首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurately quantifying the evaporation loss of surface water is essential for regional water resources management, especially in arid and semi-arid areas where water resources are already scarce. The long-term monitoring of stable isotopes (δ18O and δ2H) in water can provide a sensitive indicator of water loss by evaporation. In this study, we obtained surface water samples of Shiyang River Basin from April to October between 2017 and 2019. The spatial and temporal characteristics of stable isotopes in surface water show the trend of enrichment in summer, depletion in spring, enrichment in deserts and depletion in mountains. The Local Evaporation Line (LEL) obtained by the regression of δ2H and δ18O in surface water has been defined by the lines: δ2H = 7.61δ18O + 14.58 for mountainous area, δ2H = 4.19δ18O − 17.85 for oasis area, δ2H = 4.08δ18O − 18.92 for desert area. The slope of LEL shows a gradual decrease from mountain to desert, indicating that the evaporation of surface water is gradually increasing. The evaporation loss of stable isotopes in surface water is 24.82% for mountainous area, 32.19% for oasis area, and 70.98% for desert area, respectively. Temperature and air humidity are the main meteorological factors affecting the evaporation loss, and the construction of reservoirs and farmland irrigation are the main man-made factors affecting the evaporation loss.  相似文献   

2.
The stable isotopes of hydrogen and oxygen (δ2H and δ18O) are useful conservative tracers for tracking the movement of water in soil. But although the tracking of water infiltrating through the soil profile and its movement as run‐off and groundwater recharge are well developed, water movement through the soil can also include evaporative fractionation. Soil water fractionation factors have, until now, been largely empirical. Unlike open water evaporation where temperature, humidity, and vapour pressure gradient define fractionation, soil water evaporation includes fractionation by soil matrix effects. These effects are still poorly characterized. Here, we present preliminary results from a simple laboratory experiment with four soil admixtures with grain sizes that range from sand to silt and clay. Our results show that soil tension seems to control the isotope fractionation of resident soil water. The relationship between soil tension and equilibrium fractionation appears to be independent of soil texture and appears well supported by thermodynamic theory. Although these results are preliminary, they suggest that future work should go after soil tension effects as a possible explanatory factor of soil water and water vapour fractionation.  相似文献   

3.
The Hammond Hill Research Catchment (HH) is a small (120 ha), temperate, second order tributary to Six Mile Creek, Cayuga Lake, and the Great Lakes (42.42°, −76.32°). The HH has been monitored since January 2017 for the purpose of understanding how recent infiltration mixes with antecedent soil water on hillslope forest floors and the spatial and temporal patterns of Root Water Uptake (RWU) by temperate northeastern US tree species (eastern hemlock [Tsuga canadensis], American beech [Fagus grandifolia], and sugar maple [Acer saccharum]). These data are informing us about the hydrologic consequences of anticipated tree species composition change and supporting the development of more refined ecohydrological models. The glaciated catchment is underlain by a shallow confining siltstone layer (1–1.5 m depth) and densely covered with an approximately 60 year old regrowth mixed species forest of hemlock, beech, and other deciduous tree species common to the northeastern US. Current datasets from the HH include precipitation snow water equivalent, discharge, and associated isotopic water compositions, δ2H & δ18O. Measurements of (top 10 cm) soil water content, as well as bulk soil water and hemlock and beech xylem isotopic compositions are made at several locations across a topographic wetness gradient. The near-term role of the HH is to support an understanding of the environmental and ecological drivers of plant RWU competition. All data from the HH are publicly available.  相似文献   

4.
Estimation of young water fractions (Fyw), defined as the fraction of water in a stream younger than approximately 2–3 months, provides key information for water resource management in catchments where runoff is dominated by snowmelt. Knowing the average dependence of summer flow on winter precipitation is an essential context for comparing regional drought severity and provides the hydrological template for downstream water users and ecosystems. However, Fyw estimation based on seasonal signals of stable isotopes of oxygen and hydrogen has not yet explicitly addressed how to parsimoniously include the seasonal shift of water input from snow. Using experimental data from three high-elevation, Alpine catchments (one dominated by glacier and two by snow), we propose a framework to explicitly include the delays induced by snow storage into estimates of Fyw. Scrutinizing the key methodological choices when estimating Fyw from isotope data, we find that the methods used to construct precipitation input signals from sparse isotope samples can significantly impact Fyw. Given this sensitivity, our revised procedure estimates a distribution of Fyw values that incorporates a wide range of possible methodological choices and their uncertainties; it furthermore compares the commonly used amplitude ratio approach to a direct convolution approach, which circumvents the assumption that the isotopic signals have a sine curve shape, an assumption that is generally violated in snow-dominated environments. Our new estimates confirm that high-elevation Alpine catchments have low Fyw values, spanning from 8 to 11%. Such low values have previously been interpreted as the impact of seasonal snow storage alone, but our comparison of different Fyw estimation methods suggests that these low Fyw values result from a combination of both snow cover effects and longer storage in the subsurface. In contrast, in the highest elevation, glacier dominated catchment, Fyw is 3–4 times greater compared to the other two catchments, due to the lower storage and faster drainage processes. A future challenge, capturing spatio-temporal snowmelt isotope signals during winter baseflow and the snowmelt period, remains to improve constraints on the Fyw estimation technique.  相似文献   

