首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salinization is a process impacting groundwater quality and availability across much of southern Louisiana, USA. However, a broad divergence of opinion exists regarding the causes of this elevated salinity: updip-migrating marine waters from the Gulf of Mexico, saline fluids migrating up fault planes, movement of water from salt domes, and/or remnant seawater from the last major marine transgression. The Mississippi River Alluvial Aquifer (MRAA) in south-central Louisiana is recharged by the Mississippi River, and there are discharge zones to the west and east. Recharge waters from the Mississippi River are fresh, but Cl levels in the western portions of the aquifer are as high as 1000 mg/L. The aquifer is an important source of water for several municipalities and industries, but prior to this study the source(s) of the elevated salinity or whether the salinization can be remediated had not been determined.The low Br/Cl ratios in the groundwaters are consistent with a saline endmember produced by subsurface dissolution of salt domes, not a marine source. The H and O isotopic systematics of the aquifer waters indicate meteoric sources for the H2O, not marine waters or diagenetically-altered deep brines. The westward salinization of aquifer water represents a broad regional process, instead of contamination by point sources. Mapping of spatial variations in salinity has permitted the identification of specific salt domes whose subsurface dissolution is producing waters of elevated salinity in the aquifer. These include the Bayou Choctaw and St. Gabriel domes, and possibly the Bayou Blue dome. Salinization is a natural, on-going process, and the potential for remediation or control is slight, if not non-existent.  相似文献   

2.
3.
In this investigation, four scenarios were used to quantify the balance between the benefits of levees for flood protection and their potential to increase flood risk using Hazards U.S. Multi-Hazard flood-loss software and hydraulic modeling of the Middle Mississippi River (MMR). The goals of this study were (1) to quantify the flood exposure under different flood-control configurations and (2) to assess the relative contributions of various engineered structures and flood-loss strategies to potential flood losses. Removing all the flood-control structures along the MMR, without buyouts or other mitigation, reduced the average flood stages between 2.3 m (100-year flood) and 2.5 m (500-year), but increased the potential flood losses by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by 155 million for the 100-year flood, but were decreased by $109 million for the 500-year flood. Thus, agricultural levees along the MMR protect against small- to medium-size floods (up to the ~100-year flood level) but cause more damage than they prevent during large floods such as the 500-year flood. Buyout costs for the all the buildings within the 500-year floodplain downstream of urban flood-control structures near St. Louis are ~40% less than the cost of repairing the buildings damaged by the 500-year flood. This suggests large-scale buyouts could be the most cost-effective option for flood loss mitigation for properties currently protected by agricultural levees.  相似文献   

4.
The effects of discharge of municipal wastes on water quality within the lower Mississippi River below Old River have been reevaluated using published water quality data in the Louisiana reach of the river for the water years 1974–1984. A novel graphical technique has facilitated the evaluation of upriver controls on water quality and the identification of sources and sinks along the lower Mississippi. Comparison of calculated annual fluxes at different downstream monitoring stations has simplified some of the problems inherent in evaluating analyses of samples collected from different water masses during a typical sampling run. The absolute concentrations of chloride, nitrite plus nitrate, total phosphorous, dissolved oxygen, BOD, and COD are all strongly dependent on processes occurring upriver. Nonpoint influx of materials from agricultural wastes and natural plant debris may be the dominant upstream sources of N, P, BOD, and COD. Increases in chloride and phosphorous downstream within the Lower Mississippi appear to be caused by discharge of industrial wastes. Nitrogen fluxes decrease downriver, except where there is local discharge of high-N, high-P industrial waste water, possibly from fertilizer plants. Removal of N and increases in BOD may be due in part to biological uptake. High river discharge rates and efficient, natural processes of reaeration maintain high oxygen saturation levels. With the exception of an increase in bacterial count, the discharge of municipal waste into the Mississippi River in Louisiana appears to have had no significant effect on water quality, a finding consistent with the earlier U.S. Geological Survey study of Wells (1980). It would be highly desirable for future mass balance studies if existing water quality programs on the Mississippi River were to adopt a Lagrangian sampling approach.  相似文献   

