首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
赞坎铁矿床是塔什库尔干地区一个典型的沉积变质型铁矿,具有多阶段成矿的特征,是塔什库尔干地区铁矿成矿作用演化的典型代表。文章将赞坎铁矿床主要矿石矿物磁铁矿的形成划分为3个世代,分别为条带状磁铁矿、浸染状磁铁矿和粗晶脉状或块状磁铁矿,分别代表3个成矿阶段的产物。电子探针和LAICP-MS原位分析表明,赞坎铁矿从条带状磁铁矿到粗晶块状磁铁矿随着磁铁矿的成矿演化主量元素中Al元素有减少的趋势,而Ti、Mn、Mg、V元素均具有增加的趋势;微量元素中Co、Nb、Hf、Ta等具有减少的趋势,Sc、Ga、Zr、Sn等元素具有增加的趋势。根据以上各成矿阶段中磁铁矿成分变化,并结合前人的研究成果发现,赞坎铁矿早期条带状磁铁矿与火山沉积作用有关,成矿后期特别是在粗晶块状和脉状磁铁矿阶段受岩浆热液影响明显,富铁矿有岩浆热液的参与。  相似文献   

2.
Magnetite, as a genetic indicator of ores, has been studied in various deposits in the world. In this paper, we present textural and compositional data of magnetite from the Qimantag metallogenic belt of the Kunlun Orogenic Belt in China, to provide a better understanding of the formation mechanism and genesis of the metallogenic belt and to shed light on analytical protocols for the in situ chemical analysis of magnetite. Magnetite samples from various occurrences, including the ore–related granitoid pluton, mineralised endoskarn and vein–type iron ores hosted in marine carbonate intruded by the pluton, were examined using scanning electron microscopy and analysed for major and trace elements using electron microprobe and laser ablation–inductively coupled plasma–mass spectrometry. The field and microscope observation reveals that early–stage magnetite from the Hutouya and Kendekeke deposits occurs as massive or banded assemblages, whereas late–stage magnetite is disseminated or scattered in the ores. Early–stage magnetite contains high contents of Ti, V, Ga, Al and low in Mg and Mn. In contrast, late–stage magnetite is high in Mg, Mn and low in Ti, V, Ga, Al. Most magnetite grains from the Qimantag metallogenic belt deposits except the Kendekeke deposit plot in the " Skarn " field in the Ca+Al+Mn vs Ti+V diagram, far from typical magmatic Fe deposits such as the Damiao and Panzhihua deposits. According to the(Mg O+Mn O)–Ti O2–Al2O3 diagram, magnetite grains from the Kaerqueka and Galingge deposits and the No.7 ore body of the Hutouya deposit show typical characteristics of skarn magnetite, whereas magnetite grains from the Kendekeke deposit and the No.2 ore body of the Hutouya deposit show continuous elemental variation from magmatic type to skarn type. This compositional contrast indicates that chemical composition of magnetite is largely controlled by the compositions of magmatic fluids and host rocks of the ores that have reacted with the fluids. Moreover, a combination of petrography and magnetite geochemistry indicates that the formation of those ore deposits in the Qimantag metallogenic belt involved a magmatic–hydrothermal process.  相似文献   

