共查询到20条相似文献,搜索用时 0 毫秒
1.
Iron isotopes, together with mineral elemental compositions of spinel peridotite xenoliths and clinopyroxenites from Hannuoba and Hebi Cenozoic alkaline basalts, were analyzed to investigate iron isotopic features of the lithospheric mantle beneath the North China Craton. The results show that the Hannuoba spinel peridotite xenoliths have small but distinguishable Fe isotopic variations. Overall variations in δ 57Fe are in a range of ?0.25 to 0.14‰ for olivine, ?0.17 to 0.17‰ for orthopyroxene, ?0.21 to 0.27‰ for clinopyroxene, and ?0.16 to 0.26‰ for spinel, respectively. Clinopyroxene has the heaviest iron isotopic ratio and olivine the lightest within individual sample. No clear linear relationships between the mineral pairs on “δ-δ” plot suggest that iron isotopes of mineral separates analyzed have been affected largely by some open system processes. The broadly negative correlations between mineral iron isotopes and metasomatic indexes such as spinel Cr#, (La/Yb) N ratios of clinopyroxenes suggest that iron isotopic variations in different minerals and peridotites were probably produced by mantle metasomatism. The Hebi phlogopite-bearing lherzolite, which is significantly modified by metasomatic events, appears to be much heavier isotopically than clinopyroxene-poor lherzolite. This study further confirms previous conclusions that the lithospheric mantle has distinguishable and heterogeneous iron isotopic variations at the xenoliths scale. Mantle metasomatism is the most likely cause for the iron isotope variations in mantle peridotites. 相似文献
2.
Iron isotopes, together with mineral elemental compositions of spinel peridotite xenoliths and clinopyroxenites from Hannuoba
and Hebi Cenozoic alkaline basalts, were analyzed to investigate iron isotopic features of the lithospheric mantle beneath
the North China Craton. The results show that the Hannuoba spinel peridotite xenoliths have small but distinguishable Fe isotopic
variations. Overall variations in δ 57Fe are in a range of −0.25 to 0.14‰ for olivine, −0.17 to 0.17‰ for orthopyroxene, −0.21 to 0.27‰ for clinopyroxene, and −0.16
to 0.26‰ for spinel, respectively. Clinopyroxene has the heaviest iron isotopic ratio and olivine the lightest within individual
sample. No clear linear relationships between the mineral pairs on “δ-δ” plot suggest that iron isotopes of mineral separates
analyzed have been affected largely by some open system processes. The broadly negative correlations between mineral iron
isotopes and metasomatic indexes such as spinel Cr#, (La/Yb) N ratios of clinopyroxenes suggest that iron isotopic variations in different minerals and peridotites were probably produced
by mantle metasomatism. The Hebi phlogopite-bearing lherzolite, which is significantly modified by metasomatic events, appears
to be much heavier isotopically than clinopyroxene-poor lherzolite. This study further confirms previous conclusions that
the lithospheric mantle has distinguishable and heterogeneous iron isotopic variations at the xenoliths scale. Mantle metasomatism
is the most likely cause for the iron isotope variations in mantle peridotites. 相似文献
3.
