首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Geochimica et cosmochimica acta》1999,63(11-12):1653-1660
We present the analytical methods that have been developed for the first high-precision Fe isotope analyses that clearly identify naturally-occurring, mass-dependent isotope fractionation. A double-spike approach is used, which allows rigorous correction of instrumental mass fractionation. Based on 21 analyses of an ultra pure Fe standard, the external precision (1-SD) for measuring the isotopic composition of Fe is ±0.14 ‰/mass; for demonstrated reproducibility on samples, this precision exceeds by at least an order of magnitude that of previous attempts to empirically control instrumentally-produced mass fractionation (Dixon et al., 1993). Using the double-spike method, 15 terrestrial igneous rocks that range in composition from peridotite to rhyolite, 5 high-Ti lunar basalts, 5 Fe-Mn nodules, and a banded iron formation have been analyzed for their iron isotopic composition. The terrestrial and lunar igneous rocks have the same isotopic compositions as the ultra pure Fe standard, providing a reference Fe isotope composition for the Earth and Moon. In contrast, Fe-Mn nodules and a sample of a banded iron formation have iron isotope compositions that vary over a relatively wide range, from δ56Fe = +0.9 to −1.2 ‰; this range is 15 times the analytical errors of our technique. These natural isotopic fractionations are interpreted to reflect biological (“vital”) effects, and illustrate the great potential Fe isotope studies have for studying modern and ancient biological processes.  相似文献   

2.
Here we report iron (Fe) isotopic data of three pure Fe solution standards (IRMM-014, GSB Fe, and NIST 3126a) and five widely used geological reference materials (RMs) from the United States Geological Survey and Geological Survey of Japan obtained on a Neptune Plus multi-collector–inductively coupled plasma–mass spectrometer (MC-ICP-MS) in our laboratory over the past 3 years. The instrumental mass bias was corrected by three independent methods: sample-standard bracketing (SSB), Ni doping?+?SSB, and 57Fe–58Fe double spike?+?SSB. Measurements reveal that both the Ni doping and double spike methods helped calibrate short-term fluctuations in mass bias. Collectively, almost all measurements of RMs yielded δ56Fe within?±?0.05 of recommended values, provided that each sample was measured four times on MC-ICP-MS. For the first time, new recommended values for NIST SRM3126a are reported (δ56Fe?=?0.363?±?0.006, 2SE, 95% CI; and δ57Fe?=?0.534?±?0.010, 2SE).  相似文献   

3.
In this paper, we applied a reliable technique for measuring Fe isotope variations in coastal seawater at nanomolar levels. Iron was directly pre-concentrated from acidified seawater samples onto a nitrilotriacetic acid chelating resin and further purified using anion-exchange resin. Sample recovery, determined using a standard addition method, was essentially quantitative. Iron was then determined using a high-resolution multicollector ICP-MS (Neptune) coupled to an ApexQ desolvation introduction system. The external precision for δ56Fe values was 0.11‰ (2s) when using total a Fe quantity between 25 and 100 ng. We initially applied this technique to measure the Fe isotope composition of dissolved Fe from several coastal environments in the north-eastern United States and we observed a range of δ56Fe values between -0.9‰ and 0.1‰ relative to the IRMM-14 reference material. Iron isotope compositions of several reference water materials for inter-laboratory comparisons were also reported. Our results suggest that iron in coastal seawater, derived from benthic diagenesis and/or groundwater has negative Fe isotopic signatures that are distinct from other iron sources such as atmospheric deposition and rivers.  相似文献   

