首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
NumericalModellingoftheEffectsofOzoneontheSummerAtmosphericCirculationWangQianqian(王谦谦);WangYinhui(汪迎辉);SongYu(宋煜)(Naminginst...  相似文献   

4.
Connection between ozone concentration and atmosphere circulation is investigated based on measurements at BEO station, peak Moussala (2,925 m a.s.l.), for the period 09 August 2006 to 29 January 2008. Ozone concentration data are collected with UV-analyzer “Environnement O3 42” and meteo data with weather station “Vaisala”. There are measurements of 7Be. Data from NOAA HYSPLIT model for particle trajectories are also used. Eight wind directions and three ranges of wind velocities are employed in the analysis. A comparison of ozone concentrations in upward and downward air transport according to HYSPLIT model is made. The number of cases with ozone concentration above 63 ppb has been counted. Mann–Whitney nonparametric test is employed as a basic statistical method. Correlation between atmosphere pressure and tropospheric ozone content is made. The same is done for 7Be and ozone. The main conclusion is that there is not any local or regional pollution effect detectable at peak Moussala, but most of the ozone measured is due to emissions of hydrocarbons and NO x over a larger region. There could be some regional sources of ozone building substances in southwest direction from peak Moussala. Air transported from the north quarter has higher ozone concentrations compared to the south quarter. In vertical direction, upward transport of air masses shows higher values of ozone concentration. Higher wind velocity is associated with low ozone concentrations at peak Moussala. The annual course of ozone concentration has summer maximum and winter minimum. There is right connection between air pressure and ozone concentration. The same is valid for the correlation between 7Be and ozone. Diurnal ozone course shows daytime maximum in winter and nighttime maximum in summer.  相似文献   

5.
6.
7.
8.
9.
10.
The stratospheric ozone layer protects life on earth by preventing solar ultraviolet radiation from reaching the surface. Owing to the large population in the Northern Hemisphere and extreme ozone loss in the Arctic, changes in Arctic stratospheric ozone (ASO) and their causes have attracted broad attention recently. Using monthly mean data during the period 1980–2020 from MERRA-2, the relationship between the stratospheric polar vortex (SPV) and ASO, along with the relative contributions of chemical and dynamic processes associated with the SPV to changes in ASO, were examined in this study. Results showed that the ASO in March has a strong out-of-phase link with the strength of the SPV in March, with no obvious lead–lag correlations, i.e., an increase (decrease) in ASO corresponds to a weakened (strengthened) SPV. Further analysis suggested that the strong out-of-phase link between the SPV and ASO is related to changes in Brewer–Dobson circulation (BDC). Strong SPV events, accompanied by a low temperature condition and weakened upward propagation of planetary waves over the Arctic in the stratosphere, result in weakened BDC. The weakened downwelling at high latitudes tends to transport less ozone-rich air in the upper stratosphere at lower latitudes into the lower stratosphere at high latitudes, facilitating a decrease in ASO. The BDC's vertical velocity plays the dominant role in modulating ASO.摘要利用1980–2020年MERRA-2资料, 分析了平流层极涡 (Stratospheric polar vortex, SPV) 和北极臭氧 (Arctic stratospheric ozone, ASO) 的关系, 评估了与SPV相关的化学, 动力过程在其中的相对作用. 结果表明, 3月份ASO与同期SPV强度反相关最大. SPV-ASO二者反相关与平流层剩余环流 (Brewer-Dobson circulation, BDC) 变化密切相关. 强SPV伴随的北极平流层低温条件和行星波向上传播减弱, 导致BDC减弱, 减弱的BDC下沉支将低纬度平流层上层臭氧含量较低的空气输送到北极平流层低层, 从而导致ASO减少. BDC垂直速度在其中起主导作用.  相似文献   

11.
春季南极昭和站上空增温与臭氧含量和分布的关系   总被引:4,自引:1,他引:4  
本文利用南极昭和站1966—1979年的臭氧和高空气象资料,讨论了春季南极大气爆发性增温及其与臭氧总量、臭氧分压垂直分布的关系,发现如下事实:1.平流层爆发性增温与臭氧总量突变有三种类型,即一次突变型,两次突变型和一次突变与一次缓变混合型;2.平流层爆发性增温3—5天后,对流层上部也有一次剧烈升温;3.增温过程自平流层上部向对流层下传时,伴随着臭氧分压增压中心逐渐向下传递;在平流层各等压面上,臭氧分压变化与气温变化值之间有较好的正相关,相关系数为0.85.  相似文献   

