首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 230 毫秒
1.
2.
以往对沙波的研究多针对河流中下游、河口海岸段的细沙(粒径D<1 mm),而长江上游等卵砾石输移河段(D>2 mm)是否会出现沙波以及卵砾石沙波的临界条件,尚需开展进一步研究。通过长江上游九堆子、筲箕背等卵石滩的现场踏勘,观察到明显的天然沙波形态。采用中值粒径D50=1.8 mm和5.3 mm的天然沙和D50=4.8 mm的轻质沙进行水槽试验,成功模拟出砾石沙波。根据恒定均匀流条件下,产生沙波的比降、水位、流量等水流条件及试验沙的粒径、比重,提出卵砾石沙波的临界条件公式。结果表明,卵砾石沙波的临界条件可以用量纲起动功率w* 、R/D及比降S表达,并据此提出判别系数GDcr。当研究河段的卵砾石输移带上的水流条件满足判别系数GDcr,则可以判断能够产生沙波现象。  相似文献   

3.
The threshold of movement of sediment obtained from sandbanks within the Bristol Channel (UK) is investigated under unidirectional, oscillatory and combined flows. The experiments were undertaken in a recirculating, unidirectional laboratory flume containing an oscillating plate to simulate wave action, with movement along the same axis as the unidirectional flows. The sand samples consisted of cohesionless quartz grains with median grain sizes between 0·315 and 0·513 mm. The experiments were performed under flow velocities (measured at 2 cm above the bed) ranging between 0 and 24 cm s–1 and oscillatory currents (wave periods of 5, 12 and 15 s) ranging from 0 to 28 cm s–1. The critical conditions for the initiation of sediment movement were assessed, by visual observation, using the Yalin criterion. The results show that, under unidirectional flow, there is a slight overestimation of the threshold of naturally graded sediments derived on the basis of empirically derived threshold curves for artificially prepared sediments under similar flow conditions. In the case of oscillatory flows, the threshold for the natural sands is found to be higher than that predicted by previously derived empirical curves. Under combined flows, wave period is shown to control threshold conditions, with the unidirectional and oscillatory flow components combining in a linear fashion for long-period (12 s and 15 s) waves. In contrast, in the presence of short-period (5 s) waves, the unidirectional and oscillatory components of the flow appear to 'decouple'. For high orbital velocities, in both cases, the effect of the wave period on threshold diminishes.  相似文献   

4.
Innovative flume experiments were conducted in a recirculating straight flume. Zostera noltei meadows were sampled in their natural bed sediments in the field at contrasting stages of their seasonal growth. The aims of this study were: (i) to quantify the combined effects of leaf flexibility and development characteristics of Zostera noltei canopies on their interaction with hydrodynamics; and (ii) to quantify the role of Zostera noltei meadows in suspended sediment trapping and bed sediment resuspension related with changes in hydrodynamic forcing caused by the seasonal development of seagrasses. Velocity within the canopy was significantly damped. The attenuation in velocity ranged from 34 to 87% compared with bare sediments and was associated with a density threshold resulting from the flow‐induced canopy reconfiguration. The reduction in flow was higher in dense canopies at higher velocities than in less dense canopies, in which the reduction in flow was greater at low velocities. These contrasted results can be explained by competition between a rough‐wall boundary layer caused by the bed and a shear layer caused by the canopy. The velocity attenuation was associated with a two to three‐fold increase in bottom shear stress compared with unvegetated sediment. Despite the increase in near‐bed turbulence, protection of the sediment against erosion increased under a fully developed meadow, while sediment properties were found to be the main factor controlling erosion in a less developed meadow. Deposition fluxes were higher on the vegetated bed than on bare sediments, and these fluxes increased with leaf density. Fewer freshly deposited sediments were resuspended in vegetated beds, resulting in an increase in net sediment deposition with meadow growth. However, in the case of a very high leaf area index, sediment was mostly deposited on leaves, which facilitated subsequent resuspension and resulted in less efficient sediment trapping than in the less developed meadow.  相似文献   

