首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quiescent filament was observed near the center of the disk (N5, W5) with the MSDP spectrograph of the 50 cm refractor of the Pic-du-Midi Observatory on June 17, 1986. We focus our study on the statistical moments of the Dopplershift,V 1, and the intensity,I 1, at the center of a chord of the Hα profile (±0.256 Å), versus the minimum intensityI 0. We use a statistical model simulating a numbern max of threads (of optical thicknessτ 0 and source functionS 0), seen over the chromosphere. The threadsj along the same line-of-sighti are identical except for the velocityv j (gaussian distributionv 0,σ v). We search for the best fit between the observed and simulated quantities:V 1,σ (V 1),I 1,σ(I 1), and the histogram of theI 0 values over the field of view. A good fit is obtained with: (a) threads characterized byτ 0 = 0.2,S 0 = 0.06 (unit of the continuum at disk center), mean upward velocityv 0 = 1.7 km s−1 and gaussian-type velocity distributionσ v = 3.5 km s−1. Other possible values ofτ 0 andσ v are discussed; (b) underlying chromosphere deduced from observed quiet Sun (outside the filament) by modifying the chromospheric velocities: additional mean upward velocity 0.7 km s−1, standard deviation reduced by a factorF c ∼ 0.7. The results are discussed in connection with the values deduced from prominence observations.  相似文献   

2.
Summary In this paper the results of the research of the stars proper motions Trapezium components are reported. They are: the galactic coordinates of the solar aprx and the Sun velocity (L =43±18°,B =+28±13°,V =13±4 km s−1), the dispersion of peculiar velocities in the direction of the galactic coordinates for the above mentioned stars (σ l =±11 km s−1, σ b =±7 km s−1).The attained accuracy of the proper motions (±0.005″ yr−1) is shown to be insufficient to the study of internal space motions in these systems. At present the work to increase the relative proper motions accuracy for multiple system components and to improve reductions from the relative to absolute proper motions, is being carried out in the Main Astronomical Observatory (Academy of Sciences of the Ukrainian SSR). The new catalogue of the AGK3 stars is composed now in the vicinity of the galactic equator in order to improve reductions from the relative to absolute proper motions. The r.m.s. errors of the proper motions, obtained in the AGK3 system, are ±0.005″ yr−1.  相似文献   

3.
Based on data for 102 OB3 stars with known proper motions and radial velocities, we have tested the distances derived by Megier et al. from interstellar Ca II spectral lines. The internal reconciliation of the distance scales using the first derivative of the angular velocity of Galactic rotation Ω′0 and the external reconciliation with Humphreys’s distance scale for OB associations refined by Mel’nik and Dambis show that the initial distances should be reduced by ≈20%. Given this correction, the heliocentric distances of these stars lie within the range 0.6–2.6 kpc. A kinematic analysis of these stars at a fixed Galactocentric distance of the Sun, R 0 = 8 kpc, has allowed the following parameters to be determined: (1) the solar peculiar velocity components (u , v , ω ) = (8.9, 10.3, 6.8) ± (0.6, 1.0, 0.4) km s−1; (2) the Galactic rotation parameters Ω0 = −31.5 ± 0.9 km s−1 kpc−1, Ω′0 = +4.49 ± 0.12 km s−1 kpc−2, Ω″0 = −1.05 ± 0.38 km s−1 kpc−3 (the corresponding Oort constants are A = 17.9 ± 0.5 km s−1 kpc−1, B = −13.6 ± 1.0 km s−1 kpc−1 and the circular rotation velocity of the solar neighborhood is |V 0| = 252 ± 14 km s−1); (3) the spiral density wave parameters, namely: the perturbation amplitudes for the radial and azimuthal velocity components, respectively, f R = −12.5±1.1 km s−1 and f ϑ = 2.0 ± 1.6 km s−1; the pitch angle for the two-armed spiral pattern i = −5.3° ± 0.3°, with the wavelength of the spiral density wave at the solar distance being λ = 2.3 ± 0.2 kpc; the Sun’s phase in the spiral wave x = −91° ± 4°.  相似文献   

