首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.  相似文献   

2.
An interactive three-dimensional chemistry-climate model combining models of the gas composition and general circulation of the lower and middle atmosphere is used to study the impact of changes in extra-atmospheric solar radiative fluxes induced by solar activity on the stratospheric heating and subsequent temperature and ozone variations in the stratosphere and troposphere. The results have shown that a change in the atmospheric radiative heating resulting from variations in solar activity has a direct effect on the temperature and circulation of the atmosphere. Atmospheric temperature variations affect the rates of temperature-dependent chemical reactions, and this is considered the first type of indirect impact of solar activity on the atmospheric gas composition. On the other hand, as a result of the variation in atmospheric heating, its circulation changes, thus affecting the transport of minor gases into the atmosphere. This effect is considered the second type of indirect impact of solar activity on atmospheric gases. The results of our calculations have shown that both types of indirect impact of the variation in solar activity on the atmospheric gas composition are comparable in order of magnitude to the direct impact of solar activity on atmospheric gases.  相似文献   

3.
The nonlinear propagation of acoustic pulses from a point source of an explosive character (surface explosion or volcano) throughout the atmosphere with stratified wind-velocity and temperature inhomogeneities is studied. The nonlinear distortions of acoustic pulse and its transformation into an N-wave during its propagation to the upper atmosphere are analyzed in the context of a modified Burgers’ equation which takes into account a geometric ray-tube divergence simultaneously with an increase in both nonlinear and dissipative effects with height due to a decrease in atmospheric density. The problem of reflection of a spherical N-wave from an atmospheric inhomogeneous layer with model vertical wind-velocity and temperature fluctuations having a vertical spectrum that is close to that observed within the middle atmosphere is considered. The relation between the parameters (form, length, frequency spectrum, and intensity) of signals reflected from an atmospheric inhomogeneous layer and the parameters of the atmospheric fine layered structure at reflection heights is analyzed. The theoretically predicted forms of signals reflected from stratified inhomogeneities within the stratosphere and the lower thermosphere are compared to the observed typical forms of both stratospheric and thermospheric arrivals from surface explosions and volcanoes in the zones of an acoustic shadow.  相似文献   

4.
Land, marine, and satellite observations have been used to study changes in methane concentrations in the lower atmosphere during the warm months of the year (July through October) in Arctic regions having different potentials for methane production. The Atmospheric Infrared Sounder (AIRS) data for 2002–2013 are used to explore the interplay between local methane sources in the terrestrial region of the Eurasian Arctic and on the Arctic shelf over the warm period of the year. Linear trends in atmospheric methane concentrations over different Arctic regions are calculated, and a hypothesis of the relation of concentration variations to climatic parameters is tested. The combination of land, marine, and satellite observation is used to develop a conceptual model of the atmospheric methane field in the terrestrial part of the Russian Arctic and on the Arctic shelf. It is shown that the modern methane growth rate in the Arctic does not exceed the Northern Hemisphere mean. It is concluded that the methane emission in the Arctic has little effect on global climate compared to other factors.  相似文献   

5.
It has been found that the sea-surface temperature and the characteristics of atmospheric circulation in the preceding months are closely related to the temperature and ice regime in winter months. This relationship is strikingly reflected over the strong ocean current regions and over the regions with quasi-permanent atmospheric center actions. It has also been shown that the influence of the ocean on the atmosphere is more pronounced over these regions. This relationship may offer a key for long-term forecasting of the sea-ice regime in winter. In addition, because there is an obvious instability, the stabilities of the correlation coefficients are analysed. In consideration of the fact that the formation of weather process changes with the variations of time scale, predictions for longer and shorter time scale processes are discussed separately.In conclusion, some forecasting results obtained and tests made in recent years are given.  相似文献   

6.
Simulation of the seasonal thermal structure in the Bohai Sea   总被引:1,自引:0,他引:1  
The seasonal thermal structure in the Bohai Sea are examined with a three-dimensional boroclinic primitive equation model for shelf sea.The evolution of the seasonal thermal stratification is well simulated.The stratification appears early in April,first in the area off Qinhuangdao and it is well developed in the middle of May.It intensifies with synoptic and neap-spring fluctuations throughout the summer and reaches its maximum in the middle of July.Eventually,it is destroyed at the end of September.There are cold water belts between well-mixed and stratified regions.They are loGated on the mixed side of tidal fronts,and coincide with the isolines for a temperature difference of 1-2℃ between surface and bottom.The sea surface temperature (SST) distribution shows local maxima at the head of three bays and to the south of Qinhuangdao during the summer.The Bohai Sea responds to the variability in the atmospheric forcing and in tides with the synoptic and neap-spring variations of SST,as well as in the stratification and in variable positions of tidal fronts.  相似文献   

