首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
邱燕  陈国能 《地学前缘》2011,18(1):32-38
研究表明,从中生代安第斯型大陆边缘发展到现代弧盆体系,华南大陆边缘的地貌演化经历了中生代末期的古华夏山脉、新生代早期的准平原和中新世以来的海盆三个阶段。古华夏山脉的夷平导致本区陆壳减薄、莫霍面埋深变浅和区域性的重力升高;而地壳温度的整体下降则导致中生代壳内岩浆层自上而下的固结和盖层断裂的向下延伸。两者的耦合最终导致陆缘地区从中新世起发生大规模的断块沉陷,其结果是古准平原面下降到海面之下、海区正断层体系形成、地幔岩浆大量溢出、莫霍面位置被压低、沉降区两侧地块被顶托隆起并形成岛弧和断块山。  相似文献   

2.
东亚及其大陆边缘新生代构造迁移与盆地演化   总被引:9,自引:1,他引:9  
构造迁移是盆地发展演化过程中十分普遍的地质现象,但西太平洋地区相关研究程度较低,本文基于近10年来对中国东部海域渤海湾盆地、南黄海盆地、东海陆架盆地和南海盆地等所开展的大量研究工作,并综合前人研究成果,对西太平洋地区中最具有代表性的中国东部及邻近海域的新生代构造迁移特征进行了系统讨论.西太平洋活动大陆边缘位于欧亚、太平洋和印度三大板块的交汇处,占据了全球板块汇聚中心的独特位置,并同时受到印度板块的挤入、太平洋板块的后退式俯冲、台湾造山带的楔入的联合作用,自新生代以来,形成了宽阔的自西向东后退式的沟弧盆体系.中国东部及邻区作为西太平活动大陆边缘的重要组成部分,在这个大地构造背景下,新生代的构造特征总体也表现出自西向东的迁移规律,具体表现在盆地的断裂活动性、沉积作用、断陷的萎缩与消亡等自西向东变新逐步演化,新生代的生、储、盖、圈、运、保六大油气成藏要素也表现出西早东晚、自西向东迁移的特征.这种成藏规律的识别对于中国东部油气、天然气水合物勘探具有非常重要的指导意义.最后,从板缘、板内和板下过程和机制,探讨了盆内和盆间的新生代构造迁移机制,这种构造-岩浆-成盆-成藏等的向洋变新迁移和跃迁是晚中生代以来挤出构造和新生代北西向壳内伸展、印度和欧亚板块碰撞诱发的软流圈向东流动的远程效应及太平洋俯冲带的跃迁式东撤的联合效应.  相似文献   

3.
南海的形成和演化是地学界长期争论的问题,前人给出了多种成因模式,目前较流行的模式是海底扩张,但它难以合理解释南海海底扩张中的洋中脊跳跃现象及南海大洋中的大陆残片。基于欧亚东缘的陆缘伸展,从地幔上涌和陆壳沿莫霍面的重力滑移的新大陆漂移模型出发,通过横跨南海的几条地震勘探剖面的地质新解释,研究了南海的形成和演化过程。结果说明,南海的形成是一种“构造被动挤出+微陆块主动漂移”模式。构造被动挤出是指印度-欧亚碰撞造成的欧亚大陆东南缘的微陆块被大规模挤出,而由陆缘伸展形成的微陆块在被挤出后发生了主动裂解漂移,南海的海底扩张现象是诸多微陆块主动漂移的结果。这个新的模式能够合理地解释南海形成过程中的洋中脊跳跃现象及南海中大陆残片的成因机制。进一步恢复了南海演化过程中周边陆块的运动演化历史,说明欧亚东缘在中生代晚期发生的大规模伸展构造运动是南海形成的基础,新生代印度-欧亚碰撞是南海形成的直接动力,微陆块的裂解漂移是南海形成的主要参与者。  相似文献   