5.
Based on satellite observations of Earth’s time variable gravity field from the Gravity Recovery and Climate Experiment (GRACE), it is possible to derive variations in terrestrial water storage, which includes groundwater, soil moisture, and snow. Given auxiliary information on the latter two, one can estimate groundwater storage variations. GRACE may be the only hope for groundwater depletion assessments in data-poor regions of the world. In this study, soil moisture and snow were simulated by the Global Land Data Assimilation System (GLDAS) and used to isolate groundwater storage anomalies from GRACE water storage data for the Mississippi River basin and its four major sub-basins. Results were evaluated using water level records from 58 wells set in the unconfined aquifers of the basin. Uncertainty in the technique was also assessed. The GRACE-GLDAS estimates compared favorably with the well based time series for the Mississippi River basin and the two sub-basins that are larger than 900,000 km2. The technique performed poorly for the two sub-basins that have areas of approximately 500,000 km2. Continuing enhancement of the GRACE processing methods is likely to improve the skill of the technique in the future, while also increasing the temporal resolution.  相似文献   

6.
7.
 Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). Received, March 1999 / Revised, July 1999 / Accepted, July 1999  相似文献   

8.
In the Hetai goldfield, Guangdong Province, China, samples including rocks, soils and leaves of four plants (Pinus massoniana, Rhodomyrms tomenlosa, D. linearis var. dichotoma and Embelia laeta) collected from the gold mineralization zone and the background area were analyzed for Au, Ag, Cu, Pb, Zn, Hg, As and physiological parameters. The objective of this investigation is to study the geochemical and biogeochemical characteristics of studied plants, aiming at biogeochemical methods in Au exploration. The goldfield region shows geochemical and biogeochemical anomalies. Abundances of Au in rocks, soils, plants and the leaf pigments in the mineralized area are much higher than those in the surrounding region. The plants display unhealthy physiological and ecological characteristics in the Hetai goldfield area. The cell structures of the goldfield plants were anomalous and aberrant, and there were many nano-metal particles diffused in mitochondria and chloroplasts. Macro- and microscopic evidences of the vegetation in the goldfield areas are distinctly different from the background regions. The strongly anomalies in responses to Au are profound in further geochemical and botanic exploration studies.  相似文献   

9.
Larsen  Daniel  Paul  Justin  Cox  Randy 《Hydrogeology Journal》2021,29(4):1421-1444
Hydrogeology Journal - Groundwater from the Quaternary Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR), USA, has higher salinity compared to other MRVA...  相似文献   

10.
The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6 m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6 m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory.  相似文献   

11.
This study investigated the importance of rainfall and various geomorphological and geometrical factors to the vulnerability of earthen levees to slump slides. The study was performed using a database including 34 slump slides that occurred in the lower Mississippi River levee system from 2008 to 2009. The impact of rainfall within the six months prior to slide occurrence was studied for 23 slides for which an accurate occurrence date was available. Several variables were used to develop a logistic regression model to predict the probability of slump slide occurrence. The proposed model was verified for both slide and non-slide cases. The regression analysis depicts the impact of channel width, river sinuosity index, riverbank erosion, channel shape condition and distance to river. Excluding the sinuosity index, the impact of the other independent variables examined was found to be significant. Occurrence of riverbank erosion around the slide locations was the most significant predictor factor. A channel width of less than 1000?m was ranked as the second most significant variable. The proposed model can aid in locating high-risk areas on levees in order to take prompt protective measures, increase monitoring efforts and enable early response under emergency conditions.  相似文献   