4.
The stability of strange dwarfs for quark cores with M 0core /M = 10−4, has been studied by calculating, in each individual case, a series of strange dwarfs with configurations in which 5 ⋅ 10−4, 10−3, 5 ⋅ 10−3, 10−2, 1.31 ⋅ 10−2, 1.6 ⋅ 10−2, 1.7 ⋅ 10−2, 2 ⋅ 10−2, ranges from the values in white dwarfs to ρ drip = 4.3 ⋅ 1011 g/cm3, at which free neutrons are produced in the crust. For the series with M 0core /M < 0.0131, stability is lost when ρ tr < ρ drip . For the series with M 0core /M > 0.0131, the equality ρ tr = ρ drip is reached before the strange dwarf attains its maximum mass. Although the frequency of the radial pulsations in the fundamental mode obeys ω02 > 0 for these configurations, they are unstable with respect to transitions into a strange star state with the same total number of baryons and a radius on the order of that of neutron stars. An energy on the order of the energy in a supernova explosion is released during these transitions. It is shown that the gravitational red shift of white and strange dwarfs are substantially different for low and limiting (high) masses.  相似文献   

5.
The distribution of radial (U) and rotational (V) velocities of red clump giants was studied as a function of their heights above the galactic plane. The stars of this type were selected from the compiled catalogue of stellar proper motions and infrared photometry at the north galactic pole with the use of the diagram “color-reduced proper motion.” According to the data on 1800 red clump giants located at heights from 1 to 3 kpc (mostly thick disk stars), mean kinematic parameters of the thick disk were determined: U 0 = −18 ± 2 km/s, V 0 = −56 ± 1 km/s, σ U = 72 ± 2 km/s, and σ V = 58 ± 1 km/s. The velocity of asymmetric drift V 0 and velocity variances σ U , σ V are shown to depend on heights above the galactic plane.  相似文献   

6.
Experimental results on fast ion collision with icy surfaces having astrophysical interest are presented. 252Cf fission fragments projectiles were used to induce ejection of ionized material from H2O, CO2, CO, NH3, N2, O2 and Ar ices; the secondary ions were identified by time-of-flight mass spectrometry. It is observed that all the bombarded frozen gas targets emit cluster ions which have the structure XnR±, where X is the neutral ice molecule and R± is either an atomic or a molecular ion. The shape of the positive or negative ion mass spectra is characterized by a decreasing yield as the emitted ion mass increases and is generally described by the sum of two exponential functions. The positive ion water ice spectrum is dominated by the series (H2O)nH3O+ and the negative ion spectrum by the series (H2O)nOH and (H2O)nO. The positive ion CO2 ice spectrum is characterized by R+ = C+, O+, CO+, O2+ or CO2+ and the negative one by R = CO3. The dominant series for ammonia ice correspond to R+ = NH4+ and to R = NH2. The oxygen series are better described by (O3)nOm+ secondary ions where m = 1, 2 or 3. Two positive ion series exist for N2 ice: (N2)nN2+ and (N2)nN+. For argon positive secondary ions, only the (Ar)nAr+ series was observed. Most of the detected molecular ions were formed by one-step reactions. Ice temperature was varied from ∼20 K to complete sublimation.  相似文献   

7.
We analyze the three-dimensional kinematics of about 82 000 Tycho-2 stars belonging to the red giant clump (RGC). First, based on all of the currently available data, we have determined new, most probable components of the residual rotation vector of the optical realization of the ICRS/HIPPARCOS system relative to an inertial frame of reference, (ω x , ω y , ω z ) = (−0.11, 0.24, −0.52) ± (0.14, 0.10, 0.16) mas yr−1. The stellar proper motions in the form μα cos δ have then be corrected by applying the correction ω z = −0.52 mas yr−1. We show that, apart from their involvement in the general Galactic rotation described by the Oort constants A = 15.82 ± 0.21 km s−1 kpc−1 and B = −10.87 ± 0.15 km s−1 kpc−1, the RGC stars have kinematic peculiarities in the Galactic yz plane related to the kinematics of the warped stellar-gaseous Galactic disk. We show that the parameters of the linear Ogorodnikov-Milne model that describe the kinematics of RGC stars in the zx plane do not differ significantly from zero. The situation in the yz plane is different. For example, the component of the solid-body rotation vector of the local solar neighborhood around the Galactic x axis is M 32 = −2.6 ± 0.2 km s−1 kpc−1. Two parameters of the deformation tensor in this plane, namely M 23+ = 1.0 ± 0.2 km s−1 kpc−1 and M 33M 22 = −1.3 ± 0.4 km s−1 kpc−1, also differ significantly from zero. On the whole, the kinematics of the warped stellar-gaseous Galactic disk in the local solar neighborhood can be described as a rotation around the Galactic x axis (close to the line of nodes of this structure) with an angular velocity −3.1 ± 0.5 km s−1 kpc−1 ≤ ΩW ≤ −4.4 ± 0.5 km s−1 kpc−1.  相似文献   