3.
Magnetite is common in many ore deposits and their host rocks, and is useful for petrogenetic studies. In the Khetri copper belt in Rajasthan Province, NW India, there are several Cu-(Au, Fe) deposits associated with extensive Cu ± Fe ± Au ± Ag ± Co ± REE ± U mineralization hosted in phyllites, schists and quartzites of the Paleoproterozoic Delhi Supergroup. Ore bodies of these deposits comprise dominantly disseminated and vein-type Cu-sulfide ores composed of chalcopyrite, pyrite, and pyrrhotite intergrown with minor magnetite. There are also Fe-oxide ores with minor or no Cu-sulfides, which are locally overprinted by the mineral assemblage of the Cu-sulfide ores. In addition to the Fe-oxide and Cu-sulfide ores, the protolith of the Delhi Supergroup includes banded iron formations (BIFs) with original magnetite preserved (i.e. magnetite-quartzites) and their sheared counterparts. In the sheared magnetite-quartzites, their magnetite and quartz are mobilized and redistributed to magnetite and quartz bands. Trace elemental compositions of magnetite from these types of ores/rocks were obtained by LA-ICP-MS. The dataset indicates that different types of magnetite have distinct concentrations of Ti, Al, Mg, Mn, V, Cr, Co, Ni, Zn, Cu, P, Ge and Ga, which are correlated to their forming environments. Magnetite grains in magnetite-quartzites have relatively high Al (800–8000 ppm), Ti (150–900 ppm) and V (300–600 ppm) contents compared to those of BIFs in other regions such as the Yilgarn Craton, Western Australia and Labrador, Canada. The high Al, Ti and V contents can be explained by precipitation of the magnetite from relatively reduced, Al–Ti-rich water possibly involving hotter, seafloor hydrothermal fluids derived from submarine mafic volcanic rocks. Magnetite in sheared magnetite-quartzites is generally irregular and re-crystallized, and has Ni, Mn, Al, Cu and P contents lower than the magnetite from the unsheared counterparts, suggesting that the shearing-related mobilization is able to extract these elements from original magnetite. However, elevated contents of Ti, V, Co, Cr, Ge and Mg of the magnetite in the sheared magnetite-quartzites can be ascribed to involvement of external hydrothermal fluids during the shearing, consistent with occurrence of some hydrothermal minerals in the samples.Compositions of magnetite from the Fe-oxide and Cu-sulfide ores are interpreted to be controlled mainly by fluid compositions and/or oxygen fugacity (fO2). Other potential controlling factors such as temperature, fluid–rock interaction and co-precipitating minerals have very limited impacts. Magnetite in the Cu-sulfide ores has higher V but lower Ni contents than that of the Fe-oxide ores, likely indicating its precipitation from relatively reduced, evolved fluids. However, it is also indicated that the two types of magnetite do not show large distinctions in terms of concentrations of most elements, suggesting that they may have precipitated from a common, evolving fluid. We propose a combination of Ge versus Ti/Al and Cr versus Co/Ni co-variation plots to discriminate different types of magnetite from the Khetri copper belt. Our work agrees well with previous studies that compositions of magnetite can be potentially useful for provenance studies, but also highlights that discrimination schemes would be more meaningful for deposits in a certain region if fluid/water chemistry and specific formation conditions reflected in compositions of magnetite are clearly understood.  相似文献   

4.
The Beiya gold–polymetallic deposit is one of the largest gold deposits in China and is considered to be a typical porphyry-skarn system located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt. Massive magnetite is widespread in the Beiya ore district but its genesis is still the subject of debate. Five representative magnetite types are present in the Beiya deposit, namely magmatic magnetite (M1) from the ore-related porphyry, disseminated magnetite (M2) from the early retrograde alteration, massive magnetite (M3) from the early quartz-magnetite stage, massive magnetite (M4) from the middle quartz-magnetite stage and magnetite (M5) from the late quartz-magnetite stage. Compared with the M1 magnetite, the magnetites from stages M2 to M5 are depleted in Ti, Al and high field strength elements, implying a hydrothermal origin, distinct from the magmatic accessory magnetite in the ore-related porphyry (M1). The concentrations of cobalt in the hydrothermal magnetites decrease gradually from M2 to M5, and can be used to discriminate the magnetite types. The Al + Mn and Ti + V contents of the successively precipitated magnetite grains (M2–M5) suggests that the ore forming temperature decreased from M2 to M4, but increased from M4 to M5, possibly as the result of a new pulse of magma entering the chamber, which may have triggered the gold mineralization. The V content in the hydrothermal magnetite suggests that the oxygen fugacity increased from M2 to M4 but decreased as soon as the sulfides entered the system (M5).  相似文献   

5.
凹山铁矿床是一个典型的玢岩型铁矿床,成矿过程具有多阶段的特征,是宁芜矿集区凹山矿田成矿作用演化的典型代表。本次研究工作,在详细的野外地质调查研究和室内研究的基础上,将主要矿石矿物磁铁矿的形成划分为4个世代,分别为浸染状磁铁矿、角砾状磁铁矿、粗粒脉状磁铁矿和伟晶状磁铁矿,它们是四个成矿阶段的产物。电子探针和LA-ICP-MS原位分析表明,随着成矿作用的演化,磁铁矿主量元素中Ti、Mn、V含量变化微弱,Al、Mg含量增高;微量元素中Ga、Sn及高场强元素Zr、Hf、Nd、Ta含量变化较小;从角砾状矿石到伟晶状矿石Co含量逐渐增高、Sc含量逐渐降低。根据以上成矿各阶段中磁铁矿成分的变化,并结合前人研究成果得出,凹山铁矿床作为一个高温气液充填矿床,其成矿物质主要来自于岩浆演化晚期形成的高温富铁流体。在成矿过程中磁铁矿具有同源连续演化的特征,其中隐爆作用诱发了大规模铁沉淀,并为成矿提供了空间,形成了早期的浸染状和角砾状矿石;成矿过程中流体成分不断变化,后期大量挥发份的累积和外源流体的逐渐加入,形成了伟晶状矿石并使得磁铁矿具有了热液成因的特征。  相似文献   

