首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
A substantial cost of granular iron permeable reactive barriers is that of the granular iron itself. Cutting the iron with sand can reduce costs, but several performance issues arise. In particular, reaction rates are expected to decline as the percentage of iron in the blend is diminished. This might occur simply as a function of iron content, or mass transfer effects may play a role in a much less predictable fashion. Column experiments were conducted to investigate the performance consequences of mixing Connelly granular iron with sand using the reduction kinetics of trichloroethylene (TCE) to quantify the changes. Five mixing ratios (i.e., 100%, 85%, 75%, 50%, and 25% of iron by weight) were studied. The experimental data showed that there is a noticeable decrease in the reaction rate when the content of sand is 25% by weight (iron mass to pore volume ratio, Fe/Vp = 3548 g/L) or greater. An analysis of the reaction kinetics, using the Langmuir-Hinshelwood rate equation, indicated that mass transfer became an apparent cause of rate loss when the iron content fell below 50% by weight (Fe/Vp = 2223 g/L). Paradoxically, there were tentative indications that TCE removal rates were higher in a 15% sand + 85% iron mixture (Fe/Vp = 4416 g/L) than they were in 100% iron (Fe/Vp = 4577 g/L). This subtle improvement in performance might be due to an increase of iron surface available for contact with TCE, due to grain packing in the sand-iron mixture.  相似文献   

2.
Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)‐containing minerals has been observed in both laboratory and field studies. These reactive iron minerals form under iron‐ and sulfate‐reducing conditions which are commonly found in permeable reactive barriers (PRBs), enhanced reductive dechlorination (ERD) treatment locations, landfills, and aquifers that are chemically reducing. The objective of this review is to synthesize current understanding of abiotic degradation of chlorinated solvents by reactive iron minerals, with special focus on how abiotic processes relate to groundwater remediation. Degradation of chlorinated solvents by reactive minerals can proceed through reductive elimination, hydrogenolysis, dehydrohalogenation, and hydrolysis reactions. Degradation products of abiotic reactions depend on degradation pathways and parent compounds. Some degradation products (e.g., acetylene) have the potential to serve as a signature product for demonstrating abiotic reactions. Laboratory and field studies show that various minerals have a range of reactivity toward chlorinated solvents. A general trend of mineral reactivity for degradation of chlorinated solvents can be approximated as follows: disordered FeS > FeS > Fe(0) > FeS2 > sorbed Fe2+ > green rust = magnetite > biotite = vermiculite. Reaction kinetics are also influenced by factors such as pH, natural organic matter (NOM), coexisting metal ions, and sulfide concentration in the system. In practice, abiotic reactions can be engineered to stimulate reactive mineral formation for groundwater remediation. Under appropriate site geochemical conditions, abiotic reactions can occur naturally, and can be incorporated into remedial strategies such as monitored natural attenuation.  相似文献   

3.
Sorption of dissolved Fe2+ on bentonite was studied using a batch technique. The distribution coefficient, Kd , was evaluated for a bentonite-iron system as a function of contact time, pH, sorbent and sorbate concentrations, and temperature. Sorption results were interpreted in terms of Freundlich's and Langmuir's equations. Thermodynamic parameters for the sorption system were determined at three temperatures: 298°, 308°, and 318°K. The values of ΔH°(-4.0 kjmol−1) and ΔG°(-2.46 Kjmol−1) at 298°K (25°C) suggest that sorption of iron on bentonite is an exothermic and a spontaneous process. The ΔG° value became less negative at higher temperatures and, therefore, less iron was sorbed at higher temperatures. The desorption studies with 0.01 M CaCl2 and deionized water at iron loading on bentonite showed that more than 90 wt% of the iron is irreversibly sorbed, probably due to the fixation of the iron by isomorphous replacement in the crystal lattice of the sorbent.  相似文献   