4.
尚鲁宁  张勇  姚永坚  吴浩  胡刚  田陟贤 《中国地质》2020,47(5):1323-1336
晚新生代中国东部大陆边缘的构造活动主要集中于东海东缘。中新世以来菲律宾海板块俯冲、冲绳海槽弧后张裂、台湾弧-陆碰撞等一系列重大构造过程,塑造了现今琉球沟-弧-盆体系、台湾碰撞造山带和南海东北部的构造-地貌格局。本文基于对重磁和多道地震资料的解译,并结合前人研究成果,恢复了冲绳海槽构造演化史,阐明了冲绳海槽弧后张裂和台湾弧-陆碰撞之间的关系。在此基础上,重建了中新世以来欧亚板块、菲律宾海板块、南海板块之间的相互作用过程模型。本研究有助于进一步理解板块汇聚背景下东亚大陆边缘深部动力-热力过程对浅部构造格局变迁的制约和影响。  相似文献   

5.
6.
7.
Alpine‐type orogenic garnet‐bearing peridotites, associated with quartzo‐feldspathic gneisses of a 140–115 Ma high‐pressure/ultra‐high‐pressure metamorphic (HP‐UHPM) terrane, occur in two regions of the Indonesian island of Sulawesi. Both exposures are located within NW–SE‐trending strike–slip fault zones. Garnet lherzolite occurs as <10 m wide fault slices juxtaposed against Miocene granite in the left‐lateral Palu‐Koro (P‐K) fault valley, and as 10–30 m wide, fault‐bounded outcrops juxtaposed against gabbros and peridotites of the East Sulawesi ophiolite within the right‐lateral Ampana fault in the Bongka river (BR) valley. Six evolutionary stages of recrystallization can be recognized in the peridotites from both localities. Stage I, the precursor spinel lherzolite assemblage, is characterized by Ol+Cpx+Opx±Prg‐Amp ± Spl±Rt±Phl, as inclusions within garnet cores. Stage II, the main garnet lherzolite assemblage, consists of coarse‐grained Ol+Opx+Cpx+Grt; whereas finer‐grained, neoblastic Ol+Opx+Grt+Cpx±Spl±Prg‐Amp±Phl constitutes stage III. Stages IV and V are manifest as kelyphites of fibrous Opx+Cpx+Spl in inner coronas, and Opx+Spl+Prg‐Amp±Ep in outer coronas around garnet, respectively. The final (greenschist facies) retrogressive stage VI is accompanied by recrystallization of Serp+Chl±Mag±Tr±Ni sulphides±Tlc±Cal. P–T conditions of the hydrated precursor spinel lherzolite stage I were probably about 750 °C at 15–20 kbar. P–T determinations of the peak stage IIc (from core compositions) display considerable variation for samples derived from different outcrops, with clustering at 26–38 kbar, 1025–1210 °C (P‐K & BR); 19–21 kbar, 1070–1090 °C (P‐K), and 40–48 kbar, 1205–1290 °C (BR). Stage IIr (derived from rim compositions) generally records decompression of around 4–12 kbar accompanied by cooling of 50–240 °C from the IIc peak stage. Stage III, which post‐dates a phase of ductile deformation, yielded 22±2 kbar at 750±25 °C (P‐K) and 16±2 kbar at 730±40 °C (BR). The granulite–amphibolite–greenschist decompression sequence reflects uplift to upper crustal levels from conditions of 647–862 °C at P=15 kbar (stage IV), through 580–635 °C at P=10–12 kbar (stage V) to 350–400 °C at P=4–7 kbar (stage VI), respectively, and is identical to the sequence recorded in associated granulite, gneiss and eclogite. Sulawesi garnet peridotites are interpreted to represent minor components of the extensive HP‐UHP (peak P >28 kbar, peak T of c. 760 °C) metamorphic basement terrane, which was recrystallized and uplifted in a N‐dipping continental collision zone at the southern Sundaland margin in the mid‐Cretaceous. The low‐T , low‐P and metasomatized spinel lherzolite precursor to the garnet lherzolite probably represents mantle wedge rocks that were dragged down parallel to the slab–wedge interface in a subduction/collision zone by induced corner flow. Ductile tectonic incorporation into the underthrust continental crust from various depths along the interface probably occurred during the exhumation stage, and the garnet peridotites were subsequently uplifted within the HP‐UHPM nappe, suffering a similar decompression history to that experienced by the regional schists and gneisses. Final exhumation from upper crustal levels was clearly facilitated by entrainment in Neogene granitic plutons, and/or Oligocene trans‐tension in deep‐seated strike–slip fault zones.  相似文献   