5.
The ability of mud aggregates to form depositional bedforms is of considerable sedimentological importance for explaining the geomorphology of the Channel Country of central Australia as well as for understanding the depositional environment of certain argillaceous fluvial sequences in the rock record. The sediment transport and bedform development of mud aggregates from the floodplain of Cooper Creek, central Australia, was examined in a laboratory flume over a range of flow conditions. The aggregates were found to be clay-rich (>60% clay), nonsaline (<0·02%), fine sand-sized (mean d50=0·13 mm), low density (2300 kg m?3) and water-stable. Three wetting rates were applied to the sediment in the laboratory prior to wet sieving to replicate various field conditions and results in three mean aggregate sizes. Immersion wetting (no tension) represents inundation of the sediment by overland flow and results in aggregates of 0·13 mm. Tension wetting at 20 and 50 mm corresponds to high- and low-intensity rainfall and results in mean d50 sizes of 0·75 and 0·70 mm, respectively. Immersion wetting is the most applicable wetting mode for hydraulic transport of aggregated sediment on the Cooper Creek floodplain. Considerable variability in sediment transport rates in the field could result from differences in pre-wetting of the aggregated sediment. The dominance of smectite in the clay mineralogy of the sediment is an important factor in the development of the aggregates; disaggregated sediment reaggregated in a laboratory after 2–3 wetting/drying cycles. In flume experiments, bedforms of aggregated mud ranging from lower-regime plane beds to upper-regime antidunes were observed. The aggregates moved predominantly as bedload with measured peak bedload concentrations being high compared with other flume studies. The highly mobile nature of this sediment in the field is due to the ready entrainment of low-density aggregates in the form of self-mulching vertisols across extensive floodplains. The occurrence of low-sinuosity braid-like channels on this extensive low-gradient semi-arid floodplain can be attributed to: (a) the passage of floodwaters across a floodplain with steeper gradients than adjacent more sinuous anastomosing channels; (b) the highly mobile nature of the low-density sediment aggregates; (c) the ability of the aggregates to be transported as bedload; and (d) their durable nature during transport.  相似文献   

6.
淤泥质浅滩泥沙临界起动切应力剖面确定   总被引:1,自引:0,他引:1       下载免费PDF全文
为了确定淤泥质浅滩泥沙的临界起动切应力垂线剖面,采用音叉密度计在淤泥质连云港徐圩浅滩进行了定点密度垂线分布测量,并针对该海域的泥沙利用长水槽和环形槽开展了泥沙起动室内试验。淤泥密度现场结果表明,浅滩泥沙密度与深度满足对数型关系;室内试验得出密度1 050~1 400 kg/m3的泥沙临界起动切应力值为0.1~1.0 Pa,泥沙临界切应力与密度呈指数关系;进而确定了临界起动切应力与深度的关系即临界起动切应力剖面,该剖面关系式可供数学模型模拟淤泥质浅滩的泥沙起动过程参考。  相似文献   

7.
Interpreting the physical dynamics of ancient environments requires an understanding of how current‐generated sedimentary structures, such as ripples and dunes, are created. Traditional interpretations of these structures are based on experimental flume studies of unconsolidated quartz sand, in which stepwise increases in flow velocity yield a suite of sedimentary structures analogous to those found in the rock record. Yet cyanobacteria, which were excluded from these studies, are pervasive in wet sandy environments and secrete sufficient extracellular polysaccharides to inhibit grain movement and markedly change the conditions under which sedimentary structures form. Here, the results of flume experiments using cyanobacteria‐inoculated quartz sand are reported which demonstrate that microbes strongly influence the behaviour of unconsolidated sand. In medium sand, thin (ca 0·1 to 0·5 mm thick) microbial communities growing at the sediment–water interface can nearly double the flow velocity required to produce the traditional sequence of ripple→dune→plane‐bed lamination bedforms. In some cases, these thin film‐like microbial communities can inhibit the growth of ripples or dunes entirely, and instead bed shear stresses result in flip‐over and rip‐up structures. Thicker (ca≥1 mm thick) microbial mats mediate terracing of erosional edges; they also, foster transport of multi‐grain aggregates and yield a bedform progression consisting of flip‐overs→roll‐ups→rip‐ups of bound sand.  相似文献   