7.
渤海及黄海北部处在中纬度地带,每年冬季都有不同程度的结冰现象。以辽东湾结冰时间最长,全部结冰日数平均为100多天,约占全年的三分之一。从全海区看,建国后冰情较重的有1957、1968、1969、1977年的1、2月份,尤其是1969年,渤海海面发生了该海区历史上罕见的冰封,整个海面几乎全部被海冰所覆盖,严重阻碍了海上的航运交通及海上石油开采工作,从而给国民经济带来很大损失。  相似文献   

8.
Numerical experiments with the ECHAM5 atmospheric general circulation model have been performed in order to simulate the influence of changes in the ocean surface temperature (OST) and sea ice concentration (SIC) on climate characteristics in regions of Eurasia. The sensitivity of winter and summer climates to OST and SIC variations in 1998–2006 has been investigated and compared to those in 1968–1976. These two intervals correspond to the maximum and minimum of the Atlantic Long-Period Oscillation (ALO) index. Apart from the experiments on changes in the OST and SIC global fields, the experiments on OST anomalies only in the North Atlantic and SIC anomalies in the Arctic for the specified periods have been analyzed. It is established that temperature variations in Western Europe are explained by OST and SIC variations fairly well, whereas the warmings in Eastern Europe and Western Siberia, according to model experiments, are substantially (by a factor of 2–3) smaller than according to observational data. Winter changes in the temperature regime in continental regions are controlled mainly by atmospheric circulation anomalies. The model, on the whole, reproduces the empirical structure of changes in the winter field of surface pressure, in particular, the pressure decrease in the Caspian region; however, it substantially (approximately by three times) underestimates the range of changes. Summer temperature variations in the model are characterized by a higher statistical significance than winter ones. The analysis of the sensitivity of the climate in Western Europe to SIC variations alone in the Arctic is an important result of the experiments performed. It is established that the SIC decrease and a strong warming over the Barents Sea in the winter period leads to a cooling over vast regions of the northern part of Eurasia and increases the probability of anomalously cold January months by two times and more (for regions in Western Siberia). This effect is caused by the formation of the increased-pressure region with a center over the southern boundary of the Barents Sea during the SIC decrease and an anomalous advection of cold air masses from the northeast. This result indicates that, to estimate the ALO actions (as well as other long-scale climatic variability modes) on the climate of Eurasia, it is basically important to take into account (or correctly reproduce) Arctic sea ice changes in experiments with climatic models.  相似文献   

9.
The Coastal Gulf of Alaska (CGOA) is productive, with large populations of fish, seabirds, and marine mammals; yet it is subject to downwelling-favorable coastal winds. Downwelling regions in other parts of the world are typically much less productive than their upwelling counterparts. Alternate sources of nutrients to feed primary production in the topographically complex CGOA are poorly known and difficult to quantify. Here we diagnose the output from a spatially nested, coupled hydrodynamic and lower trophic level model of the CGOA, to quantify both horizontal and vertical nutrient fluxes into the euphotic zone. Our nested model includes both nitrogen and iron limitation of phytoplankton production, and is driven by a fine-scale atmospheric model that resolves the effects of local orography on the coastal winds. Results indicate significant “rivers” of cross-shelf nitrogen flux due to horizontal advection, as well as “fountains” of vertical transport over shallow banks due to tidal mixing. Using these results, we constructed a provisional budget of nutrient transport among subregions of the CGOA. Contrary to expectations, this budget reveals substantial upwelling of nutrients over major portions of the shelf, driven by local wind-stress curl. These effects are large enough to overwhelm the smaller downwelling flux at the coast throughout the growing season. Vertical mixing by winds and tides, and horizontal flux from the deep basin, are other substantial contributors to nutrients above the 15-m horizon. These findings help to explain the productivity of this coastal ecosystem.  相似文献   