6.
The Makeng iron deposit is located in the Yong’an-Meizhou depression belt in Fujian Province, eastern China. Both skarn alteration and iron mineralization are mainly hosted within middle Carboniferous-lower Permian limestone. Five paragenetic stages of skarn formation and ore deposition have been recognized: Stage 1, early skarn (andradite–grossular assemblage); Stage 2, magnetite mineralization (diopside–magnetite assemblage); Stage 3, late skarn (amphibole–chlorite–epidote–johannsenite–hedenbergite–magnetite assemblage); Stage 4, sulfide mineralization (quartz–calcite–fluorite–chlorite–pyrite–galena–sphalerite assemblage); and Stage 5, carbonate (quartz–calcite assemblage). Fluid inclusion studies were carried out on inclusions in diopside from Stage 2 and in quartz, calcite, and fluorite from Stage 4.Halite-bearing (Type 1) and coexisting two-phase vapor-rich aqueous (Type 3) inclusions in the magnetite stage display homogenization temperatures of 448–564 °C and 501–594 °C, respectively. Salinities range from 26.5 to 48.4 and 2.4 to 6.9 wt% NaCl equivalent, respectively. Two-phase liquid-rich aqueous (Type 2b) inclusions in the sulfide stage yield homogenization temperatures and salinities of 182–343 °C and 1.9–20.1 wt% NaCl equivalent. These fluid inclusion data indicate that fluid boiling occurred during the magnetite stage and that fluid mixing took place during the sulfide stage. The former triggered the precipitation of magnetite, and the latter resulted in the deposition of Pb, Zn, and Fe sulfides. The fluids related to magnetite mineralization have δ18Ofluid-VSMOW of 6.7–9.6‰ and δD of −96 to −128‰, which are interpreted to indicate residual magmatic water from magma degassing. In contrast, the fluids related to the sulfide mineralization show δ18Ofluid-VSMOW of −0.85 to −1.04‰ and δD of −110 to −124‰, indicating that they were generated by the mixing of magmatic water with meteoric water. Magnetite grains from Stage 2 exhibit oscillatory zoning with compositional variations in major elements (e.g., SiO2, Al2O3, CaO, MgO, and MnO) from core to rim, which is interpreted as a self-organizing process rather than a dissolution-reprecipitation process. Magnetite from Stage 3 replaces or crosscuts early magnetite, suggesting that later hydrothermal fluid overprinted and caused dissolution and reprecipitation of Stage 2 magnetite. Trace element data (e.g., Ti, V, Ca, Al, and Mn) of magnetite from Stages 2 and 3 indicate a typical skarn origin.  相似文献   

7.
The cocrystallization coefficient of Mn and Fe (DMn/Fe) in magnetite crystals is determined in hydrothermal-growth experiments with internal sampling at 450 and 500 °C and 100 MPa (1 kbar). It is weakly dependent on temperature in the studied PT-region and is constant over a wide range of Mn/Fe values. This permits using the magnetite composition as an indicator of Mn/Fe in the fluid under equilibrium: (Mn/Fe)aq  100 (Mn/Fe)mt. Since Mn is often a macrocomponent of the fluid and a microcomponent of magnetite, local analysis of fluid inclusions for Mn might help to determine Fe even in iron minerals. This will permit evaluation of the contents of other ore metals if the DMe/Fe values are known. For fine crystals (< 0.1–0.2 mm) with low contents of Mn (< 0.01–0.02%), it is necessary to take into account the fractionation of Mn into the surficial nonautonomous phase, in which its content can reach several percent. Comparison of these data with earlier data on the distribution of Mn in the system magnetite–pyrite–pyrrhotite–greenockite–hydrothermal solution shows that DMn/Fe remains constant in the presence of sulfur and sulfides. Precipitation of magnetite, in which Mn is a compatible admixture, cannot affect radically Mn/Fe in the solution because of the low DMn/Fe value. This effect is still more unlikely for pyrrhotite and pyrite, in which Mn is an incompatible admixture. The most probable mechanism of Mn fractionation into the solid phase is crystallization of FeOOH at lower temperatures. This is indirectly supported by the strong fractionation of Mn into the nonautonomous oxyhydroxide phase on the surface of magnetite crystals. The necessity of a more rigorous validation of “the new Fe/Mn geothermometer for hydrothermal systems” is substantiated.  相似文献   