8.
The nature of flow, sediment transport and bed texture and topography was studied in a laboratory flume using a mixed size-density sediment under equilibrium and non-equilibrium (aggradational, degradational) conditions and compared with theoretical models. During each experiment, water depth, bed and water surface elevation, flow velocity, bed shear stress, bedload transport and bed state were continuously monitored. Equilibrium, uniform flow was established with a discharge of about 0.05 m3 s?1, a flow depth of about 0.01 m, a flow velocity of about 0.81–0.88 m s?1, a spatially averaged bed shear stress of about 1.7–2.2 Pa and a sediment transport rate of about 0.005–0.013 kg m?1 s?1 (i.e. close to the threshold of sediment transport). Such equilibrium flow conditions were established prior to and at the end of each aggradation or degradation experiment. Pebble clusters, bedload sheets and low-lying bars were ubiquitous in the experiments. Heavy minerals were relatively immobile and occurred locally in high concentrations on the bed surface as lag deposits. Aggradation was induced by (1) increasing the downstream flow depth (flume tilting) and (2) sediment overloading. Tilt-induced aggradation resulted in rapid deposition in the downstream half of the flume of a cross-stratified deposit with downstream dipping pebbles (pseudo-imbricated). and caused a slight decrease in the equilibrium mean water surface slope and total bedload transport rate. These differences between pre- and post-aggradation equilibrium flow conditions are due to a decrease in the local grain roughness of the bed. Sediment overloading produced a downstream fining and thinning wedge of sediment with upstream dipping pebbles (imbricated), whereas the equilibrium flow and sediment transport conditions remained relatively unchanged. Degradation was induced by (1) decreasing the downstream flow depth (flume tilting) and (2) cutting off the sediment feed. Tilt-induced degradation produced rapid downstream erosion and upstream deposition due to flow convergence with little change to the equilibrium flow and sediment transport conditions. The cessation of sediment feed produced degradation and armour development, a reduction in the mean water surface slope and flow velocity, an increase in flow depth, and an exponential decrease in bedload transport rate as erosion proceeded. A bedload transport model predicted total and fractional transport rates extremely well when the coarse-grained (or bedform trough) areas of the bed are used to define the sediment available to be transported. A sediment routing model, MIDAS, also reproduced the equilibrium and non-equilibrium flow conditions, total and fractional bedload transport rates and changes in bed topography and texture very well.  相似文献   

9.
An integrated geophysical and sedimentological investigation of the Selvage sediment-wave field has revealed that the sediment waves are formed beneath unconfined turbidity currents. The sediment waves occur on the lower continental rise and display wavelengths of up to 1 km and wave heights of up to 6 m. Wave sediments consist of interbedded turbidites and pelagic/hemipelagic marls and oozes. Nannofossil-based dating of the sediments indicates a bulk sedimentation rate of 2·4 cm 1000 years–1, and the waves are migrating upslope at a rate of 0·28 m 1000 years–1. Sediment provenance studies reveal that the turbidity currents maintaining the waves are largely sourced from volcanic islands to the south. Investigation of existing models for sediment-wave formation leads to the conclusion that the Selvage sediment waves form as giant antidunes. Simple numerical modelling reveals that turbidity currents crossing the wave field have internal Froude numbers of 0·5–1·9, which is very close to the antidune existence limits. Depositional flow velocities range from <6 to 125 cm–1. There is a rapid increase in wavelength and flow thickness in the upper 10 km of the wave field, which is unexpected, as the slope angle remains relatively constant. This anomaly is possibly linked to a topographic obstacle just upslope of the sediment waves. Flows passing over the obstacle may undergo a hydraulic jump at its boundary, leading to an increase in flow thickness. In the lower 15 km of the wave field, flow thickness decreases downslope by 60%, which is comparable with results obtained for other unconfined turbidity currents undergoing flow expansion.  相似文献   