Li concentrations and isotopic compositions of coexisting minerals (ol, opx, and cpx) from peridotite xenoliths entrained in the Hannuoba Tertiary basalts, North China Craton, provide insight into Li isotopic fractionation between mantle minerals during melt-rock interaction in the considerably thinned lithospheric mantle. Bulk analyses of mineral separates show significant enrichment of Li in cpx (2.4-3.6 ppm) relative to olivine (1.2-1.8 ppm), indicating that these peridotites have been affected by mantle metasomatism with mafic silicate melts. Bulk olivine separates (δ 7Li ∼ +3.3‰ to +6.4‰) are isotopically heavier than coexisting pyroxenes (δ 7Li ∼ −3.3‰ to −8.2‰ in cpx, and −4.0‰ to −6.7‰ in opx). Such large variation suggests Li elemental and isotopic disequilibrium. This conclusion is supported by results from in situ SIMS analyses of mineral grains where significant Li elemental and isotopic zonations exist. The olivine and opx have lower Li concentrations and heavier Li isotopes in the rims than in the cores. This reverse correlation of δ 7Li with Li concentrations indicates diffusive fractionation of Li isotopes. However, the zoning patterns in coexisting cpx show isotopically heavier rims with higher Li abundances. This positive correlation between δ 7Li and Li concentrations suggests a melt mixing trend. We attribute Li concentration and isotope zonation in minerals to the effects of two-stage diffusive fractionation coupled with melt-rock interaction. The earliest melts may have been derived from the subducted oceanic slab with low δ 7Li values produced by isotopic fractionation during the dehydration of the seawater-altered slab. Melts at later stages were derived from the asthenosphere and interacted with the peridotites, producing the Li elemental and isotopic zoning in mineral grains. These data thus provide evidence for multiple-stage peridotite-melt interaction in the lithospheric mantle beneath the northern North China Craton. 相似文献
4.
The petrology and geochemistry of peridotite xenoliths in the Cenozoic basalts from Fanshi, the central North China Craton (NCC), provide constraints on the evolution of sub-continental lithospheric mantle. These peridotite xenoliths are mainly spinel-facies lherzolites with minor harzburgites. The lherzolites are characterized by low forsterite contents in olivines (Fo < 91) and light rare earth element (LREE) enrichments in clinopyroxenes. In contrast, the harzburgites are typified by high-Fo olivines (> 91), high-Cr# spinels and clinopyroxenes with low abundances of heavy REE (HREE). These features are similar to those from old refractory lithospheric mantle around the world, and thus interpreted to be relics of old lithospheric mantle. The old lithospheric mantle has been chemically modified by the influx of melts, as evidenced by the Sr–Nd isotopic compositions of clinopyroxenes and relatively lower Fo contents than typical Archean lithospheric mantle (Fo > 92.5). The Sr–Nd isotopic compositions of harzburgites are close to EM1-type mantle, and of the lherzolites are similar to bulk silicate earth. The latter could be the result of recent modification of old harzburgites by asthenospheric melt, which is strengthened by fertile compositions of minerals in the lherzolites. Therefore, the isotopic and chemical heterogeneities of the Fanshi peridotite xenoliths reflect the refertilization of ancient refractory lithospheric mantle by massive addition of asthenospheric melts. This may be an important mechanism for the lithospheric evolution beneath the Central NCC. 相似文献
5.
内容提要:在对吉林辉南新生代玄武岩中捕虏体橄榄岩详细的岩相学和矿物主量元素研究基础上,重点分析了单斜辉石激光原位微量元素,并讨论了辉南陆下岩石圈地幔的性质及其在华北克拉通破坏过程中的意义。橄榄石、单斜辉石和尖晶石的Mg#和Cr#均表明该区陆下岩石圈地幔主体是饱满的,同时也存在少量过渡和难熔型地幔。单斜辉石REE配分形式包括LREE亏损、倒U字型REE和LREE富集等不同类型。这些橄榄岩是地幔经历不同程度的部分熔融作用(低于10%)和复杂地幔交代作用的产物。交代介质主体是硅酸盐熔体,但个别样品有碳酸岩熔体交代的残留。橄榄石Mg#和平衡温度无相关性,说明辉南陆下岩石圈地幔不存在明显的分层而是交叉的。这些地幔特征和华北东部其他地区新生代的主体地幔性质相似,是熔-岩反应、侵蚀作用和上涌软流圈物质冷却转变置换的综合结果。 相似文献
6.