8.
The Mupane gold deposit, which is one of the numerous gold occurrences in the Tati Greenstone Belt in the northeastern part of Botswana, consists of four orebodies, namely Tau, Tawana, Kwena, and Tholo deposits. The present research, which focuses on the genesis of the Tau deposit, was based on ore petrography, mineral chemistry of sulfides, and sulfur isotope data. Mineralogical characteristics of the host rocks indicate that banded iron formation at the Tau deposit includes iron oxides (magnetite), carbonates (siderite and ankerite), silicates (chlorite and amphibole), and sulfides (arsenopyrite and pyrrhotite). The deposit features arsenopyrite-rich zones associated with biotite-chlorite veins, which are indicative of the precipitation of arsenopyrite concomitant with potassic alteration. The replacement of magnetite by pyrrhotite in some samples suggests that sulfidation was likely the dominant gold precipitation mechanism because it is considered to have destabilized gold-thiocomplexes in the ore-forming fluids. Based on textural relationships and chemical composition, arsenopyrite is interpreted to reflect two generations. Arsenopyrite 1 is possibly early in origin, sieve textured with abundant inclusions of pyrrhotite. Arsenopyrite 1 was then overgrown by late arsenopyrite 2 with no porous textures and rare inclusions of pyrrhotite. Gold mineralization was initiated by focused fluid flow and sulfidation of the oxide facies banded iron formation, leading to an epigenetic gold mineralization. The mineralogical assemblages, textures, and mineral chemistry data at the Tau gold deposit revealed two-stage gold mineralizations commencing with the deposition of invisible gold in arsenopyrite 1 followed by the later formation of native gold during hydrothermal alteration and post-depositional recrystallization of arsenopyrite 1. Laser ablation inductively coupled plasma mass spectrometric analysis of arsenopyrite from the Tau deposit revealed that the hydrothermal event responsible for the formation of late native gold also affected the distribution of other trace elements within the grains as evidenced by varying trace elements contents in arsenopyrite 1 and arsenopyrite 2. The range of δ34S of gold-bearing assemblages from the Tau deposit is restricted from +1.6 to +3.9‰, which is typical of Archean orogenic gold deposits and indicates that overall reduced hydrothermal conditions prevailed during the gold mineralization process at the Tau deposit. The results from this study suggest that gold mineralization involved multi-processes such as sulfidation, metamorphism, deformation, hydrothermal alteration, and gold remobilization.  相似文献   

9.
Banded iron-formations are main resources of global iron ore in which high-grade ore is mainly composed of martite–goethite and hematite. They are also the major resource of iron ore in China, mainly distributing in Liaoning and Hebei Province. In China, the iron ore with Fe greater than 50% is classified as high-grade iron ore. The high-grade iron ore mainly consists of magnetite and displays its unique characteristics. Gongchangling iron deposit is one typical BIF-iron deposit which contains 150 Mt of high-grade iron ore in China. The high-grade magnetite ore bodies mainly occur around magnetite quartzite, faults and the cores of folds and show positive relation to the development of the “altered rocks” in this deposit. This research shows that high-grade magnetite comes from magnetite quartzite and they are both formed, with little or no addition of aluminum-containing detrital material, by marine chemical deposition in reduced environment and they are closely related to seafloor hydrothermal activity.Muddy–silty rocks are original rocks of “altered rocks”, of which the primitive mantle normalized REE pattern, except Eu, is consistent with that of iron ore, reflecting that their formation is related to the formation of high-grade magnetite ore. Therefore, the formation mechanism of high-grade iron ore is proposed as following: the regional metamorphism provides storage space for the formation of high-grade magnetite ore and required temperature and pressure conditions for the mineral transformation; the regional metamorphic hydrothermal fluid leaches FeO out of magnetite quartzite when it passes by; and the FeO that leached out moves near faults or cores of folds together with the metamorphic hydrothermal fluid and aluminum-containing rocks, of which the original rocks are muddy–silty; in the formation of high-grade iron ore, aluminum-containing rock appears in the intervals of sedimentation of iron-containing rock series and consumes the silicon leached out of magnetite quartzite and forms garnet, chlorite, and biotite.  相似文献   

10.
钱兵 《地质与勘探》2014,50(4):630-640
赞坎铁矿石西昆仑成矿带近年来新发现的一处超大型铁矿床,矿区内广泛出露古元古代布伦阔勒变质岩层,矿体主要赋存于布伦阔勒岩群角闪斜长片岩和黑云石英片岩内部,部分产于霏细岩与黑云石英片岩接触带内。矿床由Ⅰ~Ⅶ号矿体组成,其中Ⅰ号和Ⅲ号矿体为主要矿体。根据矿石组构、矿物共生关系等特征,成矿过程可划分为早期沉积期、中期变质期及晚期岩浆热液期3个成矿期,其中,岩浆热液期可进一步划分为矽卡岩阶段、热液改造阶段和硫化物阶段。早期沉积期磁铁矿呈微细粒他形晶结构,被变质期石英颗粒包裹,以较低含量的TFeO、MgO、MnO和较高含量的TiO2、Al2O3为特征;中期变质期磁铁矿分布于条带状矿石内,他形晶粒状结构,与早期相比,TFeO、MgO、MnO等含量相对升高而TiO2、Al2O3等含量相对降低;晚期岩浆热液期矽卡岩阶段磁铁矿分布于块状矿石内,自形晶粒状结构,以相对富TFeO、MgO、MnO而贫TiO2、Al2O3为特征;晚期热液改造阶段磁铁矿分布于浸染状矿石中,半自形-自形粒状结构、交代残余结构为主,TFeO、Al2O3、TiO2、MnO等含量变化较大。认为赞坎铁矿是沉积变质型铁矿床,遭受后期岩浆热液作用交代改造。  相似文献   