8.
The mass distribution for the galaxy cluster Abell 2744 (z = 0.308) is investigated on the base of the archival X-ray data of the Chandra observatory. The temperature of the hot gas in the cluster (kT = 9.82−0.41+0.43 keV) and the cluster total mass (M 200 = 2.22−0.12+0.13 × 1015 M ) for the radius R 200 = 2.38−0.31+0.36 Mpc are estimated. The density and mass profiles for the intergalactic gas and dark matter are obtained. The fractions of the intergalactic gas and dark matter in the total mass of the cluster are 15.4−1.3+1.3% and 84.6−1.3+1.4%, respectively.  相似文献   

9.
The status of the Galactic thick disk is reviewed. Consideration of the recent literature suggests that its vertical scale height and normalisation with respect to the thin disk remain uncertain to within a factor two, with values reported in the ranges 750–1500 pc, and 0.02–0.13, respectively. The bulk of the thick disk has kinematics (σU, σV, σW) = (65, 54, 38 km s-1), and lags the thin disk by some 40 km s-1; differences of opinion exists as to whether kinematics change with distance from the Galactic plane. The bulk of the thick disk has [Fe/H] ∼ −0.6, with little or no evidence for a vertical gradient. The question of gradients is critical for an understanding of thick disk cosmogony and needs closer attention. The reality of the so-called metal-weak thick disk (material having disklike kinematics and [Fe/H] ≤ −1.0) is also considered. The case for such material seems to be steadily growing: in the range −1.6 ≤ [Fe/H] ≤ −1.0, recent estimates suggest ρMWTDHalo ∼ 0.1-0.3. While many workers regard the thick disk as a discrete entity, the caveat is made that this is a sufficient condition, but not one necessarily required by the observations. Best practice requires that both the discrete model and the alternative extended configuration be compared with observational data to examine the relative likelihood of their relevance. Recent theoretical advances are also discussed, together with the need for in situ measurements of the thick disk away from the Galactic plane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Based on a new geometric diagnostic method-Om, we consider a new independent-model parametrization . When we work in potential W σ [1+(σA)2]e (−), we investigate the evolutional behavior of Om with respect to red-shift z and the influence of coupling parameter α on the trajectory of Om with respect to z. We get that phantom model of Dilaton dark energy can avoid the future singularity “Big Rip”. The numerical results give current value of EOS which fits the latest observational data WMAP5+BAO+SNe very well.  相似文献   

11.
We present multi-colour CCD observations of the low-temperature contact binaries, V453 Mon and V523 Cas. Their light curves are modelled to determine a new set of stellar and orbital parameters. Analysis of mid-eclipse times yields a new linear ephemeris for both systems. A period decrease (dP/dt=2.3×10−7 days/yr) in V453 Mon is discovered. V523 Cas, however, is detected to show a period increase (dP/dt=9.8×10−8 days/yr) because of the mass transfer of a rate of 1.1×10−7 M yr−1, from a less massive donor. Using these findings we can determine the physical parameters of the components of V523 Cas to be M 1=0.76 (3)M , M 2=0.39 (2)M , R 1=0.74 (2)R , R 2=0.55 (2)R , L 1=0.19 (3)L , L 2=0.14 (3)L , and the distance of system as 46(9) pc.  相似文献   

12.
The energy density of Vaidya-Tikekar isentropic superdense star is found to be decreasing away from the center, only if the parameter K is negative. The most general exact solution for the star is derived for all negative values of K in terms of circular and inverse circular functions. Which can further be expressed in terms of algebraic functions for K = 2-(n/δ)2 < 0 (n being integer andδ = 1,2,3 4). The energy conditions 0 ≤ p ≤ αρc 2, (α = 1 or 1/3) and adiabatic sound speed conditiondp dρ ≤ c 2, when applied at the center and at the boundary, restricted the parameters K and α such that .18 < −K −2287 and.004 ≤ α ≤ .86. The maximum mass of the star satisfying the strong energy condition (SEC), (α = 1/3) is found to be3.82 Mq· at K=−2/3, while the same for the weak energy condition (WEC), (α =1) is 4.57 M_ atK=−>5/2. In each case the surface density is assumed to be 2 × 1014 gm cm-3. The solutions corresponding to K>0 (in fact K>1) are also made meaningful by considering the hypersurfaces t= constant as 3-hyperboloid by replacing the parameter R 2 by −R2 in Vaidya-Tikekar formalism. The solutions for the later case are also expressible in terms of algebraic functions for K=2-(n/δ2 > 1 (n being integer or zero and δ =1,2,3 4). The cases for which 0 < K < 1 do not possess negative energy density gradient and therefore are incapable of representing any physically plausible star model. In totality the article provides all the physically plausible exact solutions for the Buchdahl static perfect fluid spheres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Bianchi Type I string dust cosmological models in presence and absence of magnetic field following the techniques used by Letelier and Stachel, are investigated. To get the deterministic solution, we have assumed that σ 11 is proportional to the expansion (θ) where σ 11 is the eigen value of shear tensor (σ i j ) and which leads to A=N(BC)n , n>0 where A,B,C are metric potentials and , N and are constants. The behaviour of the models in presence and absence of magnetic field are discussed. The other physical and geometrical aspects of the model are also discussed.  相似文献   