Major and trace element compositions of constituent minerals, partly decomposed rims of orthopyroxenes (DRO), ‘closed’ melt pockets (CMP) and open melt pockets (OMP) in some Western Qinling peridotite xenoliths were obtained by LA-ICP-MS. Systematic core-to-rim compositional variations of garnet, clinopyroxene and orthopyroxene demonstrate that these minerals underwent variable degrees of subsolidus breakdown or partial melting. Both DROs and CMPs consist of similar mineral assemblages and are characterized by high TiO 2, CaO + Na 2O and low MgO contents; they are enriched in LREE and LILE compositions, have positive anomalies in Pb, Sr and particularly Ti, negative Th and U, and variable Zr and Hf anomalies. These chemical features are distinct and reflect reactions involving the orthopyroxenes. Compared to the CMPs, the OMPs, which are composed of a complex assemblage of minerals, display lower FeO and MgO contents, larger ranges in SiO 2 and Na 2O, higher TiO 2, Al 2O 3, CaO and trace element concentrations, slightly negative Zr and Hf anomalies, and apparently negative Ti anomalies. Modeling calculations of partial fusion of orthopyroxenes and clinopyroxenes suggest that the CMPs most likely originated from the breakdown of orthopyroxenes with variably minor contribution of external melts from the melting of clinopyroxenes, whereas the OMPs were probably formed from the modification of the CMPs through the interaction with large amount of external melts. 相似文献
7.
地幔橄榄岩捕虏体中石榴石次变边的形成过程对理解地幔的构造演化和转变具有非常重要的意义。兴蒙造山带锡林浩特地区新生代玄武岩携带的石榴石橄榄岩捕虏体中的石榴石普遍发育冠冕状次变边结构。本文通过对石榴石及其次变边进行详细的岩相学和电子探针分析,探讨石榴石次变边的成因及其揭示的岩石圈地幔经历的深部过程。根据次变边矿物组成的不同,将其分为原始的次变边(R1和R2)和交代的次变边(MR1和MR2)。原始的次变边中,新鲜的石榴石由内向外依次被放射状且矿物颗粒较细的R1和粒状且矿物颗粒较粗的R2包围,且R1通常比R2宽。R1主要组成矿物为Opx+Sp+Melt1/Pl±Cpx,R2主要组成矿物为Opx+Sp+Cpx。与R2及橄榄岩捕虏体相比,R1的斜方辉石和单斜辉石具有较高的Al2O3含量和较低Mg#值及SiO2含量。与橄榄岩捕虏体相比,R1和R2中的尖晶石均具有较低的Cr#值和较高的Mg#值。R1的斜长石为钙长石,熔体成分与斜长石相比具有偏高的MgO和FeO含量。计算的R1的全岩成分与新鲜的石榴石一致,是石榴石等化学分解的产物。R2的全岩成分比新鲜的石榴石具有偏高的MgO和偏低的SiO2及Al2O3含量,是石榴石和橄榄石反应的产物。交代的次变边是由原始的次变边受到部分或完全的交代作用形成的。完全交代的次变边仍然保留原始次变边的双圈层结构,而未完全交代的次变边则仅在原始次变边的局部出现。交代的次变边中,矿物颗粒较细的核部(MR1)和矿物颗粒较粗的边部(MR2)主要矿物组成一致,皆为Ol+Cpx+Sp+Melt2。与原始的次变边相比,MR1和MR2中的橄榄石和单斜辉石均具有较高的Mg#值,单斜辉石同时具有较高Ca/Al比值(>8),尖晶石具有较高的Cr#值和较低的Mg#值,熔体较富SiO2、Na2O和K2O含量。这些现象说明交代的次变边可能是碳酸盐熔/流体交代原始的次变边消耗斜方辉石生成橄榄石和单斜辉石形成的,这与岩相学观察到的单斜辉石中包裹斜方辉石残余体一致。此外,同一样品中R1的平衡温度略高于R2的平衡温度,且二者均高于橄榄岩的平衡温度。因此,锡林浩特地区石榴石橄榄岩至少经历了两阶段的退变质作用:第一阶段为橄榄岩自石榴石相抬升至尖晶石相,且受到地幔上涌的加热作用,导致石榴石和橄榄石进行缓慢的反应形成R2;第二阶段是在连续减压且加热的背景下,第一阶段残余的石榴石发生快速等化学分解反应,形成R1。退变质作用之后,石榴石原始的次变边又经历了碳酸盐熔/流体的交代作用形成MR1和MR2,最终被寄主玄武岩携带至地表。所以,石榴石次变边的形成记录了新生代时期兴蒙造山带经历的广泛的地幔上涌和多次的地幔隆升,以及地幔交代作用,为研究深部地幔过程提供了重要证据。华北克拉通晚中生代时期经历了强烈的岩石圈伸展运动并伴随着软流圈的上涌,这些过程同样会造成岩石圈地幔的减压和加热,从而导致石榴石相橄榄岩向尖晶石相转变,这可能也是华北克拉通岩石圈地幔转变的机制之一。 相似文献
8.