11.
The Bayan Obo Fe-REE-Nb deposit in northern China is the world's largest light REE deposit, and also contains considerable amounts of iron and niobium metals. Although there are numerous studies on the REE mineralization, the origin of the Fe mineralization is not well known. Laser ablation (LA) ICP-MS is used to obtain trace elements of Fe oxides in order to better understand the process involved in the formation of magnetite and hematite associated with the formation of the giant REE deposit. There are banded, disseminated and massive Fe ores with variable amounts of magnetite and hematite at Bayan Obo. Magnetite and hematite from the same ores show similar REE patterns and have similar Mg, Ti, V, Mn, Co, Ni, Zn, Ga, Sn, and Ba contents, indicating a similar origin. Magnetite grains from the banded ores have Al + Mn and Ti + V contents similar to those of banded iron formations (BIF), whereas those from the disseminated and massive ores have Al + Mn and Ti + V contents similar to those of skarn deposits and other types of magmatic-hydrothermal deposits. Magnetite grains from the banded ores with a major gangue mineral of barite have the highest REE contents and show slight moderate REE enrichment, whereas those from other types of ores show light REE enrichment, indicating two stages of REE mineralization associated with Fe mineralization. The Bayan Obo deposit had multiple sources for Fe and REEs. It is likely that sedimentary carbonates provided original REEs and were metasomatized by REE-rich hydrothermal fluids to form the giant REE deposit.  相似文献   

12.
铁氧化物-磷灰石矿床(IOA)是全球铁矿资源重要的供给矿床类型之一,受到国内外科研和矿产开采工作者的广泛关注。对铁氧化物-磷灰石矿床研究的争议主要集中在矿床成因上,即岩浆成因或者热液成因。作为一类具有多阶段成矿作用的矿床,IOA型矿床很难用热液或者矿浆成因予以简单概括,需要动态地看待成矿作用。和尚桥铁矿床是一个大型的铁氧化物-磷灰石(IOA)矿床,位于中国东部长江中下游多金属成矿带宁芜矿集区中。和尚桥铁矿床成矿作用含有三个清晰的磁铁矿矿化阶段,分别形成浸染状(Mt1)、角砾状(Mt2)和脉状(Mt3)矿石。对各阶段磁铁矿矿石中磁铁矿进行激光剥蚀等离子质谱(LA-ICP-MS)微区成分测试。在成矿过程中,从早到晚,磁铁矿表现出了从具有岩浆成因特征向具有热液成因特征的方向演化。磁铁矿中Mg和Al含量升高,Cr含量先降低后略微升高,Mn、Co、Ni和V含量先降低后升高,Mo和Sn含量先升高后降低的趋势,表明成矿过程中各阶段围岩及大气水对成矿流体的贡献不一。结合前人研究成果,我们认为和尚桥铁矿床中磁铁矿铁质的来源与安山质侵入岩密切相关,可能来源于岩浆不混溶作用形成的铁质富集流体(熔体),磁铁矿在高温热液环境中结晶沉淀。成矿过程具有多阶段性,推测在各成矿阶段间隙,富铁流体得到富集,同时地层物质不断的加入并导致了磁铁矿成分显示出越来越多的热液成因信息,地层物质(特别是膏盐层)对成矿过程起到了重要的控制作用。  相似文献   

13.
The Sokoman Iron Formation in the Labrador Trough, Canada, a typical granular iron formation (GIF), is coeval with the ~ 1.88 Ga Nimish volcanic suites in the same region. It is composed of the Lower, Middle and Upper Iron Formations. In addition to primary and altered magnetite in iron formations of the Hayot Lake, Rainy Lake and Wishart Lake areas, magnetite in volcanic breccia associated with the iron formation is identified for the first time in the stratigraphy. Trace elemental compositions of the most primary, altered and volcanic brecciated magnetite of the Sokoman Iron Formation were obtained by LA–ICP-MS. Commonly detected trace elements of magnetite include Ti, Al, Mg, Mn, V, Cr, Co and Zn. These three types of magnetite have different trace elemental compositions. Primary magnetite in the iron formation has a relatively narrow range of compositions with the depletion of Ti, Pb, Mg and Al. Magnetite from volcanic breccia is rich in Ti, Al, V, Mn, Mg, Zn, Cu and Pb, indicative of crystallization from mantle-derived magmas. Altered magnetite in the iron formation shows a relatively wide range of trace elemental compositions. Mineralizing fluids associated with magmas that generated the ~ 1.88 Ga Nimish volcanic suites circulated through the sedimentary piles to further enrich the iron formations and to form magnetite with variable compositions. The comparisons of different types of primary and altered magnetite in the iron formation in the region show distinct provenance discrimination. Our findings also support the origin of iron formations in association with multiple stages of exhalative volcanic and hydrothermal processes.  相似文献   