4.
Heat source for Tongonan Geothermal Field   总被引:1,自引:0,他引:1  
Abstract The primary mineral and whole-rock chemistry of 46 core samples from the host rocks of the Tongonan Geothermal Field (the Philippines) have been used to infer the likely composition of the heat source for the system. The host rocks consist of andesite lavas (with intercalated fossiliferous early to mid–Miocene shales and limestone), and a plutonic rock basement ranging in composition from gabbro to granite. The whole rock TiO2, Fe2O3 (total iron), MgO, P2O5 and V data for volcanic and plutonic rocks are colinear on conventional Harker diagrams. This, along with similar hornblende chemistry, age and close spatial relationship suggests that the basement and cover rocks are cogenetic and evolved by low-pressure crystal fractionation. Crystal fractionation models indicate that separation of 60% plagioclase and 30% hornblende from original magma controlled the chemistry of the host rocks. The original Miocene magma chambers beneath the Tongonan field crystallized inwards from the walls at approximately 750°C and 1 kb pressure (3–4 km depth) thus forming a series of plutons or a batholith at drilled depths. A supercritical hydrothermal fluid trapped in the crystallizing, hornblende-granite-pegmatite core of a crystallized Miocene diorite batholith was gradually being released to shallower levels through antithetic cross fractures during creep and uplift along the main branches of the Philippine Fault from the Pliocene. This ascending fluid is now thought to be responsible for the present thermal activity of the field.  相似文献   

5.
Installation of a permeable reactive barrier to intercept a phosphate (PO4) plume where it discharges to a pond provided an opportunity to develop and test methods for monitoring the barrier's performance in the shallow pond-bottom sediments. The barrier is composed of zero-valent-iron mixed with the native sediments to a 0.6-m depth over a 1100-m2 area. Permanent suction, diffusion, and seepage samplers were installed to monitor PO4 and other chemical species along vertical transects through the barrier and horizontal transects below and near the top of the barrier. Analysis of pore water sampled at about 3-cm vertical intervals by using multilevel diffusion and suction samplers indicated steep decreases in PO4 concentrations in ground water flowing upward through the barrier. Samples from vertically aligned pairs of horizontal multiport suction samplers also indicated substantial decreases in PO4 concentrations and lateral shifts in the plume's discharge area as a result of varying pond stage. Measurements from Lee-style seepage meters indicated substantially decreased PO4 concentrations in discharging ground water in the treated area; temporal trends in water flux were related to pond stage. The advantages and limitations of each sampling device are described. Preliminary analysis of the first 2 years of data indicates that the barrier reduced PO4 flux by as much as 95%.  相似文献   

6.
The chemical fate of wastes put into disposal wells can be determined using standard chemical engineering techniques. The concentration of hazardous constituents is typically reduced by reactions within the waste itself or by reactions with the injection zone material, thus reducing any potential impact on the environment. Such reactions include neutralization, hydrolysis, ion exchange, adsorption, precipitation, co-precipitation and microbial degradation.
Extensive research was done to quantify these phenomena, so they could be used in a predictive model.
Neutralization, hydrolysis and precipitation were modeled using data from the open literature: reaction rates and equilibrium constants for the dominant reactions were incorporated into a sophisticated computer simulation that calculates solid-liquid equilibria of aqueous electrolyte solutions.
The model predicted the fate of two waste streams: (1) high-pH, cyanide-containing waste injected into sandstone is made less hazardous by hydrolysis and sand dissolution, and (2) FeCl3-FeCl2 HCl-H2 O waste is made non-hazardous by reaction with dolomite. Experiments are planned to confirm certain model predictions. Further development and public access of the model are planned.  相似文献   