We report the finding of peridotite xenoliths in the Early Cretaceous Longmengou olivine-bearing diabase (138 Ma) in the Northern Taihang Mountains in the central North China Craton. Based on the modal proportions of olivine, clinopyroxene, amphibole and anorthite, these peridotite xenoliths can be divided into three zones: clinopyroxene-bearing olivine zone (COZ), olivine-clinopyroxene zone (OCZ), and amphibole-bearing anorthite-clinopyroxene zone (AACZ). The core of olivine grains in clinopyroxene-bearing olivine zone have higher Mg # (> 95), SiO 2 (41.80–42.53 wt%) and lower CaO (< 0.07 wt%), FeO (3.91–4.54 wt%) than the rim (Mg # = 92.5–93.4, SiO 2 = 41.27–41.98 wt%, CaO = 0.20–0.34 wt%, and FeO = 7.02–8.87 wt%), suggesting that rim is reaction product. The core of olivine grains with higher Mg # (> 95) and lower NiO content (< 0.04 wt%) in the clinopyroxene-bearing olivine zone was derived from ultra-depleted mantle subsequently altered by high Mg # melts/magma with low Ni. Two generations of olivine grains occur in the OCZ where the first generation shows exsolution of ilmenite and magnetite rods containing up to 0.35 wt% TiO 2, and was likely derived from garnet peridotite hydrated by water. The second generation shows high Mg # (96.2–97.1) and cataclastic texture, and was possibly formed by decomposition of the COZ. The occurrence of aluminous spinel suggests the role of melts with extremely high Al and Mg. Clinopyroxene in the AACZ shows systematic core-rim compositional variation with CaO and SiO 2 contents increasing towards the rim, and MgO and Fe 2O 3 concentrations decreasing from the core to the rim, indicating that the amphibole-bearing anorthite-clinopyroxene zone is a product of the reaction between mantle xenoliths and mafic magma. Plagioclase with high An value (92.0–99.95, average 97.79) indicates that the metasomatic melts have high Ca/Na and Al/Si ratios, possibly produced by the partial melting of ultra-depleted mantle under “wet” conditions. Combined with the data on other mantle xenoliths discovered in the NCC, our results suggest that the Mesozoic lithospheric mantle beneath the North Taihang Mountains within the central NCC is composed of ultra-depleted Archean and Paleoproterozoic peridotites and dunites modified by complex melts. We also propose that the destruction of eastern part of the NCC mainly occurred during Early Cretaceous, and that the boundary of the lithospheric destruction coincides with the Taihang Mountains. 相似文献
9.
本文对华北克拉通三个不同地区(河北汉诺坝、内蒙古集宁三义堂、河南鹤壁)新发现的含金云母尖晶石二辉橄榄岩和尖晶石橄榄单斜辉石岩捕虏体进行了详细的矿物组成、单斜辉石的微量元素和Sr-Nd同位素研究.通过与相同地区不含金云母尖晶石二辉橄榄岩捕虏体的系统对比发现通常含金云母的地幔橄榄岩比不含金云母的地幔橄榄岩岩富Al2O3、CaO、NaO、K2O、TiO2,但相对贫镁;其单斜辉石的LREE更为富集,但Sr、Nd同位素组成则相对亏损.这说明地幔交代作用不仅能够造成地幔橄榄岩的玄武质组分和稀土元素的富集,而且亦能够造成全岩和橄榄石Mg#的降低和同位素组成的相对亏损.捕虏体的Rb-Sr等时线年龄暗示地幔交代作用发生在中、新生代;其交代熔体来源于软流圈.同时说明华北新生代岩石圈地幔普遍存在的主、微量元素和同位素组成类似于“大洋型”岩石圈地幔的特征很可能是岩石圈地幔橄榄岩与软流圈来源的熔体的大规模反应的结果,而非真正意义上的新增生的岩石圈地幔. 相似文献
10.