14.
The Heijianshan Fe–Cu (–Au) deposit, located in the Aqishan-Yamansu belt of the Eastern Tianshan (NW China), is hosted in the mafic–intermediate volcanic and mafic–felsic volcaniclastic rocks of the Upper Carboniferous Matoutan Formation. Based on the pervasive alteration, mineral assemblages and crosscutting relationships of veins, six magmatic–hydrothermal stages have been established, including epidote alteration (Stage I), magnetite mineralization (Stage II), pyrite alteration (Stage III), Cu (–Au) mineralization (Stage IV), late veins (Stage V) and supergene alteration (Stage VI). The Stage I epidote–calcite–tourmaline–sericite alteration assemblage indicates a pre-mineralization Ca–Mg alteration event. Stage II Fe and Stage IV Cu (–Au) mineralization stages at Heijianshan can be clearly distinguished from alteration, mineral assemblages, and nature and sources of ore-forming fluids.Homogenization temperatures of primary fluid inclusions in quartz and calcite from Stage I (189–370 °C), II (301–536 °C), III (119–262 °C) and V (46–198 °C) suggest that fluid incursion and mixing probably occurred during Stage I to II and Stage V, respectively. The Stage II magmatic–hydrothermal-derived Fe mineralization fluids were characterized by high temperature (>300 °C), medium–high salinity (21.2–56.0 wt% NaCl equiv.) and being Na–Ca–Mg–Fe-dominated. These fluids were overprinted by the external low temperature (<300 °C), medium–high salinity (19.0–34.7 wt% NaCl equiv.) and Ca–Mg-dominated basinal brines that were responsible for the subsequent pyrite alteration and Cu (–Au) mineralization, as supported by quartz CL images and H–O isotopes. Furthermore, in-situ sulfur isotopes also indicate that the sulfur sources vary in different stages, viz., Stage II (magmatic–hydrothermal), III (basinal brine-related) and IV (magmatic–hydrothermal). Stage II disseminated pyrite has δ34Sfluid values of 1.7–4.3‰, comparable with sulfur from magmatic reservoirs. δ34Sfluid values (24.3–29.3‰) of Stage III Type A pyrite (coexists with hematite) probably indicate external basinal brine involvement, consistent with the analytical results of fluid inclusions. With the basinal brines further interacting with volcanic/volcaniclastic rocks of the Carboniferous Matoutan Formation, Stage III Type B pyrite–chalcopyrite–pyrrhotite assemblage (with low δ34Sfluid values of 4.6–10.0‰) may have formed at low fO2 and temperature (119–262 °C). The continuous basinal brine–volcanic/volcaniclastic rock interactions during the basin inversion (∼325–300 Ma) may have leached sulfur and copper from the rocks, yielding magmatic-like δ34Sfluid values (1.5–4.1‰). Such fluids may have altered pyrite and precipitated chalcopyrite with minor Au in Stage IV. Eventually, the Stage V low temperature (∼160 °C) and low salinity meteoric water may have percolated into the ore-forming fluid system and formed late-hydrothermal veins.The similar alteration and mineralization paragenetic sequences, ore-forming fluid sources and evolution, and tectonic settings of the Heijianshan deposit to the Mesozoic Central Andean IOCG deposits indicate that the former is probably the first identified Paleozoic IOCG-like deposit in the Central Asian Orogenic Belt.  相似文献   