10.
The effects of seagrass bed geometry on wave attenuation and suspended sediment transport were investigated using a modified Nearshore Community Model (NearCoM). The model was enhanced to account for cohesive sediment erosion and deposition, sediment transport, combined wave and current shear stresses, and seagrass effects on drag. Expressions for seagrass drag as a function of seagrass shoot density and canopy height were derived from published flume studies of model vegetation. The predicted reduction of volume flux for steady flow through a bed agreed reasonably well with a separate flume study. Predicted wave attenuation qualitatively captured seasonal patterns observed in the field: wave attenuation peaked during the flowering season and decreased as shoot density and canopy height decreased. Model scenarios with idealized bathymetries demonstrated that, when wave orbital velocities and the seagrass canopy interact, increasing seagrass bed width in the direction of wave propagation results in higher wave attenuation, and increasing incoming wave height results in higher relative wave attenuation. The model also predicted lower skin friction, reduced erosion rates, and higher bottom sediment accumulation within and behind the bed. Reduced erosion rates within seagrass beds have been reported, but reductions in stress behind the bed require further studies for verification. Model results suggest that the mechanism of sediment trapping by seagrass beds is more complex than reduced erosion rates alone; it also requires suspended sediment sources outside of the bed and horizontal transport into the bed.  相似文献   

11.
为揭示内部渗流对海岸冲流带泥沙起动的影响,系统地开展了斜坡海床冲流特性与泥沙起动机理研究。通过室内水槽开展了孤立波在可渗透和不可渗透斜坡海床上的冲流试验,测试了冲流过程中波高、波速等变化规律;建立了渗透海床冲流数值模型并通过试验结果进行验证;深入分析了床面渗流对其波浪流场动态特征以及床面泥沙起动的影响机理。研究表明,床面渗流作用加剧波浪的不对称性,在波浪上冲过程中因床面强入渗作用而增大了床面切应力;回流过程因入渗所造成流量损失而导致床面切应力减小。床面渗流引起床面颗粒有效重度和切应力变化而导致泥沙希尔兹数大大增加,加剧了泥沙起动现象,且床面切应力改变是引起泥沙希尔兹数变化的主要因素。  相似文献   

12.
Tidal currents and the spatial variability of tidally-induced shear stress were studied during a tidal cycle on four intertidal mudflats from the fluvial to the marine part of the Seine estuary. Measurements were carried out during low water discharge (<400 m3 s−1) in neap and spring tide conditions. Turbulent kinetic energy, covariance, and logarithmic profile methods were used and compared for the determination of shear stress. The cTKE coefficient value of 0.19 cited in the literature was confirmed. Shear stress values were shown to decrease above mudflats from the mouth to the fluvial part of the estuary due to dissipation of the tidal energy, from 1 to 0.2 N m−2 for spring tides and 0.8 to 0.05 N m−2 for neap tides. Flood currents dominate tidally-induced shear stress in the marine and lower fluvial estuary during neap and spring tides and in the upper fluvial part during spring tides. Ebb currents control tidally-induced shear stress in the upper fluvial part of the estuary during neap tides. These results revealed a linear relationship between friction velocities and current velocities. Bed roughness length values were calculated from the empirical relationship given by Mitchener and Torfs (1996) for each site; these values are in agreement with the modes of the sediment particle-size distribution. The influence of tidal currents on the mudflat dynamics of the Seine estuary was examined by comparing the tidally-induced bed shear stress and the critical erosion shear stress estimated from bed sediment properties. Bed sediment resuspension induced by tidal currents was shown to occur only in the lower part of the estuary.  相似文献   