7.
Abstract Rocks from Karaginsky accretionary prism (Karaginsky Island, Bering Sea) yield both prefolding (close to original) and postfolding magnetic vectors. The prefolding vectors suggest that the Maastrichtian–Paleocene volcanic–terrigenous sequences of Karaginsky Island formed at approximately 40°N to 50°N ( n = 45, D G = 325, I G = 57, K G = 6, α95G = 8, F G = 15.06, D S = 332, I S = 63, K S = 20, α95S = 4.5, F S = 0.3297, F cr = 2.64) and were not originally part of either Eurasia ( F = 19, Δ F = 6.5) or North America ( F = 17, Δ F = 4.4). The geologic blocks rotated insignificantly counterclockwise about the horizontal plane, suggesting that the structure of Karaginsky Island arose without major strike-slip motions. Analysis of secondary magnetizations (for example, n = 28, D G = 311, I G = − 50, K G = 9, α95G = 8.7, F G = 2.44; D S = 293, I S = − 41, K S = 5, α95S = 11, F S = 12.04, F cr = 2.65) reveals that the development of this framework involved at least two stages of deformation. During the second stage the sequences must have been tilted to west-northwest and northwest directions at 45–65°. This agrees with the northwest vergence of the structure of Karaginsky Island.  相似文献   

8.
Hydrogen gas was discovered within the steel casing above standing water in a percussion-drilled borehole on the Hanlord Site in south-central Washington state. In situ measurements of the borehole fluids indicated anoxic, low-Eh (<-400 mV) conditions. Ground water sampled from adjacent wells in the same formation indicated that the ground water was oxygenated. H2 was generated during percussion drilling, due to the decomposition of borehole waters as a result of aqueous reactions with drilled sediment and steel from the drilling tools or casing. The generation of H2 within percussion-drilled boreholes that extend below the water table may be more common than previously realized. The ambient concentration of H2 produced during drilling was limited by microbial activity within the casing-resident fluids. H2 was generated abiotically in the laboratory, whereby sterilized borehole slurry samples produced 100 times more H2 than unsterilizcd samples. It appears that H2 is metabolized by microorganisms and concentrations might be significantly greater if not for microbial metabolism.  相似文献   

9.
Electromigration is proposed as an in situ method for preconcentrating contaminants in ground water prior to pumping and treating. In earlier investigations by the senior author and co-workers, it was found that Cu in synthetic ground water migrated strongly to a Pt cathode and plated out as metallic copper. In the present study, carbon electrodes were inserted into a laboratory column of fine quartz sand that was saturated with a lower concentration of CuSO4 solution. A fixed potential of 2.5 V was applied, causing dissolved Cu and SO4 to accumulate strongly at the cathode and anode, respectively. Only minor plating-out of Cu took place on the carbon electrodes. In addition to the use of carbon electrodes, the present research also investigated the effects of a lower concentration of metal, accumulation of SO4 adjacent to the anodes, adsorption of Cu on the sand, and competition by moving ground water.
At an imposed voltage of 2.5 V and in the presence of 65 mg/L of dissolved Cu and 96 mg/L of SO4 (0.001 M CuSO4 solution), electrolysis of water caused large changes in the pH and speciation of the aqueous components, as well as precipitation of solid Cu-hydroxides. Significant retardation of Cu occurred in the presence of ground water flowing at an average intergranular velocity of 0.2 m/day, but only minor retardation at water velocities of 1.9 and 2.9 m/day.
Sulfate tends to migrate strongly to the anodes, suggesting that in situ electromigration may offer a useful new method for preconcentrating such highly soluble ions as SO4, NO3, and CI that are difficult to remove by conventional pump-and-treat methods. A number of potential problems exist that should be addressed in a field test.  相似文献   

10.
Dissolved oxygen (D.O.) concentration has a significant effect upon ground water quality by regulating the valence state of trace metals and by constraining the bacterial metabolism of dissolved organic species. For these reasons, the measurement of dissolved oxygen concentration should be considered essential in most water quality investigations. D.O. measurements have been frequently neglected in ground water monitoring. This is because O2 has often been assumed absent below the water table; measurement of O2, concentrations is not mandated by drinking water standards; and the redox potential has previously been considered an adequate and encompassing electrochemical measurement. Redox potentials, however, cannot adequately predict dissolved oxygen concentrations nor can D.O. concentrations be used to calculate redox potentials.
D.O. concentrations can be measured precisely in the field by titration or electrode methods. The best methods of sample recovery are those that use positive pressure displacement devices. A fully adequate sampling procedure will isolate ground water from the atmosphere and will collect samples at restricted depth intervals at ambient temperature and pressure.  相似文献   