5.
Models simulating stream flow and conservative tracers can provide a representation of flow paths, storage distributions and mixing processes that is advantageous for many predictive purposes. Compared with models that only simulate stream flow, tracer data can be used to investigate the internal consistency of model behaviour and to gain insight into model performance. Here, we examine the strengths and weaknesses of a data‐driven, spatially distributed tracer‐aided rainfall‐runoff model. The model structure allowed us to assess the influence of landscape characteristics on the routing and mixing of water and tracers. The model was applied to a site in the Scottish Highlands with a unique tracer data set; ~4 years of daily isotope ratios in stream water and precipitation were available, as well as 2 years of weekly soil and ground water isotopes. The model structure was based on an empirically based, lumped tracer‐aided model previously developed for the catchment. The best model runs were selected from Monte Carlo simulations based on dual calibration criteria using objective functions for both stream isotopes and discharge at the outlet. Model performance for these criteria was reasonable (Nash–Sutcliffe efficiencies for discharge and isotope ratios were ~0.4–0.6). The model could generally reproduce the variable isotope signals in the soils of the steeper hill slopes where storage was low, and damped isotope responses in valley bottom cells with high storage. The model also allowed us to estimate the age distributions of internal stores, water fluxes and stream flow. Average stream water age was ~1.6 years, integrating older groundwater in the valley bottom and dynamic younger soil waters. By tracking water ages and simulating isotopes, the model captured the changes in connectivity driven by distributed storage dynamics. This has substantially improved the representation of spatio‐temporal process dynamics and gives a more robust framework for projecting environmental change impacts. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

6.
Stable water isotope surveys have increasingly been integrated into river basins studies, but fewer have used them to evaluate impact of hydropower regulation. This study applies hydrologic and water isotope survey approaches to a Canadian Shield river basin with both regulated and natural flows. Historical streamflow records were used to evaluate the influence of three hydroelectric reservoirs and unregulated portions of the basin on downstream flows and changes in water level management implemented after an extreme flood year (1979). In 2013, water isotope surveys of surface and source waters (e.g., rainfall, groundwater, snowmelt) were conducted to examine spatial and temporal variation in contributions to river flow. Seasonal changes in relative groundwater contribution were assessed using a water‐isotope mass balance approach. Within the basin, two regulated reservoirs exhibited inverted hydrographs with augmented winter flows, whereas a third exhibited a hydrograph dominated by spring snowmelt. In 2013, spatial variation in rain‐on‐snow and air temperatures resulted in a critical lag in snowmelt initiation in the southern and northern portions of the basin resulting in a dispersed, double peak spring hydrograph, contrasting with 1979 when a combination of rain‐on‐snow and coincident snowmelt led to the highest flood on record. Although eastern basin reservoirs become seasonally enriched in δ18O and δ2H values, unregulated western basin flows remain less variable due to groundwater driven baseflow with increasing influence downstream. Combined analysis of historical streamflow (e.g., flood of 1979, drought of 2010) and the 2013 water isotope surveys illustrate extreme meteorological conditions that current management activities are unable to prevent. In this study, the influence of evaporative fractionation on large surface water reservoirs provides important evidence of streamflow partitioning, illustrating the value of stable water isotope tracers for study of larger catchments.  相似文献   