13.
为解析波流边界层内泥沙运动,建立了基于水动力-泥沙-床面互馈过程的波流边界层1DV泥沙数学模型,可用于模拟不同床面形态下粉沙-沙的含沙量过程。床面形态模块提供床面形态类型和相应参数;给出了平底和沙波床面粗糙高度和泥沙扩散系数的确定方法;采用了适宜粉沙及沙的制约沉速、底部参考浓度和起动剪切应力等公式;引入含沙量层化效应和制约沉降反映水动力与泥沙之间的相互影响。水槽试验资料验证表明,建立的模型较好地模拟了不同床面不同波流组合条件下的含沙量剖面。在此基础上,讨论了不同床面含沙量剖面模拟方法的差异,指出床面形态是决定含沙量变化的重要因素之一,仅通过改变床面粗糙高度不足以反映漩涡沙波床面的含沙量剖面特征。该模型可为研究波流边界层内泥沙运动和物质输运提供工具。  相似文献   

14.
On the transition between 2D and 3D dunes   总被引:3,自引:0,他引:3  
Sediment transport in sand-bedded alluvial channels is strongly conditioned by bedforms, the planimetric morphology of which can be either two- or three-dimensional. Experiments were undertaken to examine the processes that transform the bed configuration from two-dimensional (2D) dunes to three-dimensional (3D) dunes. A narrowly graded, 500 μm size sand was subjected to a 0·15 m deep, non-varying mean flow ranging from 0·30 to 0·55 m sec−1 in a 1 m wide flume. Changes in the planimetric configuration of the bed were monitored using a high-resolution video camera that produced a series of 10 sec time-lapsed digital images. Image analysis was used to define a critical value of the non-dimensional span (sinuosity) of the bedform crestlines that divides 2D forms from 3D forms. Significant variation in the non-dimensional span is observed that cannot be linked to properties of the flow or bedforms and thus appears random. Images also reveal that, once 2D bedforms are established, minor, transient excesses or deficiencies of sand are passed from one bedform to another. The bedform field appears capable of absorbing a small number of such defects but, as the number grows with time, the resulting morphological perturbations produce a transition in bed state to 3D forms that continue to evolve, but are pattern-stable. The 3D pattern is maintained by the constant rearrangement of crestlines through lobe extension and starving downstream bedforms of sediment, which leads to bifurcation. The experiments demonstrate that 2D bedforms are not stable in this calibre sand and call into question the reliability of bedform phase diagrams that use crestline shape as a discriminator.  相似文献   

15.
The ability to predict bedform migration in rivers is critical for estimating bed material load, yet there is no relation for predicting bedform migration (downstream translation) that covers the full range of conditions under which subcritical bedforms develop. Here, the relation between bedform migration rates and transport stage is explored using a field and several flume data sets. Transport stage is defined as the non‐dimensional Shields stress divided by its value at the threshold for sediment entrainment. Statistically significant positive correlations between both ripple and dune migration rates and transport stage are found. Stratification of the data by the flow depth to grain‐size ratio improved the amount of variability in migration rates that was explained by transport stage to ca 70%. As transport stage increases for a given depth to grain‐size ratio, migration rates increase. For a given transport stage, the migration rate increases as the flow depth to grain‐size ratio gets smaller. In coarser sediment, bedforms move faster than in finer sediment at the same transport stage. Normalization of dune migration rates by the settling velocity of bed sediment partially collapses the data. Given the large amount of variability that arises from combining data sets from different sources, using different equipment, the partial collapse is remarkable and warrants further testing in the laboratory and field.  相似文献   