8.
During the Mesozoic and Cenozoic rifting, the Pelagian Sea recorded the consequences of the African and European plate’s rapprochement. The interpretation of surface and subsurface data that is the 2D seismic reflection and petroleum well data show new ideas on the geodynamic evolution and halokinesis of the Jeffara basin during the Mesozoic and Cenozoic period. Seismic lines interpretations of the subsurface mainly reveal normal syn-sedimentary NW-SE faulting and where the Jeffara fault seems to be the major play. This syn-sedimentary faulting induced horst and graben structures materialized by major sedimentary sequences thicknesses as well as depths variations on the seismic profiles from the Jeffara fault zone overall towards the East of Jeffara basin. After the Hercynian event of the Permian - Carboniferous age, a general extension took place, which gave rise to the Tethyan opening. This extension has favored the individualization of the Jeffara basin in the South East of Tunisia, characterized by a structuring in Horst and Graben with a Permian carbonate subsidence. During the Triassic - Middle Jurassic period, the Jeffara basin is marked by a pronounced subsidence of essentially evaporate sedimentation accompanied by the birth of normal syn-sedimentary NW-SE faults following an NE-SW extension. This subsidence continuing during the Upper Jurassic period, the accentuation of which is towards the NE of the study zone at the Jerba and El Bibane sub-basin with a dominance of bioclastic limestone and dolomites sedimentation in the same extensive NE-SW direction, during this period, the Jeffara basin was characterized by a beginning of salt activity indicated by the appearance of salt nuclei at the base of the preexisting NW-SE normal faults. During the Lower Cretaceous, we are witnessing an individualization of salt complexes in the SE of the study area at Rass Ajil sub-basin, where this reactive diapirism has produced high zones and erosions in the crest above the salt bodies. During the mid Cretaceous period, the Zebbag formation, hatched by the Gattar carbonate bar, recorded a subsidence inversion phenomenon between the three sub-basins Jerba, El Bibane and Rass Ajil sub-basin, and showed the change of movement of the African plate relative to the European plate related to the opening of the North Atlantic and the beginning of the drift towards the North of Africa. This phenomenon is concretized towards the Upper Cretaceous, where we witness a strong subsidence towards the southeastern part of the study area at Rass Ajil sub-basin with sandstone, marl and clay sedimentation under a regional extensive regime and the individualization of high zones at Jerba sub-basin. The salt movements present an active aspect by piercing their cover and inducing rim synclines in the surroundings. The Cenozoic period is characterized by a strong subsidence of sandstone, clays and carbonates along the Jeffara basin, the salt activity shows a passive aspect at the beginning of this period which slows down and eventually stopped at the late Miocene period, thus indicating the probable exhaustion of the source of the salt material.  相似文献   

9.
10.
The integral data on structural position, age, and paleo-geodynamic setting of Mesozoic and Cenozoic granitoid complexes in northeast Asia make it possible to divide them into preaccretionary, accretionary, and postaccretionary groups participating in the structure of the accretionary-type continental margin. The preaccretionary granitoids are members of volcanic-plutonic associations of ensimatic island arcs or suprasubduction ophiolitic complexes, which mark the onset of growth of the granitic-metamorphic layer in the future continental crust. The accretionary granitoids emplaced during the accretion of diverse rock complexes to the continental margin and are localized in its frontal zone, where granitic-metamorphic layer grows further. The postaccretionary granitoid plutons of the marginal continental volcanic-plutonic belts seal up fold-nappe structures, determining the upper age limit of accretion and deformation. The origin of postaccretionary granitoids is related to remelting of older heterogeneous accretionary-island arc crust.  相似文献   