10.
通过对南海夏季风异常年夏季南海及周边地区主要海-气要素场的对比分析,得到以下主要结论:强、弱季风年夏季南海及周边地区的主要海-气要素都表现出明显的差异。强季风年夏季南海中南部地区低层西风加强、高层东风加强,以南海北部为中心存在气旋性距平环流,上升运动增强。相应地,南海及我国东南沿海地区对流和降水增强,而长江中下游地区降水偏少。弱季风年则表现出与强季风年几近相反的分布特征。此外,强季风年西太平洋副热带高压较弱季风年位置明显偏东、强度明显偏弱。与对流和降水的分布相对应,强、弱季风年夏季南海及周边地区大气热源状态的分布也表现出明显的差异,差别最显著的区域正是在南海及周边地区。在强季风年,西起孟加拉湾东至菲律宾以东的洋面上为较明显的热源增强区,而弱季风年则为明显的热源减弱区。此外,强、弱季风年,南海海域的海面高度、海洋环流、海表温度等表征海洋状况的要素分布也明显不同,分布形势几近相反。海温作为重要的外源强迫,不仅对季风环流的形成有重要作用,而且明显受到季风异常的影响,进而对局地的天气气候产生重要的滞后影响。  相似文献   

11.
影响东海气候的太阳活动信息分析   总被引:8,自引:2,他引:6  
采用逐次滤波法逐次提取东海气温资料序列中蕴涵的太阳活动影响信息并加以分析,发现东海气候年代际变化特征十分清楚,主要表现为:(1)突变性,东海夏季7月海平面层及对流层大气温度场在过去半个多世纪中发生过一次急剧变化,突变点是1978年7月.从1978年7月由历时30多年的温度偏低时期跃变为持续高温时期,高温期持续至20世纪末,升温幅度超过0.4℃.资料分析表明,整个对流层东海夏季大气温度都具有这种年代际变化特征;(2)高空气候持续增温型,东海夏季7月平流层中部10 hPa大气温度表现为一种波动式的持续升温过程,50多年来温度升高4℃,年升温率超过0.075℃/a.东海平流层底部100 hPa温度也具有持续升温的特点,从1948年至今呈缓慢升高的趋势,53 a升高了1.9℃,升温率为0.036℃/a;(3)周期性,东海不同高度大气温度都具有显著程度不同的22 a周期性年代际变化特征,22 a周期分量的振幅由高空到低空迅速减小,表明22 a周期高空清楚,低空不太明显.东海对流层中部和平流层底部还具有显著的11 a周期性年代际变化.据分析认为22 a周期是太阳黑子磁场磁性变化周期所激发,11 a周期与太阳黑子相对数11 a周期相吻合,二者均为太阳活动在大气气候中的反映.  相似文献   

12.
中纬度海洋的热力状况对大气环流的维持和变化起着重要的作用,尤其在冬季。汛期的研究表明,冬季黑潮海域海表面水温(SST)与长江中下游和华北平原汛期降水有密切的关系(中国科学院大气物理研究所长期预报组,1978),夏季阿留申海域的SST异常与北太平洋上空大气环流场和后期秋季美国的气温和降水亦存在有意义的关系(Namias,1976)。赵永平(1986a;赵永平, McBean,1996)和Zhao and McBean(1989)曾用北太平洋海洋对大气加热场资料详细地分析了其时空分布特征,揭露了黑潮及邻近海域海洋异常加热对同期和后期半年至一年北半球大气环流的影响事实,并提出用海洋异常加热对同期和后期大气环流作用的反相性假说来进行解释。以上研究表明,冬季中纬度海洋异常加热与大气环流的异常和我国汛期旱涝之间存在一定的联系。 冬季黑潮和湾流海域是中纬度海洋的两个巨大热源,它们对同期和后期大气环流有重要影响。本文研究了冬季中纬度黑潮和湾流海域海洋异常加热对夏季副热带高压和中高纬度西风环流的影响,讨论了长江中下游汛期旱涝前期冬季和同期大气环流型。结果表明,冬季东亚和北美冷空气都强时,黑潮和湾流海域对大气异常多加热,夏季西太副热带高压、乌山和鄂海阻塞高压多趋减弱,中纬环流平直,形成长江中下游偏旱的环流形势;反之,西太副热带高压、乌山和鄂海阻塞高压多趋加强,中纬槽脊系统明显,形成长江中下游偏涝的环流场。本文还对可能的物理过程进行了讨论。  相似文献   

