挤过程中岩石圈地幔长度调节的新方式?  相似文献   

7.
南卡罗利纳(Carolina)西北部的阿巴拉契亚超深岩心钻孔(ADCOH)区域的热流值约为55mW/m^2。这个数据补充了阿巴拉契亚山麓带和大西洋海岸平原东部的其他数据,那里的热流值大于55mW/m^2,是后期和晚期同变质花岗岩类的特征值。阿巴拉契亚山麓带的热流在一个大致平行于阿巴拉契亚山脉主要构造方向的带内,和花岗岩、变质花岗岩及板岩带的生热率显示出线性关系。在8km深度上(相当于热流一生热率直线的斜率)的构造霍顶可以解释这种线性关系。根据由这个经验关系得到的剩余热流和由最近的ADCOH地区的地震数据确定的生热地壳的厚度,ADCOH地区的热流和生热率与阿巴拉契亚山麓内带的结晶外来体大约5.5km的基底深度是相对应的。ADCOH地点的地震数据证实,阿巴拉契山麓内带在5.5km深度上由于兰岭(Blue Ridge)主体滑脱产生了构造截顶。ADCOH地区10km深处的温度预测将低于200℃。  相似文献   

8.
薛光琦  钱辉  姜枚 《地质论评》2005,51(6):708-712
塔里木岩石圈和青藏高原岩石圈汇聚于空喀山断裂一带,推测塔里木岩石圈在向南俯冲,而青藏高原岩石圈也在持续地向北推进;位于空喀山断裂带北侧的甜水海地体下方存在一深达200km的s波低速异常,描绘了由于多期的造山运动使得昆仑地体的深度发生了巨大的形变,形成软流层和地幔物质的通道,产生了局部范围的熔融;在塔里木盆地南缘的叶城下方,存在一条明显的深达上地幔的低速带。这条连接表层与深部的低速带被推测为塔里木南缘的隐伏深断裂。另外,地幔中尖晶石型向方镁石型结构转变的过渡层有可能出现在670~700km深度间。  相似文献   

9.
青藏高原及周边地区下地壳普遍发育电性高导层、波速低速层和热流密度值异常区.下地壳电性结构和速度结构明显具有纵向分层和横向分块的特点,其热流密度值具有明显的南北条带性和东西分块性.下地壳高导层、低速层和热流密度值异常区与青藏高原及周边地区各构造单元有一定的匹配性,异常区的形成与青藏高原和周边盆地耦合过程中下地壳岩石的热软化以及韧性流动有关.下地壳层流是下地壳岩石热软化和韧性流动的结果,青藏高原的隆升是层流作用的表现,目前层流作用的动力来源于恒河盆地下地壳,层流方向由恒河盆地流入青藏高原.  相似文献   

10.
构造作用是影响地球深部内热向地表传输和热能再分配过程的关键因素之一。青藏高原东北缘共和盆地发现高温地热资源,其热源成因机制一直是研究焦点。为理解构造作用对地热资源分布的控制过程,本文选取共和盆地高温地热异常区,分析边界断裂构造性质、活动期次、演化历程,结合钻井、大地电磁和背景噪声成像地球物理异常特征,提出新生代构造演化和地热异常形成的耦合关系。认为:1)青藏高原东北缘共和盆地及周缘变形区形成于昆仑断裂和海源断裂大型活动左旋走滑作用的滑动消减带;2)共和盆地新生代以来经历中新世(12–6 Ma)旋转泛湖盆凹陷、上新世—第四纪(6–3 Ma)盆内张扭变形两期主要演化阶段;3)共和盆地上地壳发育的与高温相关的地球物理低速-高导异常层(Vs<3.2km/s,R<10Ω·m)是主导热源;4)上新世持续左旋走滑变形导致的岩石圈隆起变形是深部热能向浅层传输的主要动力学机制,浅部热能聚集成热过程至少延续到了3Ma;5)预测青藏高原东北缘与共和盆地具有类似构造演化性质的次生盆地具有高温地热资源发育的条件。  相似文献   