14.
The Franck-Condon factors and r-centroids, which are very closely related to vibrational transition probabilities, have been evaluated by the more reliable numerical integration procedure for the bands of B 2+X 2+, F 2+X 2+ systems of SrF and C 1+X 1+, G 1Π − X 1+ systems of ScF molecules of astrophysical interest, using a suitable potential.  相似文献   

15.
We have detected new HD absorption systems at high redshifts, z abs = 2.626 and z abs = 1.777, identified in the spectra of the quasars J0812+3208 and Q1331+170, respectively. Each of these systems consists of two subsystems. The HD column densities have been determined: log N HDA = 15.70 ± 0.07 for z A = 2.626443(2) and log N HDB = 12.98 ± 0.22 for z B = 2.626276(2) in the spectrum of J0812+3208 and log N HDC = 14.83 ± 0.15 for z C = 1.77637(2) and log N HDD = 14.61 ± 0.20 for z D = 1.77670(3) in the spectrum of Q1331+170. The measured HD/H2 ratio for three of these subsystems has been found to be considerably higher than its values typical of clouds in our Galaxy.We discuss the problem of determining the primordial deuterium abundance, which is most sensitive to the baryon density of the Universe Ωb. Using a well-known model for the chemistry of a molecular cloud, we have estimated the isotopic ratio D/H=HD/2H2 = (2.97 ± 0.55) × 10−5 and the corresponding baryon density Ωb h 2 = 0.0205−0.0020+0.0025. This value is in good agreement with Ωb h 2 = 0.0226−0.00060.0006 obtained by analyzing the cosmic microwave background radiation anisotropy. However, in high-redshift clouds, under conditions of low metallicity and low dust content, hydrogen may be incompletely molecularized even in the case of self-shielding. In this situation, the HD/2H2 ratio may not correspond to the actual D/H isotopic ratio. We have estimated the cloud molecularization dynamics and the influence of cosmological evolutionary effects on it.  相似文献   

16.
We present the results of our infrared observations of WR 140 (=V1687 Cyg) in 2001–2010. Analysis of the observations has shown that the J brightness at maximum increased near the periastron by about 0 m .3; the M brightness increased by ∼2 m in less than 50 days. The minimum J brightness and the minimum L and M brightnesses were observed 550–600 and 1300–1400 days after the maximum, respectively. The JHKLM brightness minimum was observed in the range of orbital phases 0.7–0.9. The parameters of the primary O5 component of the binary have been estimated to be the following: R(O5) ≈ 24.7R , L(O5) ≈ 8 × 105 L , and M bol(O5) ≈ −10 m . At the infrared brightness minimum, T g ∼ 820–880 K, R g ≈ 2.6 × 105 R , the optical depth of the shell at 3.5 μm is ∼5.3 × 10−6, and its mass is ≈1.4 × 10−8 M . At the maximum, the corresponding parameters are ∼1300 K, 8.6 × 104 R , ∼2 × 10−4, and ∼6 × 10−8 M ; the mean rate of dust inflow (condensation) into the dust structure is ∼3.3 × 10−8 M yr−1. The mean escape velocity of the shell from the heating source is ∼103 km s−1 and the mean dispersal rate of the shell is ∼1.1 × 10−8 M yr−1.  相似文献   