4.
Chondrules and chondrites provide unique insights into early solar system origin and history, and iron plays a critical role in defining the properties of these objects. In order to understand the processes that formed chondrules and chondrites, and introduced isotopic fractionation of iron isotopes, we measured stable iron isotope ratios 56Fe/54Fe and 57Fe/54Fe in metal grains separated from 18 ordinary chondrites, of classes H, L and LL, ranging from petrographic types 3-6 using multi-collector inductively coupled plasma mass spectrometry. The δ56Fe values range from −0.06 ± 0.01 to +0.30 ± 0.04‰ and δ57Fe values are −0.09 ± 0.02 to +0.55 ± 0.05‰ (relative to IRMM-014 iron isotope standard). Where comparisons are possible, these data are in good agreement with published data. We found no systematic difference between falls and finds, suggesting that terrestrial weathering effects are not important in controlling the isotopic fractionations in our samples. We did find a trend in the 56Fe/54Fe and 57Fe/54Fe isotopic ratios along the series H, L and LL, with LL being isotopically heavier than H chondrites by ∼0.3‰ suggesting that redox processes are fractionating the isotopes. The 56Fe/54Fe and 57Fe/54Fe ratios also increase with increasing petrologic type, which again could reflect redox changes during metamorphism and also a temperature dependant fractionation as meteorites cooled. Metal separated from chondrites is isotopically heavier by ∼0.31‰ in δ56Fe than chondrules from the same class, while bulk and matrix samples plot between chondrules and metal. Thus, as with so many chondrite properties, the bulk values appear to reflect the proportion of chondrules (more precisely the proportion of certain types of chondrule) to metal, whereas chondrule properties are largely determined by the redox conditions during chondrule formation. The chondrite assemblages we now observe were, therefore, formed as a closed system.  相似文献   

5.
Previous studies on iron isotope compositions of subduction zone magmas have revealed significant and complex variations that have great bearings on petrogenetic processes in the mantle wedge, e.g., partial melting, fluid metasomatism and redox state. However, interpretations for the fractionations are highly debatable and lack direct constraints from mantle wedge peridotites. This study presents iron isotope compositions for whole rocks and mineral separates in fresh forearc peridotites from the Yushigou ophiolite, North Qilian orogen in northern Tibet. Major and trace element compositions of whole rock and mineral indicate that the peridotites are highly depleted forearc peridotites overprinted by melt metasomatism, in contrast to the long‐holding opinion that the peridotites are derived from mid‐oceanic ridges. The minerals fall on a line with a slope of ~1 on the plot of δ56Fe vs. δ56Fe, indicating isotope equilibrium between minerals. δ56Fe fractionation between olivine and orthopyroxene is within the range of 0~0.05, while fractionation between olivine and spinel is about 0.05~0.10. The fractionation trend between olivine and spinel is opposite to previous theoretical and experimental constraints, which may be due to substantial Cr substitution into the spinel. This indicates that negative correlations between spinel Cr#, fO2 and spinel δ56Fe in previous studies are probably a reflection of gradual Cr enrichment in spinel during melt extraction, and spinel δ56Fe values are not a proxy for oxygen fugacity. Whole rock δ56Fe values are well correlated with mineral δ56Fe values, varying from overlapping with depleted mantle to slightly lower than depleted mantle. Therefore, variations in iron isotope compositions of subduction zone magmas are probably due to combined effect of source heterogeneity and partial melting fractionation.  相似文献   

6.
Recent studies have suggested that rivers may present an isotopically light Fe source to the oceans. Since the input of dissolved iron from river water is generally controlled by flocculation processes that occur during estuarine mixing, it is important to investigate potential fractionation of Fe-isotopes during this process. In this study, we investigate the influence of the flocculation of Fe-rich colloids on the iron isotope composition of pristine estuarine waters and suspended particles. The samples were collected along a salinity gradient from the fresh water to the ocean in the North River estuary (MA, USA). Estuarine samples were filtered at 0.22 μm and the iron isotope composition of the two fractions (dissolved and particles) were analyzed using high-resolution MC-ICP-MS after chemical purification. Dissolved iron results show positive δ56Fe values (with an average of 0.43 ± 0.04‰) relative to the IRMM-14 standard and do not display any relationships with salinity or with percentage of colloid flocculation. The iron isotopic composition of the particles suspended in fresh water is characterized by more negative δ56Fe values than for dissolved Fe and correlate with the percentage of Fe flocculation. Particulate δ56Fe values vary from −0.09‰ at no flocculation to ∼0.1‰ at the flocculation maximum, which reflect mixing effects between river-borne particles, lithogenic particles derived from coastal seawaters and newly precipitated colloids. Since the process of flocculation produces minimal Fe-isotope fractionation in the dissolved Fe pool, we suggest that the pristine iron isotope composition of fresh water is preserved during estuarine mixing and that the value of the global riverine source into the ocean can be identified from the fresh water values. However, this study also suggests that δ56Fe composition of rivers can also be characterized by more positive δ56Fe values (up to 0.3‰) relative to the crust than previously reported. In order to improve our current understanding of the oceanic iron isotope cycling, further work is now required to determine the processes controlling the fractionation of Fe-isotopes during continental run-off.  相似文献   