16.
Besides particle size, density and shape, the erodibility of a sediment bed depends also upon the exposure to prethreshold velocities in the overlying flow. Such flow effectively rearranges the grains (at and below the bed surface), causing them to become more resistant to subsequent erosion. The effects of the ‘stress history’, leading up to the critical condition for sediment movement, are investigated for unidirectional flows generated in a recirculating laboratory flume. The sediment beds investigated consisted of cohesionless quartz sand grains, with mean grain diameters of 0·194 mm (fine sand), 0·387 mm (medium sand) and 0·774 mm (coarse sand), with narrow particle-size distributions. The critical (threshold) shear velocity (target value) for the three beds was established, within 2·5 min of increasing the flow from zero velocity. The subsequent experiments were performed under prethreshold velocities at 70% (for 5, 10, 20, 40 and 80 min exposure duration), 80% (for 5, 10, 20, 40 and 80 min exposure duration), 90 and 95% (for 5, 10, 20, 40, 80 and 120 min exposure duration) of the target value. Following exposure to these different prethreshold conditions, the flow was increased then to reach actual critical conditions, within a period of 2·5 min. The critical condition for the initiation of sediment movement was established using visual observation (supplemented by video recordings), according to the Yalin criterion. The results show that if the exposure duration to prethreshold velocities remains constant, then the critical shear velocity increases with increasing prethreshold velocity. Likewise, if the prethreshold velocity remains constant, then the critical shear velocity increases with increasing exposure duration. In some circumstances, the critical shear velocity was found to increase by as much as 27%. An empirical formula is proposed to account for the exposure correction to be applied to the critical shear velocities of sand-sized sediment beds; this is prior to their inclusion into bedload transport formulae, for an improved prediction of the magnitude and nature of transport.  相似文献   

17.
This experimental investigation examined the controls on the geometry of cross‐sets formed by subaqueous dunes. A range of steady, unidirectional flow conditions spanning the field of dune existence was investigated, and aggradation rate ranged from 0 mm s?1 to 0·014 mm s?1. Data from an ultrasonic depth profiler consist of high‐resolution temporal and spatial series of bed profiles from which dune height and length, migration rate and the depth of trough scour were measured. Cross‐set thickness and length were measured from sediment peels. The size and shape of dunes from an equilibrium assemblage change continuously. Individual dunes commonly increase in height by trough scouring and, occasionally, by being caught‐up by the upstream dune. Both types of behaviour occur suddenly and irregularly in time and, hence, do not appear to depend on dunes further upstream. However, dune climbing or flattening is a typical response of dunes that disappear under the influence of the upstream dune. All types of behaviour occur at any flow velocity or aggradation rate. Successive dune‐trough trajectories, defined by dunes showing various behaviours, affect the geometry of the preserved cross‐sets. Mean cross‐set thickness/mean dune height averages 0·33 (±0·7), and mean cross‐set length/mean dune length averages 0·49 (±0·08), and both show no systematic variation with aggradation rate or flow velocity. Mean cross‐set thickness/mean cross‐set length tends to decrease with increasing flow velocity and Froude number, therefore allowing a qualitative estimation of flow conditions. Quantitative analysis of the temporal changes in the geometry and migration rate of individual dunes allows the development of a two‐dimensional stochastic model of dune migration and formation of cross‐sets. Computer realizations produced stacks of cross‐sets of comparable shape and thickness to laboratory flume observations, indicating a good empirical understanding of the variability of dune‐trough trajectories. However, interactions among dunes and aggradation rates of the order of 10?2 mm s?1 should be considered in future improved models.  相似文献   