11.
《China Geology》2018,1(3):331-345
The Gonghe Basin, a Cenozoic down-warped basin, is located in the northeastern part of the Qinghai-Xizang (Tibetan) Plateau, and spread over important nodes of the transfer of multiple blocks in the central orogenic belt in the NWW direction. It is also called “Qin Kun Fork” and “Gonghe Gap”. The basin has a high heat flow value and obvious thermal anomaly. The geothermal resources are mainly hot dry rock and underground hot water. In recent years, the mechanism of geothermal formation within the basin has been controversial. On the basis of understanding the knowledge of predecessors, this paper proposes the geothermal formation mechanism of the “heat source–heat transfer–heat reservoir and caprock–thermal system” of the Gonghe Basin from the perspective of a geological background through data integration-integrated research-expert, discussion-graph, compilation-field verification and other processes: (1) Heat source: geophysical exploration and radioisotope calculations show that the heat source of heat in the basin has both the contribution of mantle and the participation of the earth’s crust, but mainly the contribution of the deep mantle. (2) Heat transfer: The petrological properties of the basin and the exposed structure position of the surface hot springs show that one transfer mode is the material of the mantle source upwells and invades from the bottom, directly injecting heat; the other is that the deep fault conducts the deep heat of the basin to the middle and lower parts of the earth’s crust, then the secondary fracture transfers the heat to the shallow part. (3) Heat reservoir and caprock: First, the convective strip-shaped heat reservoir exposed by the hot springs on the peripheral fault zone of the basin; second, the underlying hot dry rock layered heat reservoir and the upper new generation heat reservoir and caprock in the basin revealed by drilling data. (4) Thermal system: Based on the characteristics of the “heat source-heat transfer-heat reservoir and caprock”, it is preliminarily believed that the Gonghe Basin belongs to the non-magmatic heat source hydrothermal geothermal system (type II21) and the dry heat geothermal system (type II22). Its favorable structural position and special geological evolutionary history have given birth to a unique environment for the formation of the geothermal system. There may be a cumulative effect of heat accumulation in the eastern part of the basin, which is expected to become a favorable exploration area for hot dry rocks.  相似文献   

12.
青海共和盆地干热岩赋存地质特征及开发潜力   总被引:3,自引:1,他引:3  
青海共和盆地贮藏有丰富的干热岩地热资源。为提升共和盆地干热岩地热资源成因的理论认识,进一步推动干热岩资源的勘探,文章从共和盆地干热岩热源机制、盖层条件、储层特征等方面对共和盆地干热岩资源成因件进行了全面分析。首先,结合区域地质构造分析、地热地质调查、地球物理(航磁、地震)解译等手段,在共和盆地恰卜恰岩体内实施了4口深度为2927~3705 m的干热岩勘查孔,并在3705 m处钻获236℃的优质干热岩资源,为中国非现代火山区干热岩地热资源勘探的首个重大突破。其次,系统测试了钻孔不同深度花岗岩放射性,结果表明,共和盆地花岗岩体铀、钍、钾放射性含量略高于大地背景值,放射性生热率较低,对干热岩热源的贡献小,其热源可能来自壳内熔融体。第三,基于地质资料分析和航磁解译,圈定了共和盆地总体面积约1.4×104 km2的潜在干热岩分布区。最后,采用体积法评估了共和盆地干热岩资源潜力,结果表明,共和盆地3.0~6.0 km深度范围保守的、静态干热岩资源总量为8974.74×1018 J,换算标准煤可达3066.19×108 t,具有广阔的开发利用前景。   相似文献   