7.
We have developed a method for iron isotope analysis by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) using a 58Fe-54Fe double spike. A 20 min analysis produces mass-bias-corrected iron isotope data with an external reproducibility of ±0.05 (2 SD) on δ56Fe, which represents a decrease in analysis time compared to sample-standard bracketing techniques. The estimation of external reproducibility is based on replicate analysis of the ETH hematite in-house standard. The double spike method has two advantages. First, matrix effects during MC-ICP-MS analysis are decreased with tests showing that accurate iron isotope data can, in some cases, be obtained even when matrix levels exceed iron concentration (Na/Fe, Mg/Fe, and Ca/Fe up to 5, 2, and 0.1, respectively). Because chemical separation reduces matrix/Fe to levels more than three orders of magnitude lower than this, measured Fe isotope compositions are unlikely to be compromised by matrix effects. Second, it is possible to spike samples before chemical purification, which enables any isotopic fractionation effect because of incomplete recovery of iron from a sample to be accounted for. This may be important where obtaining quantitative iron yields from samples is difficult, such as the extraction of dissolved iron from water samples. Fe isotope data on a set of standard reference materials (igneous rocks, ferromanganese nodules, sedimentary rocks, and ores) are presented, which are in agreement with previously published data considering analytical uncertainties. Mantle-derived standard rock samples that are the source of iron for surficial, (bio)geochemical cycling yield a mean δ56Fe of 0.041 ± 0.11‰ (n = 8; 2 SD) with reference to IRMM-14. Hydrothermal and metamorphic calcium carbonate rocks with a relatively low iron content (100-4000 ppm) have δ56Fe = −1.25 to −0.07‰. Structural Fe(II) in hydrothermal calcites has δ56Fe = −1.25 to −0.27‰. The light iron in this range of carbonate minerals may reflect the iron isotope composition of the hydrothermal fluids from which the carbonate precipitated, or the presence of Fe(III) and/or organic material in the hydrothermal fluids during calcite precipitation.  相似文献   

8.
UV femtosecond laser ablation coupled to MC-ICP-MS provides a promising in situ tool to investigate elemental and isotope ratios by non-matrix-matched calibration. In this study, we investigate Fe isotope composition in siliceous matrices including biotite, hornblende, garnet, fayalite and forsterite (San Carlos Olivine), and an oceanic Fe–Mn crust using the iron reference material IRMM-014 for calibration. To test the accuracy of the laser ablation data, Fe isotope compositions were obtained independently by solution ICP-MS after chromatographic separation of Fe. Sample materials with low Cr content, i.e. biotite, hornblende, fayalite and the Fe–Mn crust, reveal δ56/54Fe and δ57/54Fe values that agree with those from solution ICP-MS data within the measured precision. For high Cr concentration (54Cr/54Fe >0.0001), i.e. in the garnet and forsterite sample, δ56/54Fe and δ57/54Fe values were derived from 57Fe/56Fe ratios as correction of the isobaric interference of 54Cr on 54Fe is unsatisfactory. This approach provides accurate results for both minerals. Moreover, the garnet crystal exhibits isotopic zonation with differences of 0.3‰ in δ56/54Fe showing that substantial heterogeneities exist in high-temperature metamorphic minerals. Multiple analyses of homogeneous sample materials reveal a repeatability of 0.1‰ (2 SD) for δ56/54Fe and 0.2‰ (2 SD) for δ57/54Fe, respectively. This study adds to the observations of Horn et al. (2006) who have shown that the determination of Fe isotope ratios in various matrices including iron alloys, iron oxides and hydroxides, iron sulfide and iron carbonates can be performed with high accuracy and precision at high spatial resolution using UV femtosecond laser ablation ICP-MS. These results demonstrate that femtosecond laser ablation ICP-MS is a largely matrix-independent method, which provides a substantial advantage over commonly employed nanosecond laser ablation systems.  相似文献   