15.
The ~200-km-long intensely deformed Singhbhum Shear Zone (SSZ) in eastern India hosts India’s largest U and Cu deposits and related Fe mineralization. The SSZ separates an Archaean cratonic nucleus to the south from a Mesoproterozoic fold belt in the North and has a complex geologic history that obscures the origin of the contained iron-oxide-rich mineral deposits. This study investigates aspects of the history of mineralization in the SSZ by utilizing new petrographic and electron microprobe observations of pyrite textures and zoning in the Turamdih U–Cu(–Fe) deposit. Mineralization at Turamdih is hosted in intensively deformed quartz–chlorite schist. Sulfides and oxides include, in inferred order of development: (a) magmatic Fe(–Ti–Cr) oxide and Fe–Cu(–Ni) sulfide minerals inferred to be magmatic (?) in origin; followed by (b) uranium, Fe-oxide, and Fe–Cu(–Co) sulfide minerals that predate most or all ductile deformation, and are inferred to be of hydrothermal origin; and (c) Fe–Cu sulfides that were generated during and postdating ductile deformation. These features are associated with the formation of three compositionally and texturally distinct pyrites. Pyrite (type-A), typically in globular–semiglobular composite inclusions of pyrite plus chalcopyrite in magnetite, is characterized by very high Ni content (up to 30,700 ppm) and low Co to Ni ratios (0.01–0.61). The textural and compositional characteristics of associated chalcopyrite and rare pyrrhotite suggest that this pyrite could be linked to the magmatic event via selective replacement of magmatic pyrrhotite. Alternatively, this pyrite and associated sulfide inclusions might be cogenetic with hydrothermal Fe-oxide. Type-B pyrite that forms elongate grains and irregular relics and cores of pyrite with high Co contents (up to 23,630 ppm) and high Co to Ni ratios (7.2–140.9) are interpreted to be related to hydrothermal mineralization predating ductile deformation. A third generation of pyrite (type C) with low Co, low Ni, and moderate Co to Ni ratios (0.19–13.93) formed during and postdating the ductile deformation stage overgrowing, replacing, and surrounding type-B pyrite. The textural evolution of pyrite parallels the tectonometamorphic evolution of the shear zone demonstrating grain elongation during progressive ductile deformation and prograde metamorphism, annealing at the peak metamorphic condition, porphyroblastic growth at the retrograde path and cataclasis following porphyroblastic growth. Compositional characteristics of hydrothermal pyrite and available geological information suggest that the U–Cu(–Fe) deposit at Turamdih might be a variant of the Fe oxide (–Cu–U–rare earth elements) family of deposits.  相似文献   

16.
莱芜张家洼铁矿位于华北克拉通东缘的鲁西地区,矿石成因类型为夕卡岩型铁矿。矿体赋存在早白垩世高镁闪长岩与奥陶系马家沟组灰岩及白云岩接触带附近。本文通过对莱芜岩浆和热液磁铁矿电子探针(EPMA)以及激光剥蚀电感耦合等离子体质谱(LA ICP MS)分析,探讨磁铁矿微量元素组成及变化规律对成岩和成矿作用的指示,为揭示张家洼铁矿的矿床成因及其成矿流体演化过程提供重要制约。分析结果表明,莱芜岩浆磁铁矿与热液磁铁矿相比明显富集Ti、V、Cr等亲铁元素,相对富集Nb、Ta、Zr、Hf等高场强元素以及Sn、Ga、Ge、Sc等中等相容元素,Mg、Al、Mn、Zn、Co显著富集于热液磁铁矿中。Ti、V、Cr以及Mg、Al、Mn、Zn在岩浆和热液中具有不同的地球化学行为,Ti、V、Cr从熔体中进入磁铁矿主要受温度、分配系数以及fO2控制。Mg、Al、Mn、Zn主要受控于水岩反应和后期绿泥石+碳酸盐脉的交代,这些元素通过类质同象替换富集于热液磁铁矿中。Co在热液磁铁矿中除了受水岩相互作用和后期流体交代的影响外,硫化物的出现会导致Co含量急剧降低。Si、Ca、Na及Sr、Ba在岩浆和热液磁铁矿中的地球化学行为非常一致。Ti Ni/Cr图能够用于区分岩浆和热液磁铁矿,莱芜岩浆磁铁矿中Ti含量较高且Ni/Cr比值≤1,热液磁铁矿Ti含量较低且绝大多数Ni/Cr比值≥1。张家洼热液磁铁矿可分为早、晚两个阶段:早期阶段包括(1)早期原生粒状磁铁矿和(2)早期次生磁铁矿;晚期阶段包括(3)晚期原生磁铁矿和(4)晚期次生磁铁矿。原生磁铁矿具有典型的三联点结构特征;次生磁铁矿受后期热液交代影响表现为多空隙,通常呈不规则状、树枝状、骸晶以及交代残余结构。磁铁矿微量元素生动记录了成矿流体演化过程,从早期到晚期、从原生到次生都显示Mg、Al、Mn、Zn包括Co含量持续升高,表明成矿流体可能朝着富集这些微量元素的方向演化。后期流体的交代导致绿泥石蚀变为磁铁矿,连续水岩相互作用和后期流体的交代以及绿泥石直接蚀变是导致热液磁铁矿富集Mg、Al、Mn、Zn等元素的主要原因。热液磁铁矿晚期孔隙较为发育,孔隙度的增加促使更多的流体和磁铁矿发生反应。热液磁铁矿的微量元素不仅能够反映矿床形成的物理化学条件,而且可以反映围岩性质以及水岩相互作用过程。  相似文献   