13.
Hot dry rock (HDR) is an important geothermal resource and clean energy source that may play an increasingly important role in future energy management. High-temperature HDR resources were recently detected in deep regions of the Gonghe Basin on the northeastern edge of the Tibetan Plateau, which led to a significant breakthrough in HDR resource exploration in China. This research analyzes the deep temperature distribution, radiogenic heat production, heat flow, and crustal thermal structure in the Qiaboqia Valley, Guide Plain, and Zhacanggou area of the Gonghe Basin based on geothermal exploration borehole logging data, rock thermophysical properties, and regional geophysical exploration data. The results are applied to discuss the heat accumulation mechanism of the HDR resources in the Gonghe Basin. The findings suggest that a low-velocity layer in the thickened crust of the Tibetan Plateau provides the most important source of constant intracrustal heat for the formation of HDR resources in the Gonghe Basin, whereas crustal thickening redistributes the concentrated layer of radioactive elements, which compensates for the relatively low heat production of the basal granite and serves as an important supplement to the heat of the HDR resources. The negative effect is that the downward curvature of the lithospheric upper mantle caused by crustal thickening leads to a small mantle heat flow component. As a result, the heat flows in the Qiaboqia Valley and Guide Plain of the Gonghe Basin are 106.2 and 77.6 mW/m2, respectively, in which the crust-mantle heat flow ratio of the former is 3.12:1, indicating a notably anomalous intracrustal thermal structure. In contrast, the crust-mantle heat flow ratio in the Guide Plain is 1.84:1, which reflects a typical hot crust-cold mantle thermal structure. The Guide Plain and Zhacanggou area show the same increasing temperature trend with depth, which reflects that their geothermal backgrounds and deep high-temperature environments are similar. These results provide important insight on the heat source mechanism of HDR resource formation in the Tibetan Plateau and useful guidance for future HDR resource exploration projects and target sites selection in similar areas.  相似文献   

14.
共和盆地处于西秦岭、南祁连、东昆仑造山带结合部,其中发现了高温干热岩及多套烃源岩,但地热藏和油气藏的成因、资源潜力与分布规律尚不清楚,难以对其开展准确评价和有效勘探开发。本文在系统研究共和盆地及周缘地层发育、沉积充填、构造变形与盆地深部结构的基础上,深入探讨了盆地演化的动力学机制,分析了盆地地热藏和油气藏的成藏主控因素,预测了有利分布区带和勘探方向。多期活动的哇洪山—温泉、多禾茂、瓦里贡、塘格木右行走滑逆冲断裂与青海南山左行走滑逆冲断裂异向、同向相交(切),叠加地幔上涌作用,导致在中新生代共和盆地长期处于走滑-伸展的独特环境,并控制了盆地7个隆起、断陷构造单元的展布及属性。它经历了6期演化阶段:早中三叠世处于昆北弧前盆地及陆缘火山弧带,共和盆地基底主要岩石发育;晚三叠世阿尼玛卿洋闭合并发生碰撞造山,共和盆地褶皱基底形成;晚三叠纪末期发生碰撞后伸展,发育初始小型陆内裂谷盆地;在侏罗纪—白垩纪区域性伸展环境下形成局部断陷盆地;古近纪晚期—中新世发育拉分-断陷盆地;中新世末至今发育陆内前陆盆地。形成了3个大构造-沉积层序和8个亚层序,发育了深海陆棚相-碳酸盐岩台地相-火成岩相以及多旋回的冲积...  相似文献   

15.
新生代以来,共和盆地及其周缘造山带无火山、岩浆活动,印支期隐伏花岗岩体岩浆余热与放射性元素衰变生热等难以构成共和盆地干热岩资源的主要热源,而共和盆地又为一高温地热异常盆地.目前已基本探明了共和县恰卜恰与贵德县热水泉干热岩体2处,圈定出干热岩勘查目标靶区16处.区域重力和区域航磁调查、区域天然地震成像、盆地尺度天然地震背景噪声层析成像勘查,以及超高分辨率重力异常、电阻率与Rayleigh波群相速度线性反演结果均表明共和盆地下伏发育有壳内部分熔融层,进而构成地处板内环境、高热流区共和盆地干热岩资源的区域性热源.盆地尺度MT勘查结果表明,共和盆地西盆地壳内部分熔融层埋深15~35 km,东西向长约41 km,南北向宽约34 km,厚度2~12 km.综合分析认为,该部分熔融层熔融程度最高可达4%~7%,15 km深处温度约为574℃,主体位于贵南南山推覆体系与共和准推覆体系深部主拆离滑脱推覆界面之下,兴海大型复合推覆体系主拆离滑脱推覆界面之上.挽近地质时期深构相、多层次、近水平展布的韧性拆离滑脱推覆构造界面的连续动态剪切摩擦生热,可能是部分熔融层形成的主要因素.   相似文献   