12.
The period in the Upper Mississippi Valley (UMV) from about 25 000 years B.P. until the time of strong human influence on the landscape beginning about 150–200 years ago can be characterized by three distinctly different alluvial episodes. The first episode is dominated by the direct and indirect effects of Late Wisconsin glacial ice in the basin headwaters. This period, which lasted until about 14 000 years B.P., was generally a time of progressive valley aggradation by a braided river system transporting large quantities of bedload sediment. An island braided system evolved during the second episode, which extended from about 14 000 to 9000 years B.P. The second episode is associated with major environmental changes of deglaciation when occurrences of major floods and sustained flows of low sediment concentration from drainage of proglacial lakes produced major downcutting. By the time of the beginning of the third episode about 9000 years B.P., most vegetation communities had established their approximate average Holocene locations. The change of climate and establishment of good vegetation cover caused upland landscapes of the UMV to become relatively stable during the Holocene in comparison to their relative instability during the Late Wisconsin. However, Holocene remobilization of Late Wisconsin age sediment stored in tributary valleys resulted in a return to long-term upper Mississippi River aggradation. The dominance of Holocene deposition over transportation reflects the abundance of sandy bedload sediment introduced from tributaries and the situation that energy conditions for floods and the hydraulic gradient of the upper Mississippi River are much less for the Holocene than they were for the Late Wisconsin and deglaciation periods.Outburst floods from glacial lakes appear to have been common in the UMV during the Late Wisconsin and especially during deglaciation. Magnitudes for the Late Wisconsin floods are generally poorly understood, but an estimate of 10 000–15 000 m3 s−1 was determined for one of the largest events in the northern UMV based on heights of paleo-foreset beds in a flood unit deposited in the Savanna Terrace. For comparison, the great flood of 1993 on the upper Mississippi River was about 12 000 m3 s−1 at Keokuk, Iowa, near the Des Moines River confluence where it represented the 500-year event in relation to modem flood series. Exceptionally large outburst floods derived from the rapid drainage of pro-glacial Lake Michigan and adjacent smaller proglacial lakes between about 16 000 and 15 500 years B.P. are a likely cause of the final diversion of the Mississippi River through the Bell City-Oran Gap at the upstream end of the Lower Mississippi Valley (LMV). The largest outburst flood from northern extremities of the UMV appears to have occurred between about 11700 and 10 800 years B.P. when the southern outlet of Lake Agassiz was incised. Based on the probable maximum capacity of the Agassiz flood channel 600 km downstream near the junction of the Wisconsin and Mississippi Rivers, the Agassiz flood discharge apparently did not exceed 30 000 m3 s−1. However, if the Agassiz flood channel here is expanded to include an incised component, then the flood discharge maximum could have been as large as 100,000 to 125 000 m3 s−1. The larger flood is presently viewed as unlikely, however, because field evidence suggests that the incised component of the cross-section probably developed after the main Agassiz flood event. Nevertheless, the large Agassiz flood between about 11 700 and 10 800 years B.P. produced major erosional downcutting and removal of Late Wisconsin sediment in the UMV. This flood also appears to be mainly responsible for the final diversion of the Mississippi River through Thebes Gap in extreme southwestern Illinois and the formation of the Charleston alluvial fan at the head of the LMV.After about 9000 years B.P. prairie-forest ecotones with associated steep seasonal climatic boundaries were established across the northern and southern regions of the UMV. The general presence of these steep climatically sensitive boundaries throughout the Holocene, in concert with the natural tendency for grasslands to be especially sensitive to climatic change, may partially explain why widespread synchroneity of Holocene alluvial episodes is recognized across the upper Mississippi River and Missouri River drainage systems. Comparison of estimated beginning ages of Holocene flood episodes and alluvial chronologies for upper Mississippi River and Missouri River systems with beginning ages for LMV meander belts and delta lobes shows a relatively strong correlation. At present, dating controls are not sufficiently adequate and confidence intervals associated with the identified ages representing system changes are too large to establish firm causal connections. Although the limitations of the existing data are numerous, the implicit causal connections suggested from existing information suggest that further exploration would be beneficial to improving the understanding of how upper valley hydrological and geomorphic events are influencing hydrological and geomorphic activity in the LMV. Since nearly 80% of the Mississippi River drainage system lies upstream of the confluence of the Mississippi and Ohio Rivers, there is a strong basis for supporting the idea that UMV fluvial activity should be having a strong influence on LMV fluvial activity. If this assertion is correct, then the traditional assignment of strong to dominant control by eustatic sea level variations for explaining channel avulsions, delta lobes, and meander belts in the LMV needs re-examination. A stronger role for upper valley fluvial activity as a factor influencing lower valley fluvial activity does not disregard the role of eustatic sea level, tectonic processes or other factors. Rather, upper valley fluvial episodes or specific events such as extreme floods may commonly serve as a “triggering mechanism” that causes a threshold of instability to be exceeded in a system that was poised for change due to sea level rise, tectonic uplift, or other environmental factors. In other situations, the upper valley fluvial activity may exert a more dominant control over many LMV fluvial processes and landforms as frequently was the case during times of glacial climatic conditions.  相似文献   

13.
Sediment dynamics in the lowermost Mississippi River   总被引:1,自引:0,他引:1  
There is much to be gained from investigating sediment dynamics in the lower Mississippi system, the largest river in terms of discharge and sediment load in North America. Such work can improve conceptual knowledge concerning downstream changes at the lower end of large river systems and can be applied to manage sediment diversions for wetland restoration in south Louisiana. Suspended sediment dynamics in the lowermost Mississippi River system in Louisiana are characterized using three approaches: (1) temporal changes in discharge-suspended sediment relationships showing interannual variations and the effects of floods over short timescales; (2) empirical relationships between discharge and suspended sediment variables at various locations; and (3) downstream changes in discharge-suspended sediment relationships. Interpretation of this data set is enhanced with other secondary data regarding processes, morphology, and bed materials.