9.
The first cold plasma ICP-MS (inductively coupled plasma mass spectrometer) Fe isotope study is described. Application of this technique to the analyses of Fe isotopes in a number of meteorites is also reported. The measurement technique relies on reduced temperature operation of the ICP source to eliminate pervasive molecular interferences from Ar complexes associated with conventional ICP-MS. Instrumental mass bias corrections are performed by sample-standard bracketing and using Cu as an external mass bias drift monitor. Repeated measurements of a terrestrial basalt reference sample indicate an external reproducibility of ± 0.06 ‰ for δ56Fe and ± 0.25 ‰ for δ58Fe (1 σ). The measured iron isotopic compositions of various bulk meteorites, including irons, chondrites and pallasites are identical, within error, to the composition of our terrestrial basalt reference sample suggesting that iron mass fractionation during planet formation and differentiation was non-existent. Iron isotope compositions measured for eight chondrules from the unequilibrated ordinary chondrite Tieschitz range from −0.5 ‰ < δ56Fechondrules < 0.0 ‰ relative to the terrestrial/meteorite average. Mechanisms for fractionating iron in these chondrules are discussed.  相似文献   

10.
The redox state of Precambrian shallow seas has been linked with material cycle and evolution of the photosynthesis-based ecosystem. Iron is a redox-sensitive element and exists as a soluble Fe(II) species or insoluble Fe(III) species on Earth’s surface. Previous studies have shown that the iron isotopic ratio of marine sedimentary minerals is useful for understanding the ocean redox state, although the redox state of the Archean shallow sea is poorly known. This is partly because the conventional bulk isotope analytical technique has often been used, wherein the iron isotopic record may be dampened by the presence of isotopically different iron-bearing minerals within the same sample. Here we report a microscale iron isotopic ratio of individual pyrite grains in shallow marine stromatolitic carbonates over geological time using a newly developed, near-infrared femtosecond laser ablation multicollector ICP-MS technique (NIR-fs-LA-MC-ICP-MS).We have determined that the grain-scale iron isotopic distribution of pyrite from coeval samples shows a bimodal (2.7 and 2.3 Ga) or unimodal pattern (2.9, 2.6, and 0.7 Ga). In particular, pyrite from the 2.7 Ga Fortescue Group shows a unique bimodal distribution with highly positive (+1.0‰ defined as Type 1) and negative δ56Fe values (−1.8‰ defined as Type 2). Type 1 and 2 pyrites occasionally occur within different siliceous layers in the same rock specimen. Layer-scale iron isotopic heterogeneity indicates that the iron isotopic ratios of the two types of pyrite are not homogenized by diagenesis after deposition. Some cubic pyrites have a core with a positive δ56Fe value (1‰) and a rim with a crustal δ56Fe value (0‰). The observed isotopic zoning suggests that the positive δ56Fe value is a primary signature at the time of stromatolite formation, while secondary pyrite precipitated during diagenesis.The positive δ56Fe value of Type 1 and the large iron isotopic difference between Type 1 and 2 (2.8‰.) suggest partial Fe(II) oxidation in the 2.7-Ga shallow sea, i.e., pyritization of 56Fe-enriched ferric oxyhydroxide (Type 1) and 56Fe depleted Fe2+aq in seawater (Type 2). Type 2 pyrite was probably not produced by microbial iron redox cycling during diagenesis because this scenario requires a higher abundance of pyrite with δ56Fe of 0‰ than of −1.8‰. Consequently, the degree of Fe(II) oxidation in the 2.7-Ga shallow sea can be estimated by a Fe2+aq steady-state model. The model calculation shows that half the Fe2+aq influx was oxidized in the seawater. This implies that O2 produced by photosynthesis would have been completely consumed by oxidation of the Fe2+aq influx. Grain-scale iron isotopic distribution of pyrite could be a useful index for reconstructing the redox state of the Archean shallow sea.  相似文献   