16.
The Qinghai Gonghe-Guide Basin together with the alternatively distributed mountainous region shows characteristics that the conductive geothermal resource of the basin has high geothermal gradient, the granite occurs in the bottom of borehole for geothermal exploration, and the convective hot springs in the basin-edge uplift fracture are in zonal distribution and with high-temperature geothermal water. There are still some divergences about the heat source mechanism of the basin. In this paper, queries to the view of mantle-derived heat source have been put forward, coming up with geochemical evidences to prove that the radiogenic heat of granite is the heat source within the mantle. Additionally, temperature curve is drawn based on the geothermal boring and geochemical geothermometer has been adopted for an estimation of the temperature and depth of the geothermal reservoir, it has been found that the surrounding mountains belong to the medium-temperature geothermal system while the area within the basin belongs to the high-temperature geothermal system with the temperature of borehole bottom reaching up to 175-180 ℃. In this paper, discussions on the problems existing in the calculation of geothermal gradient and the differences generated by the geothermal system have been carried out.  相似文献   

17.
地热流体地球化学组成及其运移规律和成因机制研究对地热资源勘查和开发利用具有重要意义。当前,青海省地热资源开发利用程度低,更缺乏针对地热流体地球化学特征进行深入研究的系统性工作。青海共和盆地是青藏高原北缘的一个断陷盆地,盆地内地热资源丰富。本文以共和盆地及周围部分山区的地热系统为研究对象,基于系统地球化学采样和测试开展了地热流体地球化学组成及热储水-岩相互作用过程分析,认为:从共和下更新统热储、新近系热储到鄂拉山构造岩浆带再到瓦里贡山构造岩浆带,地热水中SiO2含量依次升高,反映热储温度依次升高;上述地热地区热储中原生铝硅酸盐矿物的溶解和蚀变矿物的形成是控制地热水中阳离子含量的最重要的水文地球化学过程,而补给水下渗和地热水径流及升流过程中盐类矿物的溶滤则是水中阴离子(特别是 SO 4 2 -和Cl-)的主要来源。  相似文献   

18.
青海省是我国地热资源相对丰富的地区, 但其主要地热能开发利用方式长期以来为效率较低的直接利用.以青海东北部地热异常明显的共和盆地为典型研究区, 依据前期地热地质调查和地球物理工作成果, 在盆地北部施工了终孔深度为1 852 m的DR2井, 获取了温度达84.2 ℃的地热流体.在此基础上, 建立了青海省首个试验地热发电站, 设计年平均净发电量为114 kW.与利用高温地热流体发电的西藏羊八井地热电站不同, 青海共和试验地热电站是青藏高原利用中低温地热流体发电的典范, 有望为青海省能源结构优化做出开拓性贡献.总体来看, 共和盆地地热流体温度较高、水量丰富、具有较大的发电潜力, 但在开发利用过程中也应注意结垢问题.   相似文献   

19.
旷健  祁士华  王帅  肖志才  张敏  赵旭  甘浩男 《地球科学》2020,45(4):1466-1480
为洞悉东南地区地热的形成演化,以惠州黄沙洞-石坝地区高温地热田为例,综合地震学、岩石地球化学、锆石U-Pb年代学等方法来解译该地热田的形成模式.研究区岩体主要为燕山期高分异高含产热元素的I型花岗岩,形成背景为古太平板块俯冲的前进与后撤;深部花岗岩体连为一体且厚度达3.5 km.高导热率的花岗岩促进地幔热传导至地表和花岗岩中放射性元素衰变产生的热量是惠州高温地热形成的两大重要原因.研究区深部花岗岩生热量及干热岩地热资源储量巨大.研究区地热产出模式对惠州乃至东南地区的能源供给系统有重大意义.   相似文献   

20.
在野外实地调查张掖盆地地热资源的基础上,对研究区地热田特征、热储特征、热储温度以及温度场特征进行了分析和研究。研究结果表明:张掖盆地属张扭性盆地,有利地热运移和富集,属中低温地热资源;地热田热储为新近系及白垩系砂岩、砂砾岩、含砾砂岩等,厚度为536 m;经钾镁地热温标估算,热储温度60℃;盖层为新近系上新统疏勒河组泥岩、泥质砂岩层;热源来自地壳深部的热传导。通过对研究区地热田特征、热储特征、热储温度以及温度场特征的分析和研究,可以为当地政府进一步研究、勘探及开发地热资源提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号