近年来,得益于同位素分析技术和质谱仪器性能的提高,使得铁(Fe)、镁(Mg)和钙(Ca)等非传统稳定同位素的高精度测量成为可能,并很快在地球化学、天体化学和生物地球化学等研究领域取得了丰硕的成果。本文通过对比分析来自华北克拉通不同地区不同类型地幔捕虏体的Fe、Mg和Ca位素组成特征,揭示华北克拉通岩石圈地幔Fe、Mg和Ca同位素组成不均一性的成因,并在此基础上,探讨华北大陆岩石圈地幔演化过程如部分熔融、橄榄岩-熔体反应过程、熔体的性质和来源等科学问题,为华北克拉通岩石圈的演化过程提供新证据。 相似文献
11.
The petrology, mineral compositions, whole rock major/trace element concentrations, including highly siderophile elements, and Re-Os isotopes of 99 peridotite xenoliths from the central North China Craton were determined in order to constrain the structure and evolution of the deep lithosphere. Samples from seven Early Cretaceous-Tertiary volcanic centers display distinct geochemical characteristics from north to south. Peridotites from the northern section are generally more fertile (e.g., Al 2O 3 = 0.9-4.0%) than those from the south (e.g., Al 2O 3 = 0.2-2.2%), and have maximum whole-rock Re-depletion Os model ages ( TRD) of ∼1.8 Ga suggesting their coeval formation in the latest Paleoproterozoic. By contrast, peridotites from the south have maximum TRD model ages that span the Archean-Proterozoic boundary (2.1-2.5 Ga). Peridotites with model ages from both groups are found at Fansi, the southernmost locality in the northern group, which likely marks a lithospheric boundary. The Neoarchean age of the lithospheric mantle in the southern section matches that of the overlying crust and likely reflects the time of amalgamation of the North China Craton via collision between the Eastern and Western blocks. The Late Paleoproterozoic (∼1.8 Ga) lithospheric mantle beneath the northern section is significantly younger than the overlying Archean crust, indicating that the original lithospheric mantle was replaced in this region, either during a major north-south continent-continent collision that occurred during assembly of the Columbia supercontinent at ∼1.8-1.9 Ga, or from extrusion of ∼1.9 Ga lithosphere from the Khondalite Belt beneath the northern Trans-North China Orogen, during the ∼1.85 Ga continental collision between Eastern and Western blocks. Post-Cretaceous heating of the southern section is indicated by high temperatures (>1000 °C) recorded in peridotites from the 4 Ma Hebi suite, which are significantly higher than the temperatures recorded in peridotites from the nearby Early Cretaceous Fushan suite (<720 °C), and likely reflects significant lithospheric thinning after the Early Cretaceous. Combining previous Os isotope results on mantle xenoliths from the eastern North China Craton with our new data, it appears that lithospheric thinning and replacement may have evolved from east to west with time, commencing before the Triassic on the eastern edge of the craton, occurring during the Jurassic-Cretaceous within the interior, and post-dating 125 Ma on the westernmost boundary. 相似文献
12.