Upstream, near Old River, LA, empirical relationships show nonlinearity, particularly in fine sediments, with decreased concentrations at highest discharges. During high discharge years, suspended sediment concentration peaks precede discharge crests by 40–85 days. The lead generally decreases with decreasing discharge maxima so that in low discharge years sediment peaks and discharge crests closely coincide in time. Downstream, near Belle Chasse, LA, fine bottom materials are resuspended and the timing of sediment peaks and discharge crests is coincident, regardless of flow magnitude. Conceptually, results suggest caution when generalizing about the relative timing of the sediment wave and flood wave and their downstream progression. These phenomena are influenced by local bed material and hydraulic conditions, and depend on the causative factors of sediment peaks. From an applied perspective, diversions should be managed differently depending upon where they are constructed along the river and upon the magnitude of the annual maximum flow. During high discharge years, when concerns for navigation and water supply are minimal, flow should be diverted on the rising limb upstream, near Old River, and during the discharge crest downstream near New Orleans.  相似文献   


14.
Larsen  Daniel  Paul  Justin  Cox  Randy 《Hydrogeology Journal》2021,29(4):1691-1691
Hydrogeology Journal - A Correction to this paper has been published: https://doi.org/10.1007/s10040-021-02350-y  相似文献   

15.
Biogeochemical processes occurring near the sediment-water interface of shallow (≈20 m) water sediments lying beneath the Mississippi River plume on the Louisiana shelf were studied using benthic chambers and sediment cores. Three sites were chosen with distinctly different characteristics. One was overlain by oxic water where aerobic respiration dominated organic matter remineralization. The second site was overlain by oxic water but organic matter remineralization was dominated by sulfate reduction. The third site was overlain by hypoxic water and aerobic remineralization was of minor significance. Major differences were observed in the fluxes of CO2(17–56 mmol m−2 d−1), O2(2–56 mmol m−2 d−1) and nutrients (e.g., NH4 +, 2.6–4.2 mmol m−2 d−1) across the sediment-water interface, and the relative importance of different electron acceptors, even though the sites were in close proximity and at nearly the same water depth. Large variations in the efficiency of organic-C burial (3%–51%) were also calculated based on a simplified model of the relationships between the fraction of organic matter remineralized by sulfate reduction and the fraction of sulfide produced that is buried as pyrite. These observations demonstrate the high degree of spatial heterogeneity of benthic biogeochemistry in this important near-deltaic environment.  相似文献   

16.
In this study, we examined the temporal changes of terrestrially-derived particulate organic carbon (POC) in the lower Mississippi River (MR) and in a very limited account, the upper tributaries (Upper MR, Ohio River, and Missouri River). We used for the first time a combination of lignin-phenols, bulk stable carbon isotopes, and compound-specific isotope analyses (CSIA) to examine POC in the lower MR and upper tributaries.A lack of correlation between POC and lignin phenol abundances (Λ8) was likely due to dilution effects from autochthonous production in the river, which has been shown to be considerably higher than previously expected. The range of δ13C values for p-hydroxycinnamic and ferulic acids in POC in the lower river do support that POM in the lower river does have a significant component of C4 in addition to C3 source materials. A strong correlation between δ13C values of p-hydroxycinnamic, ferulic, and vanillyl phenols suggests a consistent input of C3 and C4 carbon to POC lignin while a lack of correlation between these same phenols and POC bulk δ13C further indicates the considerable role of autochthonous carbon in the lower MR POC budget. Our estimates indicate an annual flux of POC of 9.3 × 108 kg y−1 to the Gulf of Mexico. Total lignin fluxes, based on Λ8 values of POC, were estimated to be 1.2 × 105 kg y−1. If we include the total dissolved organic carbon (DOC) flux (3.1 × 109 kg y−1) reported by [Bianchi T. S., Filley T., Dria K. and Hatcher, P. (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim. Cosmochim. Acta68, 959-967.], we get a total organic carbon flux of 4.0 × 109 kg y−1. This represents 0.82% of the annual total organic carbon supplied to the oceans by rivers (4.9 × 1011 kg).  相似文献   