11.
Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO2, Al2O3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions.The δ18O and δ56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The δ18O and δ56Fe values of the lunar upper mantle are estimated to be 5.5 ± 0.2‰ (2σ) and 0.085 ± 0.040‰ (2σ), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth’s upper mantle (5.5 ± 0.2‰), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 ± 0.030‰).  相似文献   

12.
Fe isotope compositions of mineral separates and bulk samples from Xinqiao Cu–S–Fe–Au skarn type deposit were investigated. An overall variation in δ57Fe values from − 1.22‰ to + 0.73‰ has been observed, which shows some regularity. The δ57Fe values of endoskarn and the earliest formed Fe-mineral phase magnetite are ca.1.2‰ and ca. 0.3‰ lower, respectively, relative to the quartz–monzodiorite stock, indicating that fluid exsolved from the stock is enriched in light Fe isotopes. Moreover, spatial and temporal variations in δ57Fe values are observed, which suggest iron isotope fractionation during fluid evolution. Precipitation of Fe-bearing minerals results in the Fe isotope composition of residual fluids evolving with time. Precipitation of Fe (III) minerals incorporating heavy iron isotopes preferentially leaves the remaining fluid enriched in light isotopes, while precipitation of Fe (II) minerals preferentially taking-up light iron isotopes, and makes the Fe isotopic composition of the fluid progressively heavier. The regularity of Fe isotope variations occurred during fluid exsolution and evolution indicates that the dominant Fe source of Xinqiao deposit is magmatic. Overall, this study demonstrates that Fe isotope composition has great potential in unraveling ore-forming processes, as well as constraining the metal sources of ore deposits.  相似文献   

13.
Iron isotope compositions in marine pore fluids and sedimentary solid phases were measured at two sites along the California continental margin, where isotope compositions range from δ56Fe = −3.0‰ to +0.4‰. At one site near Monterey Canyon off central California, organic matter oxidation likely proceeds through a number of diagenetic pathways that include significant dissimilatory iron reduction (DIR) and bacterial sulfate reduction, whereas at our other site in the Santa Barbara basin DIR appears to be comparatively small, and production of sulfides (FeS and pyrite) was extensive. The largest range in Fe isotope compositions is observed for Fe(II)aq in porewaters, which generally have the lowest δ56Fe values (minimum: −3.0‰) near the sediment surface, and increase with burial depth. δ56Fe values for FeS inferred from HCl extractions vary between ∼−0.4‰ and +0.4‰, but pyrite is similar at both stations, where an average δ56Fe value of −0.8 ± 0.2‰ was measured. We interpret variations in dissolved Fe isotope compositions to be best explained by open-system behavior that involves extensive recycling of Feflux. This study is the first to examine Fe isotope variations in modern marine sediments, and the results show that Fe isotopes in the various reactive Fe pools undergo isotopic fractionation during early diagenesis. Importantly, processes dominated by sulfide formation produce high-δ56Fe values for porewaters, whereas the opposite occurs when Fe(III)-oxides are present and DIR is a major pathway of organic carbon respiration. Because shelf pore fluids may carry a negative δ56Fe signature it is possible that the Fe isotope composition of ocean water reflects a significant contribution of shelf-derived iron to the open ocean. Such a signature would be an important means for tracing iron sources to the ocean and water mass circulation.  相似文献   