众所周知,华北克拉通东部岩石圈地幔的组成和性质在显生宙发生了显著变化,但由于西部出露含有捕虏体的火山岩较少,这在一定程度上限制了人们对该区岩石圈地幔属性与演化特征的认识。本文将华北克拉通西北部晚白垩世-新生代玄武岩中橄榄岩捕虏体的研究成果归纳总结,旨在进一步揭示该区岩石圈地幔的属性与演化特征。研究表明,华北克拉通西北部岩石圈地幔主要由低Mg#的二辉橄榄岩和少量高Mg#的方辉橄榄岩组成。高Mg#橄榄岩代表该区受轻微再富集作用影响的古老岩石圈地幔残余,低Mg#橄榄岩是软流圈来源熔体与高Mg#橄榄岩反应的产物,代表地幔再富集作用对古老岩石圈地幔改造的结果。该区岩石圈地幔经历了多期地幔交代作用的改造,早期交代事件与古亚洲洋俯冲有关,近期与软流圈来源的玄武质熔体有关。这种广泛的地幔再富集作用对华北克拉通古老岩石圈地幔的转变做出了重要贡献。 相似文献
13.
Glass-bearing inclusions hosted by Cr-spinel in harzburgite xenoliths from Avacha are grouped based on homogenization temperatures
and daughter minerals into high-T (1,200°C; opx + cpx), intermediate (900–1,100°C; cpx ± amph), and low-T (900°C; amph) and
are commonly accompanied by larger “melt pockets”. Unlike previous work on unheated inclusions and interstitial glass in xenoliths
from Kamchatka, the homogenized glass compositions in this study are not affected by low-pressure melt fractionation during
transport and cooling or by interaction with host magma. Primary melt compositions constrained for each inclusion type differ
in major and trace element abundances and were formed by different events, but all are silica saturated, Ca-rich, and K-poor,
with enrichments in LREE, Sr, Rb, and Ba and negative Nb anomalies. These melts are inferred to have been formed with participation
of fluids produced by dehydration of slab materials. The high-T inclusions trapped liquids produced by ancient high-degree,
fluid-induced melting in the mantle wedge. The low-T inclusions are related to percolation of low-T melts or hydrous fluids
in arc mantle lithosphere. Melt pockets arise from localized heating and fluid-assisted melting induced by rising magmas shortly
before the entrapment of the xenoliths. The “high-T” melt inclusions in Avacha xenoliths are unique in preserving evidence
of ancient, high-T melting events in arc mantle, whereas the published data appear to characterize pre-eruption enrichment
events. 相似文献
14.
本文提供的两件蒙阴岩区金伯利岩中的蛇纹石化石榴石橄榄岩捕虏体,整体发育剪切-变形结构,其中的辉石有三种类型,代表了三次地质事件,他们是:(1)石榴石中的自形单斜辉石包裹体Py;(2)粗粒不规则形状的斜方辉石Py1;(3)具反应边及定向排列的斜方辉石Py2。 Py具有高Na2O和Al2O3,及低Mg#和CaO的特征,暗示所赋存的橄榄岩未遭受过明显的熔融作用。推测Py为早期阶段地幔"岩浆海"结晶时被石榴石包裹的矿物。在手标本及薄片中普遍见到Py2切过Py1,表明Py1形成早于Py2。Py1的 Cr(669×10-6~9503×10-6), Ni (1941×10-6~4750×10-6)含量和Mg#(0.91~0.94)比值较高, 而Py2中的Cr (725×10-6~1926×10-6) , Ni (902×10-6~2989×10-6) 和Mg# (0.88~0.90)值较低,说明Py1是早期经部分熔融的橄榄岩耐熔残余中的顽火辉石残留。相反,Py2可能是软流圈来源的熔体与耐熔橄榄岩反应的结果。剪切/变形 以及交代事件则发生于上述反应之后或者与之同时。依据主元素特征,较早的Py1的耐熔程度反而高于Py2,本文称之为地幔组成的"逆向演化"。 看来,这种逆向成分演化不仅发生在中新生代,而且也发生于古老地幔,甚至是贯穿于整个地幔演化的历史时期。与已发表的有关地幔形成年龄的资料对比,Py、Py1和 Py2的年龄估计分别是>3.8Ga, 2.5Ga/1.4~1.3Ga和0.9~0.7Ga 。另外1件碳酸盐化橄榄岩捕虏体,采自复县金伯利岩,具有明显的剪切-变形结构,最终形成时间可能与Py2接近。 相似文献
15.