11.
The goal of this study was the cleanup of residual solvents in the saturated zone using an in situ biochemical treatment. Perchloroethylene (PCE) was chosen as a model compound because it is the most commonly found organic ground water contaminant. A mixture of vitamin B12 with titanium citrate was pumped as the remedial solution through a column containing 100 μL of PCE residual. The rate of reaction was found to be first order with respect 10 the concentration of PCE and to the concentration of vitamin B2. At 10 ppm B12, more than 85 percent PCM was degraded to trichloroelhylene (TCE) and dichloroelhylene (DCE) in two hours. The presence of low to moderate concentrations of organic carbon had no significant effect on the reaction. Vitamin B12 reduced by titanium citrate was found lo be compatible with the survival of anaerobic bacteria. The four major advantages of the biochemical system over the use of anaerobic bacteria are that (1) the rate is faster: (2) there is no need for the careful balance of nutrients or the addition of an extraneous carbon source: (3) there is no restriction in the concentration range of the compound to be treated; and (4) the remedial solution is mobile, even in the presence of organic carbon.  相似文献   

12.
Azimuth-dependent AVO in reservoirs containing non-orthogonal fracture sets   总被引:1,自引:0,他引:1  
Azimuthal anisotropy in rocks can result from the presence of one or more sets of partially aligned fractures with orientations determined by the stress history of the rock. The symmetry of a rock with horizontal bedding that contains two or more non-orthogonal sets of vertical fractures may be approximated as monoclinic with a horizontal plane of mirror symmetry. For offsets that are small compared with the depth of the reflector, the azimuthal variation in P-wave AVO gradient for such a medium varies with azimuth as     where φ is the azimuth measured with respect to the fast polarization direction for a vertically polarized shear wave. φ 2 depends on both the normal compliance B N and the shear compliance B T of the fractures and may differ from zero if B N B T varies significantly between fracture sets. If B N B T is the same for all fractures,     and the principal axes of the azimuthal variation in P-wave AVO for fixed offset are determined by the polarization directions of a vertically propagating shear wave. At larger offsets, terms in     and     are required to describe the azimuthal variation in AVO accurately. φ 4 and φ 6 also depend on B N B T. For gas-filled open fractures     but a lower value of B N B T may result from the presence of a fluid with non-zero bulk modulus.  相似文献   

13.
The area surrounding the Colorado Department of Transportation Materials Testing Laboratory in Denver was the subject of intense investigation, involving the collection of thousands of ground water, soil-gas, and indoor air samples in order to investigate indoor air impacts associated with a subsurface release of chlorinated solvents. The preremediation portion of that data set is analyzed and reduced in this work to ground water–to-indoor air attenuation factors (αgw= the ratio of the measured indoor air concentration to the soil-gas concentration predicted to be in equilibrium with the local ground water concentration). The empirical αgw values for this site range from about 10−6 to 10−4 with an overall average of 3 × 10−5 (μg/L indoor air)/(μg/L soil gas). The analysis of this data set highlights the need for a thorough data review and data screening when using large data sets to derive empirical relationships between subsurface concentrations and indoor air. More specifically, it is necessary to identify those parts of the data that contain a strong vapor intrusion pathway signal, which generally will require concentrations well above reported detection levels combined with spatial or temporal correlation of subsurface and indoor concentrations.  相似文献   