12.
Abstract

The future role of carbon sinks with reference to the Kyoto Protocol depends significantly on developing an international consensus on carbon-sink assessment and carbon accounting. A clear and practical approach is needed that allows both the scientific community and policy-makers to construct a viable operational framework. This article proposes that a new strategy be developed for carbon-sink assessment based on full carbon accounting (FCA) alongside a separate political tool for carbon accounting. This approach is derived from the experience of the European critical loads (CL) concept, which seeks to quantify levels of pollutants (such as sulfur) that can be absorbed by the environment without causing ecological harm. Crucial to the implementation of such a strategy are robust institutional settings, such as an internationally coordinated monitoring system, open and fair access to the assessment processes, and international research cooperation programs for addressing associated problems of carbon-sink activities.  相似文献   

13.
14.
15.
Rice is the most rapidly growing staple food in Africa and although rice production is steadily increasing, the consumption is still out-pacing the production. In Tanzania, two important diseases in rice production are leaf blast caused by Magnaporthe oryzae and bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. The objective of this study was to quantify rice yield losses due to these two important diseases under a changing climate. We found that bacterial leaf blight is predicted to increase causing greater losses than leaf blast in the future, with losses due to leaf blast declining. The results of this study indicate that the effects of climate change on plant disease can not only be expected to be uneven across diseases but also across geographies, as in some geographic areas losses increase but decrease in others for the same disease.  相似文献   

16.
The airflow, cloud microphysics and gas- and aqueous-phase chemistry on Kleiner Feldberg have been modelled for the case study of the evening of 1 November 1990, in order to calculate parameters that are not easily measured in the cloud and thus to aid the interpretation of the GCE experimental data-set. An airflow model has been used to produce the updraught over complex terrain for the cloud model, with some care required to ensure realistic modelling of the strong stable stratification of the atmosphere. An extensive set of measurements has been made self-consistent and used to calculate gas and aerosol input parameters for the model. A typical run of the cloud model has calculated a peak supersaturation of 0.55% which occurs about 20 s after entering cloud where the updraught is 0.6 m s–1. This figure has been used to calculate the efficiency with which aerosol particles were scavenged; it is higher than that calculated by other methods, and produces a cloud with slightly too many droplets. A broad cloud droplet size spectrum has been produced by varying the model inputs to simulate turbulent mixing and fluctuations in cloud parameters in space and time, and the ability of mixing processes near cloud-base to produce a lower peak supersaturation is discussed. The scavenging of soluble gases by cloud droplets has been observed and departures from Henry's Law in bulk cloud-water samples seen to be caused by variation of pH across the droplet spectrum and the inability of diffusion to adjust initial distributions of highly soluble substances across the spectrum in the time available. Aqueous-phase chemistry has been found to play a minor role in the cloud as modelled, but circumstances in which these processes would be more important are identified.  相似文献   

17.
18.
19.
The spray content in the surface boundary layer above an air—water interface was determined by a series of measurements at various feteches and wind speeds in a laboratory facility. The droplet flux density N(z) can be described in terms of the scaling flux density N* and von Karman constant K throguh the equation, N(z)/N* = −(1/K) ln(z/z0d) where z is height above the mean water level and z0d is the droplet boundary layer thickness. N* is given by a unique relationship in terms of the roughness Reynolds number u*σ/ν where σ is the root-mean-square surface displacement. Spray inception occurred for u* 0.3. The dominant mode of spray generation in the present and most other laboratory tests, as well as in available field data, appears to be bubble bursting.  相似文献   

20.
Summary Crop residues have been an under-valued resource in many agricultural systems. This collection of papers presents a sampling of new research and applications of new knowledge to improve our understanding of crop residue properties and impacts. Development and implementation of improved crop residue management offers opportunities to manipulate hydrologic, radiative, and energy balance processes. I hope the readers of Theoretical and Applied Climatology will be stimulated with new ideas. Collectively our new ideas can advance understanding of crop residue management and help us achieve sustainability in agricultural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号