7.
Alpine areas play a major role in water supply in downstream valleys by releasing water during warm and dry periods. However, the hydrogeology of alpine catchments, which are particularly exposed to the effects of climate change, is currently not well understood. Increasing our knowledge of alpine hydrogeological processes is thus of considerable importance for any forward-looking hydrological investigations in alpine areas. The objectives of this study are to quantify seasonal groundwater storage variations in a small Swiss alpine catchment and to evaluate the capabilities of time-lapse gravimetry in the identification of zones of high groundwater storage fluctuations. Time-lapse gravimetric measurements enable rapid localisation of zones of dynamic groundwater storage changes and help to highlight aquifers with a higher storage decrease. Temperature sensors enable measurement of the temporal trend in stream and spring drying in the post-snowmelt period. Stable isotope measurements allow us to identify the origin of surface water exiting the catchment. The results improve our comprehension of a conceptual schema highlighting two different hydrogeological systems: (a) a shallow, rapidly depleted one fed directly by snowmelt and (b) a deeper one, with a slower recession, fed by main recharge during peak snowmelt and emerging at the lower part of the catchment below the talus and moraine of the catchment where bedrock is exposed. These dynamics confirm the high variability of storage in the talus and moraine aquifers and highlight the dominant role of Quaternary deposits and their connectivity to store water over seasonal and multi-year time-scales. The mechanisms explaining the importance of Quaternary deposits are the combination of moraine and talus with different permeabilities allowing the storage of sufficient quantities of water permitting continuous release during drier periods of the year.  相似文献   

8.
To assess spatial, seasonal, and source variability in stable isotopic composition of human drinking waters throughout the entire USA, we have constructed a database of δ18O and δ2H of US tap waters. An additional purpose was to create a publicly available dataset useful for evaluating the forensic applicability of these isotopes for human tissue source geolocation. Samples were obtained at 349 sites, from diverse population centres, grouped by surface hydrologic units for regional comparisons. Samples were taken concurrently during two contrasting seasons, summer and winter. Source supply (surface, groundwater, mixed, and cistern) and system (public and private) types were noted. The isotopic composition of tap waters exhibits large spatial and regional variation within each season as well as significant at‐site differences between seasons at many locations, consistent with patterns found in environmental (river and precipitation) waters deriving from hydrologic processes influenced by geographic factors. However, anthropogenic factors, such as the population of a tap's surrounding community and local availability from diverse sources, also influence the isotopic composition of tap waters. Even within a locale as small as a single metropolitan area, tap waters with greatly differing isotopic compositions can be found, so that tap water within a region may not exhibit the spatial or temporal coherence predicted for environmental water. Such heterogeneities can be confounding factors when attempting forensic inference of source water location, and they underscore the necessity of measurements, not just predictions, with which to characterize the isotopic composition of regional tap waters. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

9.
We present the results of a 3‐year monitoring programme of the stable isotope composition of lake water and precipitation at Taozi Lake, in the East Asian monsoon region of China. Our aims were to reveal the spatiotemporal pattern of variation of stable isotopes in a small closed‐basin lake and to quantitatively determine the impacts of precipitation and evaporation on the stable isotope composition of lake water under a humid monsoon climate. In the time domain, the stable oxygen isotopic ratio of the lake water (δ18OL) exhibited substantial seasonal and interannual variations, but the isotope variations between different precipitation events substantially exceeded seasonal and interannual variations. Compared with the stable isotopes in precipitation, δ18OL was substantially positive and dL was negative. In the space domains, the lake water was homogeneously mixed. Indicated by statistic analyses, precipitation plays a dominant role in dynamic of the lake stable isotope during precipitation events of relatively large magnitude, whereas the effect of evaporation is dominant during smaller precipitation events. Results advance our understanding of the stable isotope change rule in the process of lake water evaporation, and it is helpful to identify the climatic significance recorded in stable isotopic compositions of lake bottom sediments.  相似文献   