14.
Method for Determining the Age of Diesel Oil Spills in the Soil   总被引:1,自引:1,他引:1  
This study evaluates the changes in the composition of diesel oil as a function of the time during which the oil has been present in the vadose zone. The study also develops a reliable method for determining the age of diesel oil in the subsurface soil environment at service stations, oil terminals, and similar locations where the diesel is protected from direct exposure to factors increasing the rate of microbial activity.
Analyses demonstrate that n-alkanes are the dominant components of fresh diesel oil and isoprenoids the dominant components of degraded diesel oil. The analyses also show that the composition of fresh diesel oil produced in 1992 and that produced in 1974 is basically the same.
The difference in composition between fresh and degraded oil is the basis for defining a degradation ratio or rate of alteration in the composition of the diesel oil expressed in terms of a ratio between n-alkanes and isoprenoids. At 12 test locations where the date of property damage was known, the C17/pristane ratio had by far the highest correlation factor (.89) with the residence time of the diesel based on the average degradation ratio for each location. Based on this high correlation factor, the C17/pristane ratio can be used to estimate the age of a diesel oil spill. The standard error of such an estimate is approximately two years.  相似文献   

15.
We have previously defined in situ biogeochemical transformation as the biogenic formation of reactive minerals that are capable of abiotically degrading chlorinated solvents such as trichloroethene without accumulation of degradation products such as vinyl chloride (AFCEE et al. 2008 ). This process has been implemented in biowalls used to intercept contaminated groundwater. Abiotic patterns of contaminant degradation were observed at Altus Air Force Base (AFB) and in an associated column study, but not at other sites including Dover AFB. These abiotic patterns were associated with biogenic formation of reactive iron sulfide minerals. Iron sulfides in the form of small individual grains, coatings on magnetite, and sulfur‐deficient pyrite framboids were observed in samples collected from the Altus AFB biowalls and one of the EPA columns. Larger iron sulfide grains coated with oxide layers were observed in samples collected from Dover AFB. Altus AFB and the EPA column differed from Dover AFB in that groundwater flow at Dover AFB was relatively slow and potentially reversing. High volumetric sulfate consumption rates, an abiotic pattern of trichloroethene (TCE) degradation, and the formation of small, high surface area iron sulfide particles were associated with relatively high rates of TCE removal via an abiotic pattern. Geochemical modeling demonstrated that iron monosulfides such as mackinawite were near saturation, and iron disulfides such as pyrite were supersaturated at all sites. This environmental condition can be supportive of nucleation of small particles rather than crystal growth leading to larger particles. When nucleation is dominant, small, high surface area, and reactive particles result. When crystal growth dominates the crystals are larger and have lower specific surface area and reactivity. These results taken together suggest that creation of a dynamic environment can promote biogeochemical transformation based on generation of reactive iron sulfides.  相似文献   

16.
The flow of ponded water into and through the unsaturated zone depends on both the saturated and unsaturated components of the hydraulic conductivity. Recent studies indicate that the ratio of the saturated (Kfs) to the unsaturated (φm) components (Kfsm=α*) of flow lies within prescribed bounds for most field soils, i.e., 1m−1≤α*≤ 100 m−1. In addition, the fact that the calculation of Kfs and φm is not strongly dependent on the choice of α*, suggests that a site estimation of α* leads to reasonable "best estimates" of Kfs and φm when using the constant head well permeameter technique. As a consequence, measurement of the steady flow rate using only one ponded head may be all that is necessary for many practical applications. Multiple head measurements or independent measurements of α* or φm can be used, however, to give more accurate estimates of Kfs if required.  相似文献   

17.
The effect of a fracture on the propagation of seismic waves can be represented in terms of the normal compliance BN and tangential compliance BT of the fracture. If   BN / BT = 1  for all fractures, the effective elastic stiffness tensor of an isotropic background containing an arbitrary orientation distribution of fractures is orthotropic (i.e., has three orthogonal planes of mirror symmetry) in the long-wave limit. However, deviations from orthotropy may occur if   BN / BT   differs significantly from unity and this can cause the principal axes of the P -wave NMO ellipse and of the variation in the PP -reflection amplitude as a function of azimuth, to deviate from the fast and slow polarization direction of a vertically propagating S -wave. Simple models of a fracture in terms of a planar distribution of cracks suggest that   BN / BT ≈ 1  for dry fractures. However, naturally occurring fractures often exhibit mineralization in the form of bridges between opposing faces of the fracture. The presence of such bridges leads to significant departures of   BN / BT   from unity.  相似文献   