14.
Silicon isotope determination of sulfur‐rich samples by MC‐ICP‐MS can be challenging because cation‐exchange chromatography used for Si purification does not efficiently remove anionic sulfur species. Results for pure Si standard solutions with addition of sulfate showed shifts of up to +1.04 ± 0.10‰ (2s) in δ30Si. Doping of both standard solutions and samples with S to a fixed S/Si ratio can eliminate the relative change in instrumental mass fractionation due to variable S/Si in samples and also boosts the relative sensitivity of Si by up to 66%. Moreover, Fe hydroxide precipitation during sample processing adsorbs Si resulting in isotopic fractionations. Tests using Fe‐rich samples showed that this could be a major factor for observed shifts in δ30Si. Acidification of the sample and standard solutions to a pH < 1 aggressively dissolved any Fe hydroxide precipitates, even in relatively Fe‐rich samples such as chondrite meteorites. The pH values of the sample solutions were subsequently adjusted to a range of 2–3 by adding ultra‐pure NaOH solutions. The combination of sulfur doping and the pH adjustment protocol ensured a full recovery of Si and proved to be an efficient and reliable method for Si isotope determination of S‐ and Fe‐rich materials.  相似文献   

15.
Isotope ratios of heavy elements vary on the 1/10000 level in high temperature materials, providing a fingerprint of the processes behind their origin. Ensuring that the measured isotope ratio is precise and accurate depends on employing an efficient chemical purification technique and optimised analytical protocols. Exploiting the disparate speciation of Cu, Fe and Zn in HCl and HNO3, an anion exchange chromatography procedure using AG1‐×8 (200–400 mesh) and 0.4 × 7 cm Teflon columns was developed to separate them from each other and matrix elements in felsic rocks, basalts, peridotites and meteorites. It required only one pass through the resin to produce a quantitative and pure isolate, minimising preparation time, reagent consumption and total analytical blanks. A ThermoFinnigan Neptune Plus MC‐ICP‐MS with calibrator‐sample bracketing and an external element spike was used to correct for mass bias. Nickel was the external element in Cu and Fe measurements, while Cu corrected Zn isotopes. These corrections were made assuming that the mass bias for the spike and analyte element was identical, and it is shown that this did not introduce any artificial bias. Measurement reproducibilities were ± 0.03‰, ± 0.04‰ and ± 0.06‰ (2s) for δ57Fe, δ65Cu and δ66Zn, respectively.  相似文献   

16.
We present high-precision iron and magnesium isotopic data for diverse mantle pyroxenite xenoliths collected from Hannuoba, North China Craton and provide the first combined iron and magnesium isotopic study of such rocks. Compositionally, these xenoliths range from Cr-diopside pyroxenites and Al-augite pyroxenites to garnet-bearing pyroxenites and are taken as physical evidence for different episodes of melt injection. Our results show that both Cr-diopside pyroxenites and Al-augite pyroxenites of cumulate origin display narrow ranges in iron and magnesium isotopic compositions (δ57Fe = ?0.01 to 0.09 with an average of 0.03 ± 0.08 (2SD, n = 6); δ26Mg = ? 0.28 to ?0.25 with an average of ?0.26 ± 0.03 (2SD, n = 3), respectively). These values are identical to those in the normal upper mantle and show equilibrium inter-mineral iron and magnesium isotope fractionation between coexisting mantle minerals. In contrast, the garnet-bearing pyroxenites, which are products of reactions between peridotites and silicate melts from an ancient subducted oceanic slab, exhibit larger iron isotopic variations, with δ57Fe ranging from 0.12 to 0.30. The δ57Fe values of minerals in these garnet-bearing pyroxenites also vary widely (?0.25 to 0.08 in olivines, ?0.04 to 0.25 in orthopyroxenes, ?0.07 to 0.31 in clinopyroxenes, 0.07 to 0.48 in spinels and 0.31–0.42 in garnets). In addition, the garnet-bearing pyroxenite shows light δ26Mg (?0.43) relative to the mantle. The δ26Mg of minerals in the garnet-bearing pyroxenite range from ?0.35 for olivine and orthopyroxene, to ?0.34 for clinopyroxene, 0.04 for spinel and ?0.68 for garnet. These measured values stand in marked contrast to calculated equilibrium iron and magnesium isotope fractionation between coexisting mantle minerals at mantle temperatures derived from theory, indicating disequilibrium isotope fractionation. Notably, one phlogopite clinopyroxenite with an apparent later metasomatic overprint has the heaviest δ57Fe (as high as 1.00) but the lightest δ26Mg (as low as ?1.50) values of all investigated samples. Overall, there appears to be a negative co-variation between δ57Fe and δ26Mg in the Hannuoba garnet-bearing pyroxenite and in the phlogopite clinopyroxenite xenoliths and minerals therein. These features may reflect kinetic isotopic fractionation due to iron and magnesium inter-diffusion during melt–rock interaction. Such processes play an important role in producing inter-mineral iron and magnesium isotopic disequilibrium and local iron and magnesium isotopic heterogeneity in the subcontinental mantle.  相似文献   