11.
上扬子克拉通北部晚古生代-中三叠世的沉积盆地是在勉-略洋盆南侧发展起来的被动大陆边缘盆地, 在泥盆纪-中二叠世以稳定沉降为主, 向北以碳酸盐岩缓坡与台地向勉略洋盆过渡; 中二叠世末期受峨眉地裂运动影响形成隆坳相间的格局; 早-中三叠世构造体制由伸展变为挤压, 沉积建造由开阔海碳酸盐岩台地逐渐向半局限台地、半封闭海湾膏盐湖相以及陆相碎屑岩含煤岩系过渡.该陆缘盆地经历了晚三叠世上扬子北缘前陆盆地、中侏罗世-早白垩世川西、川北前陆盆地, 以及晚白垩世至今构造残留盆地的改造.其中, 晚三叠世须三-须六期上扬子北缘前陆盆地的前缘隆起大致沿汶川、剑阁和万源一线分布.热年代学分析结果表明, 汶川、剑阁和万源一线以南的上二叠统烃源岩在早中生代始终处于埋藏增温状态, 只是自晚白垩世才进入抬升降温阶段, 呈"同代"烃源岩的特征; 而汶川、剑阁和万源一线以北的龙门山、米仓山和大巴山山前冲断地区, 上二叠统烃源岩则围绕生烃窗经历了多次增温和降温过程, 热演化历史复杂, 呈"隔代"烃源岩的特征.因此, 对于上扬子克拉通北部晚古生代-中三叠世陆缘盆地的勘探, 汶川、剑阁和万源一线以南比其北侧更有利.  相似文献   

12.
黑龙江东部盆地群中、新生代构造演化   总被引:2,自引:0,他引:2  
经最新的区域地质资料、岩石地层、砾石统计、同位素年龄以及野外构造观察等方面的研究认为:早白垩世黑龙江东部盆地群为统一的原型盆地,随着猴石沟组时期桦南隆起和密山隆起的隆升而被破坏.黑龙江东部盆地群中、新生代构造演化可分成6个阶段:①绥滨组一东荣组时期,黑龙江东部盆地群的北部处于坳陷阶段;②滴道组(裴德组)沉积时期,黑龙江东部进入伸展裂陷阶段,形成一系列孤立的小型断陷盆地;③城子河组(云山组)一穆棱组(珠山组)时期,黑龙江东部整体处于坳陷阶段,形成统一的原型盆地;④东山组时期,黑龙江东部盆地群进入伸展裂陷阶段;⑤猴石沟组时期,随着桦南隆起、密山隆起快速隆升,统一的东部盆地群遭到破坏,转向各个盆地的独立演化;⑥新生代,黑龙江东部各盆地独立演化,现今构造格局最后定位.  相似文献   

13.
东海盆地中、新生代盆架结构与构造演化   总被引:6,自引:0,他引:6  
基于地貌、钻井、岩石测年和地震等资料,分析盆地地层分布、盆架结构、构造单元划分和裂陷迁移规律,结果表明东海盆地由台北坳陷、舟山隆起、浙东坳陷、钓鱼岛隆褶带和冲绳坳陷构成,是以新生代沉积为主、中生代沉积为辅的大型中、新生代叠合含油气盆地;古元古代变质岩系构成了盆地的基底。该盆地不仅是印度-太平洋前后相继的动力体系作用下形成的西太平洋沟-弧-盆构造体系域一部分,而且也是古亚洲洋动力体系作用下形成的古亚洲洋构造域和特提斯洋动力体系作用下形成的特提斯洋构造域一部分,晚侏罗世至早白垩世经历了构造体制转换,盆地格局发生重大变革,早白垩世以前主要受古亚洲-特提斯洋构造体制影响的强烈挤压造山和地壳增厚作用演变为早白垩世以来主要受太平洋构造体制控制的陆缘伸展裂陷和岩石圈减薄作用,经历侏罗纪古亚洲-特提斯构造体制大陆边缘拗陷和白垩纪以来太平洋构造体制弧后裂陷两大演化阶段。白垩纪以来太平洋构造体制的弧后裂陷演化阶段可细分为早白垩世至始新世裂陷期、渐新世至晚中新世拗陷期和中新世末至全新世裂陷期。  相似文献   