18.
A second occurrence of chrome-rich clinopyroxene has been discovered as inclusions in orthopyroxene in orthopyroxenite from Maowu, the Dabie Mountains, Central China. The average formula for chrome-rich clinopyroxene can be expressed as (Na0.39Ca0.54)0.93(Mg0.57Fe2+0.06Fe3+0.01Cr0.24Al0.15)1.03Si2.02O6, with a maximum amount of kosmochlor component of 28.52 mol%. The unit cell parameters obtained from a single-crystal are a  = 9.614 Å, b  = 8.800 Å, c =  5.240 Å, β = 106.59°, space group C2 / c . The indices of refraction are α = 1.697, β = 1.704, γ = 1.726. Chrome-rich clinopyroxene, which coexists with chromite, chromian rutile and chromian pyrope, crystallized at a temperature of 1025 °C and very high pressure, and therefore represents a mantle relic. Together with the appearance of low-pressure inclusion mineral assemblage and the estimation of physical–chemical conditions for matrix minerals, the Maowu eclogite–ultramafic complex is considered to be formed during ultrahigh-pressure metamorphism from the mantle-derived protolith.  相似文献   

19.
Soil-solution samplers and shallow ground water monitoring wells were utilized to monitor nitrate movement to ground water following H2O2 application to a clogged soil absorption system. Nitrate-nitrogen concentrations in soil water and shallow ground water ranged from 29 to 67 mg/L and 9 to 22 mg/L, respectively, prior to H2O2 treatment. Mean nitrate-nitrogen concentrations in soil water and ground water increased and ranged from 67 to 115 mg/L and 23 to 37 mg/L, respectively, one week after H2O2 application. Elevated concentrations of nitrate-nitrogen above background persisted for several weeks following H2O2 treatment. The H2O2 treatment was unsuccessful in restoring the infiltrative capacity of a well-structured soil. Application of H2O2 to the soil absorption system poses a threat of nitrate contamination of ground water and its usefulness should be fully evaluated before rehabilitation is attempted.  相似文献   

20.
Nobuo  Sakakibara  Ikuo  Hara  Kenji  Kanai  Kenji  Kaikiri  Tugio  Shiota  Kei  Hide Peter  Paulitsch 《Island Arc》1992,1(1):186-197
Abstract Quartz c-axis fabrics of the Sambagawa schists produced along a late Mesozoic convergent plate margin were analysed so that their tectono-metamorphic history could be clarified. It has been noted by many authors that quartz fabrics produced by earlier phase deformation are easily modified by strain increment during later phase deformation. This paper attempts to elucidate the high-temperature phases of prograde metamorphism (Sim-Bim phase) and of retrograde metamorphism (Sb1 phase and Sb2−1 phase) from quartz grains included in garnet and plagioclase porphyroblasts. Quartz c-axis fabrics for all these phases are explained in terms of a type I crossed girdle, without (only rarely with) higher concentration in the principal axis of strain Y (X>Y>Z), that must have been produced by the activity of a dominant slip system such as rhomb and basal. As a result, the plastic deformation of quartz, which was responsible for the formation of the type I crossed girdle, occurred even under temperatures greater than 500°C and pressures a little greater than 10–11 kb, which correspond to the physical condition of the Sim-Bim phase. It has been assumed that a high strain rate (and/or low H2O content) caused rhomb and basal to be active as dominant slip systems in the subduction zone related to the formation of the Sambagawa schists even under high temperatures (> 500°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号