17.
铜厂铜-铁矿床是勉略宁矿集区具有代表性的矿床之一,主要由上部的铜厂铜矿床和下部的杨家坝铁矿床(铜厂铁矿床)组成.根据磁铁矿和硫化物的相对含量,铜厂铜-铁矿床的矿石可分为磁铁矿矿石、含硫化物磁铁矿矿石和硫化物矿石三类.系统的岩相学和矿相学研究表明,其矿石矿物主要为磁铁矿、黄铜矿、黄铁矿和磁黄铁矿;矿石结构包括自形-半自形...  相似文献   

18.
雅满苏铁矿床位于东天山中段,矿体赋存于下石炭统雅满苏组安山质火山碎屑岩中,受近EW向断裂及环形断裂构造控制。矿体主要呈层状、似层状、透镜状,近矿围岩蚀变强烈,形成石榴石矽卡岩及复杂矽卡岩。电子探针分析结果表明,石榴石为钙铁榴石-钙铝榴石系列,其化学组成可表示为And45.68~100Gro0.67~57.95(A1m+Sps)11~29.03,与典型的矽卡岩型铁矿中石榴石端员组分相似。在磁铁矿Ca+Al+Mn-Ti+V图解中,大部分样品落入矽卡岩型铁矿区;TiO2-Al2O3-MgO图解中,大多数的样品落入沉积变质接触交代磁铁矿趋势区,部分早期磁铁矿落在岩浆趋势区内。结合矿床地质特征和矿物学研究,认为大多数样品经过了一个热液交代作用过程,表明雅满苏铁矿的形成与岩浆热液交代作用有关。  相似文献   

19.
多头山矿床位于阿齐山-雅满苏成矿带西段,是东天山地区海相火山岩型铁铜矿床的代表,但目前缺乏对其矿石矿物的直接研究.磁铁矿是一种常见的矿石矿物,其化学成分可以用于指示成矿演化过程.在详细划分磁铁矿形成期次的基础上,对东天山地区的多头山矿床展开磁铁矿化学成分研究.结果表明按照磁铁矿的生成顺序和共生矿物组合的不同,多头山铁铜矿床中的磁铁矿从早期到晚期可以划分为M1a、M1b和M2型.其中,M1a型磁铁矿为粒状结构,与绿帘石-角闪石-黄铁矿共生;M1b型磁铁矿也为粒状结构,与石英-绿帘石-角闪石-黄铁矿共生;M2型磁铁矿则呈长条状产出,与角闪石共生.这3类磁铁矿都有较低含量的Ti(84×10-6~1 117×10-6)、Al(417×10-6~5 273×10-6)和高场强元素,属于热液型磁铁矿.与M2型磁铁矿相比,前两类磁铁矿具有较高含量的Si、Ca、Al和Mn,可能受到微细包体的影响.从M1a型到M2型磁铁矿,Ti含量呈现逐渐降低的趋势,可能与结晶温度逐渐降低有关;V和Cr含量表现出先升高后降低的变化规律,暗示成矿流体的氧逸度先降低后升高.综合考虑区域地质特征及M2型磁铁矿更加富Mg,表明有一定比例的海水参与到多头山矿床中磁铁矿形成的晚期阶段.   相似文献   

20.
The Goushti iron deposit from Dehbid area located in the Sanandaj-Sirjan metamorphic Belt (SSB), SW Iran is hosted by the Early Mesozoic silicified dolomite. Mineralized zones are lithostructurally controlled and oriented NW-SE parallel to the Zagros Orogenic Belt (ZOB). Magnetite, the major ore mineral, occurs as open space fillings and is accompanied by the secondary mineral phases hematite, goethite and martite. Gangue minerals mainly include quartz, dolomite and K-feldspar are associated with minor hydrosilicates. Calc-silicates such as wollastonite and diopside, minerals typical of skarns, are virtually absent from the ore zones. Fe2O3 content in the mineralized zones varies in the range of 38–75 wt%. The concentrations of Au, Cu, P, Ti, Cr and V as well as Co/Ni, Cr/V, (LREE)/(HREE), Eu/Sm and La/Lu values and Eu-Ce anomalies of the studied ores indicate that the Goushti deposit is a hydrothermal magnetite type. The subvolcanic rhyolite and basalt in this area are regarded as the source of iron and heat in the mineralizing system. The fluid inclusion data showed that magnetite deposited from the ore-bearing fluid with salinities 1–7 wt% NaCl equivalent at temperatures of 130–200 °C. A decrease in temperature and pressure, supplemented by fluid mixing, is the major controlling factor in iron oxide precipitation. The field relationships and mineralogical–geochemical characteristics of iron ores indicate that the Goushti hydrothermal deposit could not be classified as a member of the IOCG (Iron Oxide-Copper-Gold) deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号