18.
Open‐framework gravel (OFG) in river deposits is important because of its exceptionally high permeability, resulting from the lack of sediment in the pore spaces between the gravel grains. Fluvial OFG occurs as planar strata and cross strata of varying scale, and is interbedded with sand and sandy gravel. The origin of OFG has been related to: (1) proportion of sand available relative to gravel; (2) separation of sand from gravel during a specific flow stage and sediment transport rate (either high, falling or low); (3) separation of sand from gravel in bedforms superimposed on the backs of larger bedforms; (4) flow separation in the lee of dunes or unit bars. Laboratory flume experiments were undertaken to test and develop these theories for the origin of OFG. Bed sediment size distribution (sandy gravel with a mean diameter of 1·5 mm) was kept constant, but flow depth, flow velocity and aggradation rate were varied. Bedforms produced under these flow conditions were bedload sheets, dunes and unit bars. The fundamental cause of OFG is the sorting of sand from gravel associated with flow separation at the crest of bedforms, and further segregation of grain sizes during avalanching on the steep lee side. Sand in transport near the bed is deposited in the trough of the bedform, whereas bed‐load gravel avalanches down the leeside and overruns the sand in the trough. The effectiveness of this sorting mechanism increases as the height of the bedform increases. Infiltration of sand into the gravel framework is of minor importance in these experiments, and occurs mainly in bedform troughs. The geometry and proportion of OFG in fluvial deposits are influenced by variation in height of bedforms as they migrate, superposition of small bedforms on the backs of larger bedforms, aggradation rate, and changes in sediment supply. If the height of a bedform increases as it migrates downstream, so does the amount of OFG. Changes in the character of OFG on the lee‐side of unit bars depend on grain‐size sorting in the superimposed bedforms (dunes and bedload sheets). Thick deposits of cross‐stratified OFG require high bedforms (dunes, unit bars) and large amounts of aggradation. These conditions might be expected to occur during high falling stages in the deeper parts of river channels adjacent to compound‐bar tails and downstream of confluence scours. Increase in the amount of sand supplied relative to gravel reduces the development of OFG. Such increases in sand supply may be related to falling flow stage and/or upstream erosion of sandy deposits.  相似文献   

19.
A laboratory flume experiment was carried out in which the hydrodynamic and sedimentary behaviour of a turbidity current was measured as it passed through an array of vertical rigid cylinders. The cylinders were intended primarily to simulate aquatic vegetation canopies, but could equally be taken to represent other arrays of obstacles, for example forests or offshore wind turbines. The turbidity currents were generated by mixing naturally sourced, poly‐disperse sediment into a reservoir of water at concentrations from 1·0 to 10·0 g l?1, which was then released into the experimental section of the flume by removing a lock gate. For each initial sediment concentration, runs with obstacle arrays with solid plant fractions of 1·0% and 2·5%, and control cases with no obstacles, were carried out. The progress of the current along the flume was characterized by the array drag term, CDaxc (where CD is the array drag coefficient, at the frontal area of cylinders per unit volume, and xc is the position of the leading edge of the current along the flume). The downward depositional flux of sediment out of the current as it proceeded was measured at 13 traps along the flume. Analysis of these deposits divided them into fine (2·2 to 6·2 μm) and coarse (6·2 to 104 μm) fractions. At the beginning of their development, the gravity currents proceeded in an inertia‐dominated regime until CDaxc = 5. For CDax> 5, the current transitioned into a drag‐dominated regime. For both fine and coarse sediment fractions, the rate of sediment deposition tended to decrease gradually with distance from the source in the inertial regime, remained approximately constant at the early drag‐dominated regime, and then rose and peaked at the end of the drag‐dominated stage. This implies that, when passing through arrays of obstacles, the turbidity currents were able to retain sufficient sediment in suspension to maintain their flow until they became significantly influenced by the drag exerted by the obstacles.  相似文献   

20.
It is generally accepted that a gravel-bed river will aggrade if the supply of sediment to the river is increased. In a series of flume experiments using constant discharge and gravel feed rate, sand feed rates were increased to 6.1 times that of gravel. The slope of the bed decreased with increasing sand supply, indicating that the increased sediment load could be transported at the same rate due to a decrease in shear stresses. These results extend previous experiments to a wider range of boundary conditions. A recent surface transport model is used to predict the changes in bed composition and transport using the same sediment supply composition and feed rates as in the laboratory experiments. This model reasonably predicts a decrease in the reference shear stresses of the sand and gravel fractions as the sand supply is increased. An increase in sand supply can increase the mobility of gravel fractions in the stream bed, which can lead to bed degradation and preferential evacuation of these sediments from the river.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号