17.
This paper describes the hydrographic observations in the southeastern Arabian Sea (SEAS) during two cruises carried out in March–June 2003 as part of the Arabian Sea Monsoon Experiment. The surface hydrography during March–April was dominated by the intrusion of low-salinity waters from the south; during May–June, the low-salinity waters were beginning to be replaced by the highsalinity waters from the north. There was considerable mixing at the bottom of the surface mixed layer, leading to interleaving of low-salinity and high-salinity layers. The flow paths constructed following the spatial patterns of salinity along the sections mimic those inferred from numerical models. Time-series measurements showed the presence of Persian Gulf and Red Sea Waters in the SEAS to be intermittent during both cruises: they appeared and disappeared during both the fortnight-long time series.  相似文献   

18.
Dissolved organic matter (DOM), a mixture of numerous organic compounds of 30 to 300000 D, exists in all natural water resources including rivers, lakes and oceans, and plays a very important role in global carbon cycle and ecology. The DOM molecules absorb UV light strongly in short wavelengths and prevent microorganisms from being damaged by solar UV irradiation. Meanwhile, the large DOM molecules are then photodegraded into inorganic carbon and smaller organic molecules which are easier for bacterioplankton to digest. The Arkansas River is one of the largest rivers in the US, and a major input of organic materials to the Mississippi River and Gulf of Mexico. However, the photochemical properties of the DOM in the river water have not been investigated. To study this photodegradation process of the Arkansas River, water samples from the river were collected, filtered, sealed into quartz flasks, and exposed to sunlight for up to 15 hours. Some samples were retrieved from the flasks at certain time intervals. The intensity of the sunlight was measured during the exposure process at 30 min to 1 hr intervals. UV-vis absorption, fluorescence emission, 3D fluorescence spectra and DOM concentrations were determined for all retrieved samples. It was found that the total DOM concentration decreased while the dissolved inorganic carbon (DIC) concentration increased in the samples. UV absorption and fluorescence intensity of DOM decreased exponentially. The disappearance rate of UV absorption varied with wavelength. The loss of integral fluorescence was about 2.6 times that of the UV absorption at the excitation wavelength. In addition, the quantum yields also decreased, and the peak position of 3D fluorescence scan shifted to shorter wavelength.  相似文献   

19.
The area along middle and lower reaches of the Yangtze River is one of the biggest Cu belts in China. In the present study, the metallophytes growing in four copper (Cu)-enriched sites along the Yangtze River were surveyed to get detailed information about vegetation composition and their Cu uptake characteristics. In all sampling sites, Cu concentrations of soils were high; whereas the organic matter, acidity and salinity of most soils were on normal levels. Totally 82 plant species belonging to 45 families were recorded. All the species recorded in the present study exhibited high tolerances for Cu although they differed greatly in their abilities to accumulate Cu. Except for Rumex acetosa and Phytolacca acinosa, most species were Cu-excluders and no Cu hyperaccumulator was found. The Cu translocation factors (TFs) and bioconcentration factors (BCFs) of the 12 dominant species were fairly low, indicating low concentrations of Cu were translocated to the shoots of these species. On this basis, the potential utilization of these metallophytes for phytoremediation was discussed.  相似文献   

20.
Pollen preserved in a peat deposit from a large swamp, the Old Field in the Mississippi River Valley near Advance, Missouri, records radiocarbon-dated vegetation changes between 9000 and about 3000 years ago. The principal feature of both the percentage and influx pollen diagrams is the replacement of arboreal pollen, primarily Quercus, Fraxinus, and Cephalanthus, with Gramineae and NAP between 8700 and 5000 years BP. This vegetation shift is interpreted as reflecting a decrease in the extent of the Old Field swamp and its associated bottomland forest species along with the expansion of a grass-dominated herb community, as a result of a reduction in available ground water. The desiccation of the swamp during this period indicates a reduction in precipitation within the ground-water source area and a shift to a drier climate in the southern Midwest. The pollen suggests that the lowest water levels and driest climate in southeastern Missouri lasted from 8700 to 6500 years BP, at which time there is a partial reappearance of swamp species. Relatively dry conditions, however, continued until at least 5000 years BP. Although pollen influx data are lacking from the upper part of the profile, the relative pollen frequencies suggest an increase in trees after 5000 BP. The replacement of the arboreal vegetation by grasses and herbs between 8700 and 5000 years BP reflects the period of maximum expansion of the Prairie Peninsula in southeastern Missouri. The Old Field swamp provides the first pollen evidence that the vegetational changes along the southern border of the Prairie Peninsula were chronologically similar to those on the northern and northeastern margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号