17.
Holocene sediments from the Gotland Deep basin in the Baltic Sea were investigated for their Fe isotopic composition in order to assess the impact of changes in redox conditions and a transition from freshwater to brackish water on the isotope signature of iron. The sediments display variations in δ56Fe (differences in the 56Fe/54Fe ratio relative to the IRMM-14 standard) from −0.27 ± 0.09‰ to +0.21 ± 0.08‰. Samples deposited in a mainly limnic environment with oxygenated bottom water have a mean δ56Fe of +0.08 ± 0.13‰, which is identical to the mean Fe isotopic composition of igneous rocks and oxic marine sediments. In contrast, sediments that formed in brackish water under periodically euxinic conditions display significantly lighter Fe isotope signatures with a mean δ56Fe of −0.14 ± 0.19‰. Negative correlations of the δ56Fe values with the Fe/Al ratio and S content of the samples suggest that the isotopically light Fe in the periodically euxinic samples is associated with reactive Fe enrichments and sulfides. This is supported by analyses of pyrite separates from this unit that have a mean Fe isotopic composition of −1.06 ± 0.20‰ for δ56Fe. The supply of additional Fe with a light Fe isotopic signature can be explained with the shelf to basin Fe shuttle model. According to the Fe shuttle model, oxides and benthic ferrous Fe that is derived from dissimilatory iron reduction from shelves is transported and accumulated in euxinic basins. The data furthermore suggest that the euxinic water has a negative dissolved δ56Fe value of about −1.4‰ to −0.9‰. If negative Fe isotopic signatures are characteristic for euxinic sediment formation, widespread euxinia in the past might have shifted the Fe isotopic composition of dissolved Fe in the ocean towards more positive δ56Fe values.  相似文献   

18.
Iron isotope compositions of suspended particulate matters (SPM) collected from the Aha Lake, an artificial lake in the karst area of Yun-Gui Plateau, and its tributaries in summer and winter were investigated for our understanding of the behavior of Fe isotopes during iron biogeochemical cycling in lake. δ56Fe values of SPM display statistically negative shift relative to IRMM-014. Samples from the lake display a range from ?1.36‰ to ?0.10‰ in summer and from ?0.30‰ to ?0.07‰ in winter, while river samples vary from ?0.88‰ to 0.07‰ in summer and from ?0.35‰ to ?0.03‰ in winter. The average iron isotope composition of aerosol samples is + 0.10‰, which is very similar to that of igneous rocks (0.09‰). The SPM in most rivers and water column showed seasonal variation in δ56Fe value: the δ56Fe values of SPM in summer were lower than in winter. The seasonal variation in δ56Fe value of the riverine SPM should be ascribed to the change in source of particulate Fe and geochemical process in the watershed: More particulate Fe was leached from soil and produced by weathering of pyrite widely distributed in coal-containing strata. It is suggested that both allochthonous inputs and the redox iron cycling control the variations of δ56Fe values for SPM in lake.During summer stratification, an Fe cycle named “ferrous wheel” is established near the redox boundary where the upwardly diffusing Fe(II) is oxidized and the reactive Fe oxides formed will continuously sink back into the reduction zone to complete the cycle. The δ56Fe values for SPM reach the minima, ?0.88‰ for DB station and ?1.36‰ for LJK station, just near the redox boundary as a result of the Fe cycling, where a rough 45% to 76% of Fe in these particles was produced by the repetitive cycle. Due to random transportation and diffusion, δ56Fe values of the particles near the redox zone distributed into approximately a Gaussian shape. The good negative correlation existed between δ56Fe values and Fe/Al ratios for DB station, suggesting that they together can be used as good indicators of the redox-driven Fe transformations.  相似文献   