10.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   

11.
Simulations of a regional (approx. 50 km resolution) circulation model REMOiso with embedded stable water isotope module covering the period 1958‐2001 are compared with the two instrumental climate and four isotope series (δ18O) from western Svalbard. We examine the data from ice cores drilled on Svalbard ice caps in 1997 (Lomonosovfonna, 1250 m asl) and 2005 (Holtedahlfonna, 1150 m asl) and the GNIP series from Ny‐Ålesund and Isfjord Radio. The surface air temperature (SAT) and precipitation data from Longyearbyen and Ny‐Ålesund are used to assess the skill of the model in reproducing the local climate. The model successfully captures the climate variations on the daily to multidecadal times scales although it tends to systematically underestimate the winter SAT. Analysis suggests that REMOiso performs better at simulating isotope compositions of precipitation in the winter than summer. The simulated and measured Holtedahlfonna δ18O series agree reasonably well, whereas no significant correlation has been observed between the modelled and measured Lomonosovfonna ice core isotopic series. It is shown that sporadic nature as well as variability in the amount inherent in precipitation process potentially limits the accuracy of the past SAT reconstruction from the ice core data. This effect in the study area is, however, diminished by the role of other factors controlling δ18O in precipitation, most likely sea ice extent, which is directly related with the SAT anomalies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The stable isotope analysis of all major rain events from Moinabad (MB), Rajendranagar (RN) and Osmanasagar (OS) reservoir, three closely placed locations in Hyderabad, India, were carried out during the 2005 to 2008 period. The OS station recorded the highest amount of rainfall with an average value of 1000 mm, whereas the MB station recorded the lowest average rainfall of 790 mm. The stable isotope (δ18O) values of the precipitation samples during these period varied from ?11.43‰ to ?0.03‰ for the MB station, ?8.21‰ to 0.54‰ for the RN station and ?11.47‰ to 0.72‰ for the OS station. The d‐excess of precipitation at the three stations also showed considerable variations and revealed that the precipitation in the region undergoes significant modification through secondary evaporation during its fall. The possible causes for these observed spatial and temporal variations in amount and the isotopic composition of precipitation in a small geographical area within the city were studied. The observed variations may be attributed to the regional scale differences in water budget induced by rapid urbanisation activities in the city coupled with the differences in secondary effects undergone by the falling drops. This study elucidating changes in precipitation patterns in the city and its possible causes may largely help in its water balance calculation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to <1‐km2 subcatchment. The 6‐hourly data were successfully incorporated without loss of model performance, improving the temporal resolution of the modelling, and making it more relevant to the time dynamics of the isotope and hydrometric response. However, this added little new information due to old‐water dominance and riparian mixing in this peatland catchment. Time variant results, from differential split sample testing, highlighted the importance of calibrating to a wide range of hydrological conditions. This also provided insights into the nonstationarity of catchment mixing processes, in relation to storage and water ages, which varied markedly depending on the calibration period. Application to the nested subcatchment produced equivalent parameterization and performance, highlighting similarity in dominant processes. The study highlighted the utility of high‐resolution data in combination with tracer‐aided models, applied at multiple spatial scales, as learning tools to enhance process understanding and evaluation of model behaviour across nonstationary conditions. This helps reveal more fully the catchment response in terms of the different mechanistic controls on both wave celerites and particle velocities.  相似文献   

14.
Assessing catchment runoff response remains a key research frontier because of limitations in current observational techniques to fully characterize water source areas and transit times in diverse geographical environments. Here, we report a study that combines empirical data with modelling to identify dominant runoff processes in a sparsely monitored humid tropical catchment. The analysis integrated isotope tracers into conceptual rainfall–runoff models of varying complexity (from 5 to 11 calibrated parameters) that are able to simulate discharge and tracer concentrations and track the evolving age of stream water exiting the catchment. The model structures can be seen as competing hypotheses of catchment functioning and were simultaneously calibrated against uncertain streamflow gaugings and a 2‐year daily isotope rainfall–runoff record. Comparison of the models was facilitated using global parameter sensitivity analysis and the resulting effect on calibration. We show that a variety of tested model structures reproduced water and tracer dynamics in stream, but the simpler models failed to adequately reproduce both. The resulting water age distributions of the tested models varied significantly with little similarity between the stream water age and stored water age distributions. The sensitivity analysis revealed that only some of the more complex models (from eight parameters) could be better constrained to infer more plausible water age distributions and catchment storage estimates. These models indicated that the age of water stored in the catchment is generally older compared with the age of water fluxes, with evapotranspiration age being younger compared with streamflow. However, the water age distributions followed a similar temporal behaviour dominated by climatic seasonality. Stream water ages increased during the dry season (greater than 1 year) and decreased with increased streamflow (a few weeks old) during the wet season. We further show that the ratios of the streamwater age to stored water age distribution and the water age distribution of actual evapotranspiration to the stored water age distribution from constrained models could potentially serve as useful hydrological indicators of catchment functioning. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The spatial and temporal characterization of geochemical tracers over Alpine glacierized catchments is particularly difficult, but fundamental to quantify groundwater, glacier melt, and rain water contribution to stream runoff. In this study, we analysed the spatial and temporal variability of δ2H and electrical conductivity (EC) in various water sources during three ablation seasons in an 8.4‐km2 glacierized catchment in the Italian Alps, in relation to snow cover and hydro‐meteorological conditions. Variations in the daily streamflow range due to melt‐induced runoff events were controlled by maximum daily air temperature and snow covered area in the catchment. Maximum daily streamflow decreased with increasing snow cover, and a threshold relation was found between maximum daily temperature and daily streamflow range. During melt‐induced runoff events, stream water EC decreased due to the contribution of glacier melt water to stream runoff. In this catchment, EC could be used to distinguish the contribution of subglacial flow (identified as an end member, enriched in EC) from glacier melt water to stream runoff, whereas spring water in the study area could not be considered as an end member. The isotopic composition of snow, glacier ice, and melt water was not significantly correlated with the sampling point elevation, and the spatial variability was more likely affected by postdepositional processes. The high spatial and temporal variability in the tracer signature of the end members (subglacial flow, rain water, glacier melt water, and residual winter snow), together with small daily variability in stream water δ2H dynamics, are problematic for the quantification of the contribution of the identified end members to stream runoff, and call for further research, possibly integrated with other natural or artificial tracers.  相似文献   