13.
The solar climate ozone links (SOCOL) three-dimensional chemistry-climate model is used to estimate changes in the ozone and atmospheric dynamics over the 21st century. With this model, four numerical time-slice experiments were conducted for 1980, 2000, 2050, and 2100 conditions. Boundary conditions for sea-surface temperatures, sea-ice parameters, and concentrations of greenhouse and ozone-depleting gases were set following the IPCC A1B scenario and the WMO A1 scenario. From the model results, a statistically significant cooling of the model stratosphere was obtained to be 4–5 K for 2000–2050 and 3–5 K for 2050–2100. The temperature of the lower atmosphere increases by 2–3 K over the 21st century. Tropospheric heating significantly enhances the activity of planetary-scale waves at the tropopause. As a result, the Eliassen-Palm flux divergence considerable increases in the middle and upper stratosphere. The intensity of zonal circulation decreases and the meridional residual circulation increases, especially in the winter-spring period of each hemisphere. These dynamic changes, along with a decrease in the concentrations of ozone-depleting gases, result in a faster growth of O3 outside the tropics. For example, by 2050, the total ozone in the middle and high latitudes approaches its model level of 1980 and the ozone hole in Antarctica fills up. The superrecovery of the model ozone layer in the middle and high latitudes of both hemispheres occurs in 2100. The tropical ozone layer recovers far less slowly, reaching a 1980 level only by 2100.  相似文献   

14.
Both space and time variations in the 222Rn concentration in the atmospheric surface layer over continental Russia were analyzed on the basis of data obtained in the Transcontinental Observations into the Chemistry of the Atmosphere (TROICA) experiments. The measurements were taken from a mobile laboratory which was part of a passenger train moving along the Trans-Siberian Railway from Moscow to Vladivostok. The factors that affect the spatial distribution of both daily and seasonal variations in the concentrations of 222Rn in the surface air were determined: atmospheric vertical stability, geological features of the area under study, and atmospheric precipitation. The influence of temperature inversions on the accumulation of 222Rn in the atmospheric surface layer was analyzed. The fluxes of 222Rn from the soil into the atmosphere were estimated for different regions of Russia.  相似文献   

15.
New prognostic estimates are obtained for the potential variability of the atmospheric ozone content in the first half of the 21st century. The calculations are based on models of gas composition and general circulation in the lower and middle atmosphere and on the scenarios of the World Meteorological Organization (WMO). It is shown that the rate of ozone content increase will be controlled to a considerable extent by variations in stratospheric temperature. Even though the contents of atmospheric chlorine and bromine are not reduced, contrary to the WMO prediction, and remain at the present-day levels, the continuation of stratospheric cooling will lead to a rapid recovery of the ozone content to its level characteristic of the 1980s. Model experiments on variations in the stratospheric aerosol content have shown that an increase in the aerosol concentration will not affect the rate of ozone recovery in the atmosphere during reduced emissions of chlorine and bromine gases if the stratospheric temperature remains lowered. Numerical experiments have also shown that the simultaneous anthropogenic action on the contents of halogen gases and on the lower-stratosphere temperature can reduce the adverse effects of Freons and halons on the ozone layer.  相似文献   

16.
The results of instrumental studies of storm activity and parameters of lightning discharges in the south of the European part of the Russian Federation are presented. The features of spatial and temporal variations of thunderstorms and lightning parameters within a radius of 650000 km around the center of the lightning- detection network of the High-Mountain Geophysical Institute (Nalchik) covering the North Caucasus and the Black Sea coast are considered. The total number of thunderstorm days per year on the territory in question is approximately 239. The specific lightning susceptibility of the ground surface is approximately 6 discharges/km2 per year in the south and 2 discharges/km2 per year in the north. The share of terrestrial lightning discharges (positive and negative) on the territory is 12% of the total number of lightning; the share of cloud and intercloud discharges is 88%. According to these data, the share of positive discharges accounts for about 23% of the total number of the “cloud-to-ground” discharges. The average value of the electric currents is 13.5 kA in the negative lightning and 10.6 kA in the positive lightning. The parameters of lightning discharges over mountain terrain (altitude more than 1000 m) and over flatland terrain (altitude less than 1000 m) are considered separately. It has been found that the mean amplitude of the electric current of lightning discharges (regardless of polarity) amounts to approximately 9.29 kA over the flatland regions of the North Caucasus and 11.24 kA in the mountain part; the median value of the amplitude of the electric current reaches approximately 6.56 kA over the flatland terrain and 7.99 kA over the mountain terrain.  相似文献   