19.
The iron stable isotope compositions (δ56Fe) and iron valence states of ultrahigh‐pressure eclogites from Bixiling in the Dabie orogen belt, China, were measured to trace the changes of geochemical conditions during vertical transportation of earth materials, for example, oxygen fugacity. The bulk Fe3+/ΣFe ratios of retrograde eclogites, determined by Mössbauer spectroscopy, are consistently higher than those of fresh eclogites, suggesting oxidation during retrograde metamorphism and fluid infiltration. The studied eclogites (five samples) display limited mid‐ocean ridge basalts (MORB)‐like (~0.10‰) δ56Fe values, which are indistinguishable from their protoliths, that is, gabbro cumulates formed through differentiation of mantle‐derived basaltic magma. This suggests that Fe isotope fractionation during continental subduction is limited. Garnet separates display limited δ56Fe variation ranging from ?0.08 ± 0.07 ‰ to 0.02 ± 0.07‰, whereas coexisting omphacite displays a large variation of δ56Fe values from 0.15 ± 0.07‰ to 0.47 ± 0.07‰. Omphacite also has highly variable Fe3+/ΣFe ratios from 0.367 ± 0.025 to 0.598 ± 0.024, indicating modification after peak metamorphism. Omphacite from retrograde eclogites has elevated Fe3+/ΣFe ratios (0.54–0.60) compared to that from fresh eclogites (~0.37), whereas garnet displays a narrow range of ferric iron content with Fe3+/ΣFe ratios from 0.039 ± 0.013 to 0.065 ± 0.022. The homogenous δ56Fe values and Fe3+/ΣFe ratios of garnet suggest that it survived the retrograde metamorphism and preserved its Fe‐isotopic features and ferric contents of peak metamorphism. Because of similar diffusion rates of Fe and Mg in garnet and omphacite, and constant Δ26Mgomphacite‐garnet values (1.14 ± 0.04‰), equilibrium iron isotope fractionation between garnet and omphacite was probably achieved during peak metamorphism. Elevated Fe3+/ΣFe ratios of omphacite from retrograde eclogites and variant Δ56Feomphacite‐garnet values of the studied eclogites (0.13 ± 0.10‰ to 0.48 ± 0.10‰) indicate that oxidized geofluid infiltration resulted in the elevation of δ56Fe values of omphacite during retrograde metamorphism.  相似文献   

20.
We report high‐precision iron isotopic data for twenty‐two commercially available geological reference materials, including silicates, carbonatite, shale, carbonate and clay. Accuracy was checked by analyses of synthetic solutions with known Fe isotopic compositions but different matrices ranging from felsic to ultramafic igneous rocks, high Ca and low Fe limestone, to samples enriched in transition group elements (e.g., Cu, Co and Ni). Analyses over a 2‐year period of these synthetic samples and pure Fe solutions that were processed through the whole chemistry procedure yielded an average δ56Fe value of ?0.001 ± 0.025‰ (2s, n = 74), identical to the expected true value of 0. This demonstrates a long‐term reproducibility and accuracy of < 0.03‰ for determination of 56Fe/54Fe ratios. Reproducibility and accuracy were further confirmed by replicate measurements of the twenty‐two RMs, which yielded results that perfectly match the mean values of published data within quoted uncertainties. New recommended values and associated uncertainties are presented for interlaboratory calibration in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号