Clinopyroxene-rich, poorly metasomatised spinel lherzolites are rare worldwide but predominate among xenoliths in five Quaternary
basaltic eruption centres in Tariat, central Mongolia. High-precision analyses of the most fertile Tariat lherzolites are
used to evaluate estimates of primitive mantle compositions; they indicate Mg# PM = 0.890 while lower Mg# in the mantle are likely related to metasomatic enrichments in iron. Within a 10 × 20 km area, and
between ~45 and ≥60 km depth, the sampled xenoliths suggest that the Tariat mantle does not show km-scale chemical heterogeneities
and mainly consists of residues after low-degree melt extraction at 1–3 GPa. However, accessory (<1%) amphibole and phlogopite
are unevenly distributed beneath the eruption centres. Ca abundances in olivine are controlled by temperature whereas Al and
Cr abundances also depend on Cr/Al in coexisting spinel. Comparisons of conventional and high-precision analyses obtained
for 30 xenoliths show that high-quality data, in particular for whole-rocks and olivines, are essential to constrain the origin
of mantle peridotites.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
16.
华北中、新生代玄武质火山岩和基性脉岩携带的地慢橄榄岩捕虏体中橄榄石和/或橄榄石捕虏晶系统的组成填图显示华北东部中、新生代岩石圈地幔存在明显的时空分布规律和不均一性。这与通过岩石圈地幔源基性岩石的地球化学反演获得的华北中生代岩石圈地幔的时空不均一性及其块体特征完全一致。太行山和鲁皖地区新生代岩石圈地慢的差异演化主要反映古老地幔橄榄岩与熔体相互作用时熔体性质和来源的不同。同时,橄榄石Fo填图还揭示了郯庐断裂对华北东部中、新生代基性岩浆活动及其岩石圈地幔演化的重要制约作用。而且,华北东部中生代岩石圈减薄后尚存古老岩石圈地幔残留。因此,华北东部岩石圈减薄的整体拆沉模式很难成立。 相似文献
17.
The composition and thermal state of the lithospheric mantle under the North Atlantic craton was investigated using a suite of peridotite xenoliths from the diamond-bearing Sarfartoq kimberlite dike swarm of southwestern Greenland. Elevated olivine and whole-rock Mg# (>0.9) attest to the refractory nature of the Sarfartoq mantle showing comparable degrees of depletion to other cratonic roots. Modal analyses indicate that the Sarfartoq mantle is not typified by the orthopyroxene enrichment observed in the Kaapvaal root, but shows more affinity with the Canadian Arctic (Somerset Island), Tanzania, and East Greenland (Wiedemann Fjord) peridotites. The Sarfartoq peridotites have equilibrated at temperatures and pressures ranging from 660 to 1,280 °C and from 2.2 to 6.3 GPa, and define a relatively low mantle heat flow of 13.2±1 mW/m 2. In addition, the lithospheric mantle underneath the Sarfartoq area is compositionally layered as follows: (1) an internally stratified upper layer (70 to 180 km) consisting of coarse, un-deformed, refractory garnet-bearing and garnet-free peridotites and, (2) a lower layer (180 to 225 km) characterized by fertile, CPX-bearing, porphyroclastic garnet lherzolites. The stratification observed in the upper refractory harzburgite layer (70–180 km) is reflected by an increase in fertility (e.g., decrease in olivine abundance and forsterite content) with depth. The sharp nature of the boundary between the upper and lower layers may indicate multistage growth of the lithospheric mantle.Editorial responsibility: T.L. Grove 相似文献
18.