16.
17.
A. Smith  C. Welch  T. Stadnyk 《水文研究》2016,30(21):3871-3884
Quantifying streamflow sources within remote, data scarce, Boreal catchments remains a significant challenge because of limited accessibility and complex, flat topography. The coupled use of hydrometric and isotopic data has previously been shown to facilitate quantification of streamflow sources, but application has generally been limited to small basins and short time scales. A lumped flow‐isotope model was used to estimate contributing streamflow sources (soil, ground, and wetland water) over a four‐year period in two large nested headwater catchments (Sapochi and Odei Rivers) in northern Manitoba, Canada. On average, the primary streamflow source was estimated as soil water (60%) in the Sapochi River, and groundwater (54%) in the Odei River. A strong seasonal influence was observed: soil water was the primary streamflow source in summer, changing to groundwater and wetlands during the winter. Interannual variability in streamflow sources was strongly linked to the presence or absence of late summer rainfall. The greatest uncertainties in source quantification were identified during the spring freshets and high precipitation events, and hence, simulations may be improved through explicit representation of the soil freeze/thaw process and data collection during this period. Assessment of primary streamflow components and qualitative uncertainty estimation using coupled isotope‐flow modelling is an effective method for first‐order identification of streamflow sources in data sparse remote headwaters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Tracer studies have been key to unravelling catchment hydrological processes, yet most insights have been gained in environments with relatively low human impact. We investigated the spatial variability of stream isotopes and water ages to infer dominant flow paths in a ~10-km2 nested catchment in a disturbed, predominantly agricultural environment in Scotland. We collected long-term (>5 years) stable isotope data of precipitation, artificial drainage, and four streams with varying soil and land use types in their catchment areas. Using a gamma model, Mean Transit Times (MTTs) were then estimated in order to understand the spatial variability of controls on water ages. Despite contrasting catchment characteristics, we found that MTTs in the streams were generally very similar and short (<1 year). MTTs of water in artificial drains were even shorter, ranging between 1 to 10 months for a typical field drain and <0.5 to 1 month for a country road drain. At the catchment scale, lack of heterogeneity in the response could be explained by the extensive artificial surface and subsurface drainage, “short-circuiting” younger water to the streams during storms. Under such conditions, additional intense disturbance associated with highway construction during the study period had no major effect on the stream isotope dynamics. Supplementary short-term (~14 months) sampling of mobile soil water in dominant soil-land use units also revealed that agricultural practices (ploughing of poorly draining soils and soil compaction due to grazing on freely draining soils) resulted in subtle MTT variations in soil water in the upper profile. Overall, the isotope dynamics and inferred MTTs suggest that the evolution of stream water ages in such a complex human-influenced environment are largely related to near-surface soil processes and the dominant soil management practices. This has direct implications for understanding and managing flood risk and contaminant transport in such environments.  相似文献   

19.
湖泊蒸发量的准确估算对于水文学、气象学和湖泊学等研究有重要的意义.基于2013-2015年太湖水量收支资料、气象观测数据和稳定同位素观测资料,采用稳定同位素质量守恒模型、水量平衡法和Priestley-Taylor模型估算太湖蒸发量,分析太湖蒸发量的季节变化和年际变化特征,并以Priestley-Taylor模型结果为参考值,评价水量平衡法和同位素质量守恒方程的计算精度.结果表明:5-9月太湖蒸发量较高,冬季最低.2013-2015年太湖年总蒸发量分别为1069、894和935 mm,蒸发量的年际变化受到天气条件的影响.2013年12月2014年11月期间,用Priestley-Taylor模型计算的湖泊蒸发量为885 mm;同位素质量守恒模型的估算结果较一致,为893 mm;而水量平衡方程的估算结果明显偏高,为1247 mm.  相似文献   

20.
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub-daily and seasonal time scales in a humid boreal forest. This study relies on field-based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir-white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400-m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow-free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号