17.
In order to investigate the formation mechanism of rapid decrease of maritime sea surface temperature (SST) observed by R/V Keifu Maru, the ocean response to Typhoon Rex is simulated using a mixed layer model. The rapid decrease of the maritime SST is successfully simulated with realistic atmospheric forcing and an entrainment scheme of which sources of turbulent kinetic energy (TKE) are production due to wind stress, generation during free convection, and production due to current shear. The rapid decrease at the observed station by R/V Keifu Maru is not produced by instant atmospheric forcing but is mainly produced by entrainment on the right side of the running typhoon as a part of cooling area during its passage, and remained during a few days. The sea surface cooling (SSC) is evident along the track and on the right side of the running typhoon, which is similar to the SSC of satellite observation by TRMM/TMI. The conspicuous SSC produced by both entrainment and upwelling is situated just under the track of typhoon when the typhoon moves slower. Intercomparison of entrainment schemes of the mixed layer model is implemented. Frictional velocity and buoyancy effects are effective for a gradual SSC covering the wide region. In contrast, the effect of current shear at the mixed layer base is related to the amount of SSC and the sharp horizontal gradient of SSC. The entrainment scheme including all three TKE sources has the best performance for SSC simulation.  相似文献   

18.
The spatial structure of surface air temperature (SAT) anomalies in the extratropical latitudes of the Northern Hemisphere (NH) during the 20th century is studied from the data obtained over the period 1892–1999. The expansion of the mean (over the winter and summer periods) SAT anomalies into empirical orthogonal functions (EOFs) is used for analysis. It is shown that variations in the mean air temperature in the Arctic region (within the latitudes 60°–90°N) during both the winter and summer periods can be described with a high accuracy by two spatial orthogonal modes of variability. For the winter period, these are the EOF related to the leading mode of variability of large-scale atmospheric circulation in the NH, the North Atlantic Oscillation, and the spatially localized (in the Arctic) EOF, which describes the Arctic warming of the mid-20th century. The expansion coefficient of this EOF does not correlate with the indices of atmospheric circulation and is hypothetically related to variations in the area of the Arctic ice cover that are due to long-period variations in the influx of oceanic heat from the Atlantic. On the whole, a significantly weaker relation to the atmospheric circulation is characteristic of the summer period. The first leading variability mode describes a positive temperature trend of the past decades, which is hypothetically related to global warming, while the second leading EOF describes a long-period oscillation. On the whole, the results of analysis suggest a significant effect of natural climatic variability on air-temperature anomalies in the NH high latitudes and possible difficulties in isolating an anthropogenic component of climate changes.  相似文献   

19.
华南秋季大尺度大气水汽汇时空演变特征   总被引:1,自引:0,他引:1  
用1958—2004年NCEP/NCAR再分析资料和中国160站月降水量资料分析了华南秋季大尺度大气水汽汇的时空变化特征。结果表明,华南中西部、东部地区是华南秋季水汽汇的2个主要变异中心区。华南中西部地区秋季水汽汇与该地区降水一样,以年际尺度变化为主;而该地区蒸发量的年代际变化比年际变化还稍显著。华南东部地区秋季降水、水汽汇和蒸发都存在明显的年际和年代际变化特征。如果我国南方上空出现向东北(向西南)的水汽通量距平,则会导致华南上空的水汽汇偏强(偏弱)。  相似文献   

20.
利用1985~2008年OAflux3、NCEP\NCAR再分析资料与中国大陆东部108个站点的降水资料,应用回归和合成方法,分析了中国东部夏季降水的年际变化与同期东海及邻近海域潜热通量变异的关系。结果表明:东海及邻近海域(以下称东海)夏季潜热通量年际变化显著的区域位于东海区域,为与同期中国东部降水密切相关的关键区域。当东海的潜热通量偏高(低)时,中国东部长江以南地区上空盛行偏东北(西南)风异常,这将不(有)利于水汽由南向北的输送,从而可能使到达长江中下游流域及以北地区的水汽偏少(多);并且,长江中、下游流域为下沉(上升)气流和低层水汽辐散(辐合)正异常,对应降水偏少(偏多);华南地区为上升(下沉)气流和低层水汽辐合(辐散)正异常,对应降水偏多(偏少)。分析结果还表明,东海的潜热通量可通过影响东亚大气环流而成为引起中国东部夏季汛期降水年际异常的重要原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号