17.
Based on currently available observations of 28 maser sources in 25 star-forming regions with measured trigonometric parallaxes, proper motions, and radial velocities, we have constructed the rotation curve of the Galaxy. Taking different distances to the Galactic center R 0, we have estimated the peculiar velocity of the Sun, the angular velocity of Galactic rotation, and its three derivatives. For R 0 = 8 kpc, we have found the circular velocity of the Sun to be V 0 = 243 ± 16 km s−1, which corresponds to a revolution period of 202 ± 10 Myr. We have obtained the Oort constants A = 16.9 ± 1.2 km s−1 kpc−1 and B = −13.5 ± 1.4 km s−1 kpc−1. Our simulation of the influence of a spiral density wave has shown that the peculiar velocity of the Sun with respect to the local standard of rest and the component (V )LSR depend significantly on the Sun’s phase in the spiral wave.  相似文献   

18.
We study the stability of motion in the 3-body Sitnikov problem, with the two equal mass primaries (m 1 = m 2 = 0.5) rotating in the x, y plane and vary the mass of the third particle, 0 ≤ m 3 < 10−3, placed initially on the z-axis. We begin by finding for the restricted problem (with m 3 = 0) an apparently infinite sequence of stability intervals on the z-axis, whose width grows and tends to a fixed non-zero value, as we move away from z = 0. We then estimate the extent of “islands” of bounded motion in x, y, z space about these intervals and show that it also increases as |z| grows. Turning to the so-called extended Sitnikov problem, where the third particle moves only along the z-axis, we find that, as m 3 increases, the domain of allowed motion grows significantly and chaotic regions in phase space appear through a series of saddle-node bifurcations. Finally, we concentrate on the general 3-body problem and demonstrate that, for very small masses, m 3 ≈ 10−6, the “islands” of bounded motion about the z-axis stability intervals are larger than the ones for m 3 = 0. Furthermore, as m 3 increases, it is the regions of bounded motion closest to z = 0 that disappear first, while the ones further away “disperse” at larger m 3 values, thus providing further evidence of an increasing stability of the motion away from the plane of the two primaries, as observed in the m 3 = 0 case.  相似文献   

19.
In the present article, a family of static spherical symmetric well behaved interior solutions is derived by considering the metric potential g 44=B(1−Cr 2)n for the various values of n, such that (1+n)/(1−n) is positive integer. The solutions so obtained are utilised to construct the heavenly bodies’ like quasi-black holes such as white dwarfs, neutron stars, quarks etc., by taking the surface density 2×1014 gm/cm3. The red shifts at the centre and on the surface are also computed for the different star models. Moreover the adiabatic index is calculated in each case. In this process the authors come across the quarks star only. Least and maximum mass are fond to be 3.4348M Θ and 4.410454M Θ along with the radii 21.0932 km and 23.7245 km respectively.  相似文献   

20.
Jordanova  V.K.  Thorne  R.M.  Farrugia  C.J.  Dotan  Y.  Fennell  J.F.  Thomsen  M.F.  Reeves  G.D.  McComas  D.J. 《Solar physics》2001,204(1-2):361-375
We study the development of the terrestrial ring current during the time interval of 13–18 July, 2000, which consisted of two small to moderate geomagnetic storms followed by a great storm with indices Dst=−300 nT and Kp=9. This period of intense geomagnetic activity was caused by three interplanetary coronal mass ejecta (ICME) each driving interplanetary shocks, the last shock being very strong and reaching Earth at ∼ 14 UT on 15 July. We note that (a) the sheath region behind the third shock was characterized by B z fluctuations of ∼35 nT peak-to-peak amplitude, and (b) the ICME contained a negative to positive B z variation extending for about 1 day, with a ∼ 6-hour long negative phase and a minimum B z of about −55 nT. Both of these interplanetary sources caused considerable geomagnetic activity (Kp=8 to 9) despite their disparity as interplanetary triggers. We used our global ring current-atmosphere interaction model with initial and boundary conditions inferred from measurements from the hot plasma instruments on the Polar spacecraft and the geosynchronous Los Alamos satellites, and simulated the time evolution of H+, O+, and He+ ring current ion distributions. We found that the O+ content of the ring current increased after each shock and reached maximum values of ∼ 60% near minimum Dst of the great storm. We calculated the growth rate of electromagnetic ion cyclotron waves considering for the first time wave excitation at frequencies below O+ gyrofrequency. We found that the wave gain of O+ band waves is greater and is located at larger L shells than that of the He+ band waves during this storm interval. Isotropic pitch angle distributions indicating strong plasma wave scattering were observed by the imaging proton sensor (IPS) on Polar at the locations of maximum predicted wave gain, in good agreement with model simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号