High-Mg# peridotite xenoliths in the Cenozoic Hebi basalts from the North China Craton have refractory mineral compositions (Fo > 91.5) and highly heterogeneous Sr–Nd isotopic compositions ( 87Sr/ 86Sr = 0.7031–0.7048, 143Nd/ 144Nd = 0.5130–0.5118) ranging from MORB-like to EM1-type mantle, which are similar to those of peridotites from Archean cratons. Thus, the high-Mg# peridotites may represent relics of the ancient lithospheric mantle. Published Re–Os isotopic data for Cenozoic basalt-borne xenoliths show T RD ages of 3.0–1.5 Ga for the peridotites from Hebi (the center of the craton), 2.2–0 Ga for those from Hannuoba and Jining (north margin of the craton), and 2.6–0 Ga for those from Fanshi and Yangyuan (midway between the center and north margin of the craton). In situ Re–Os data of sulfides in Hannuoba peridotites suggest that whole-rock Re–Os model ages represent mixtures of multiple generations of sulfides with varying Os isotopic compositions. These observations indicate that initial lithospheric mantle beneath the Central Zone of the North China Craton formed during the Archean and was refertilized by multiple melt additions after its formation. The refertilization became more intensive from the interior to the margin of the craton, leading to the high heterogeneity of the lithospheric mantle: more ancient and refractory peridotites with highly variable Sr–Nd isotopic compositions in the interior, and more young and fertile peridotites with depleted Sr–Nd isotopic composition in the margin. Our data, coupled with published petrological and geochemical data of peridotites from the Central Zone of the North China Craton, suggest that the lithospheric mantle beneath this region is highly heterogeneous, likely produced by refertilization of Archean mantle via multiple additions of melts/fluids, which were closely related to the Paleoproterozoic collision between the Eastern and the Western Blocks and subsequent circum-craton subduction events. 相似文献
19.
The spinel peridotite xenoliths of Group I in Quaternary basanites from Nushan,Anhui province,can be classified as two suites:a hydrous suite characterized by the ubiquitous occurrence of (Ti-) pargasite and an anhydrous suite.The nineral chemistry reveals that the anhydrous suite and one associated phlogopite-bearing lherzolite are equilibrated under temperature conditions of 1000-1100℃,whereas amplhibole-bearing peridotites display distinct disequilibrum features,indicating partial reequilibration from 1050 to 850℃ and locally down to 750℃. The amplhbole-bearing peridotites were probably the uppermost part of the high temperature anhydrous suite which was modally modifed by fractionating H2O-rich metasomatic agent during regional upwelling.This relatively recent lithospheric uplift event followed an older uplift event recognized from pyroxene unmixing of domains in local equilibrium,as well as the dominant deformation texture in the anhydrous suite.The first thermal disturbance can be linked with the regional extension and widespread basaltic volcanism in Jiangsu-Anhui provinces since Early Tertiary and the formation of the nearby Subei(North Jiangsu) fault-depression basin during the Eocene,while the second event in association with the formation of amphiboles probably indicates the continuation but diminution of upwared mantle flux since Neogene in response to the change in tectonic regime for eastern china. 相似文献
20.
Lithium elemental and isotopic disequilibrium has frequently been observed in the continental and oceanic mantle xenoliths, but its origin remains controversial. Here, we present a combined elemental and Li isotopic study on variably metasomatised peridotite xenoliths entrained in the Cenozoic basalts from Shangzhi in Northeast (NE) China that provides insight into this issue. Li concentration (0.3–2.7 ppm) and δ 7Li (mostly 2‰–6‰) in olivine from the Shangzhi peridotites are similar to the normal mantle values and show roughly negative correlations with the indices of melt extraction (such as modal olivine and whole rock MgO). These features are consistent with variable degrees of partial melting. In contrast, clinopyroxene from the Shangzhi xenoliths shows significant Li enrichment (0.9–6.1 ppm) and anomalously light δ 7Li (??13.8‰ to 7.7‰) relative to normal mantle values. Such features can be explained by Li diffusion from silicate melts or Li-rich fluids occurring over a very short time (several minutes to several hours). Moreover, the light Li isotopic compositions preserved in some bulk samples also indicate that these percolated melts/fluids have not had enough time to isotopically equilibrate with the bulk peridotite. We thus emphasize that Li isotopic fractionation in the Shangzhi mantle xenoliths is mainly related to Li diffusion from silicate melts or Li-rich fluids that took place shortly before or coincident with their entrainment into the host magmas. 相似文献
|