14.
The marine magnetic data acquired from offshore Krishna-Godavari (K-G) basin, eastern continental margin of India (ECMI), brought out a prominent NE-SW trending feature, which could be explained by a buried structural high formed by volcanic activity. The magnetic anomaly feature is also associated with a distinct negative gravity anomaly similar to the one associated with 85°E Ridge. The gravity low could be attributed to a flexure at the Moho boundary, which could in turn be filled with the volcanic material. Inversion of the magnetic and gravity anomalies was also carried out to establish the similarity of anomalies of the two geological features (structural high on the margin and the 85°E Ridge) and their interpretations. In both cases, the magnetic anomalies were caused dominantly by the magnetization contrast between the volcanic material and the surrounding oceanic crust, whereas the low gravity anomalies are by the flexures of the order of 3–4 km at Moho boundary beneath them. The analysis suggests that both structural high present in offshore Krishna-Godavari basin and the 85°E Ridge have been emplaced on relatively older oceanic crust by a common volcanic process, but at discrete times, and that several of the gravity lows in the Bay of Bengal can be attributed to flexures on the Moho, each created due to the load of volcanic material.  相似文献   

15.
江达—维西陆缘火山弧的形成演化及成矿作用   总被引:16,自引:0,他引:16       下载免费PDF全文
江达-维西陆缘火山弧为金沙江弧后洋盆向西俯冲消减和斜向碰撞过程中形成,其过程经历了俯冲造弧-碰撞成弧-张裂成盆的复杂发展历史。早二叠世晚期—晚二叠世(P12-P2)形成俯冲型弧火山岩,早中三叠世(T1+2)形成碰撞型弧火山岩,晚三叠世早期(T31)于裂谷盆地中发育“双峰式”火山岩。晚三叠世早期(T31)裂谷盆地从北向南形成生达-车所-鲁麻弧后盆地、徐中-鲁春-红坡上叠(弧后)裂谷盆地和箐口塘-催依比-上兰上叠(弧后)裂谷盆地三个次级半深海-深海盆地。生达-车所-鲁麻弧后盆地的拉裂时间为11.6 Ma,速度为0.27cm/a,距离为63km;徐中-鲁春-红坡上叠(弧后)裂谷盆地的拉裂时间为16.1 Ma,速度为0.43cm/a,距离为140km;箐口塘-催依比-上兰上叠(弧后)裂谷盆地的拉裂时间16.1 Ma,速度为0.36cm/a,距离为116km。弧火山岩中形成有沉积-改造型铜、金、银、铅、锌多金属矿,裂谷(火山)盆地中形成有喷流-沉积型铜、金、银、铅、锌多金属矿。晚三叠世早期火山-沉积盆地已成为三江地区中生代重要的成矿盆地。  相似文献   

16.
Summary The Cyclops massif (Irian Jaya - Western Indonesia) displays all components of an ophiolitic sequence including residual mantle peridotites (harzburgites and dunites), cumulate gabbros, dolerites, normal mid-oceanic ridge basalts (N-MORB) and minor amounts of boninitic lavas. This ophiolitic series tectonically overlies high temperature (HT)-high pressure (HP) mafic rocks metamorphosed during the Miocene.Mineral chemistry and bulk rock rare-earth element (REE) abundances of the peridotites are characteristic of highly residual mantle rocks. The high Cr# [Cr#=100*Cr/(Cr+Al)] of spinel (up to 60) and very low heavy rare-earth element (HREE) concentrations of peridotites (< 0.1 time the chondritic values) are in agreement with residues of 25 to 35% melting as expected for peridotites from supra-subduction zone environments. Ti-enrichments in spinels and secondary clinopyroxenes (up to 1%, and 0.5%, respectively) are likely a consequence of reaction between mantle-derived melts and the host peridotites. High light rare-earth element (LREE) concentrations reaching up to chondritic values and high field strength element (HFSE) anomalies suggest that the initial composition of the residual peridotites has been previously modified by the passage of boninitic melt(s). The associated basalts and related cumulate rocks display major and trace element contents with Nb-negative anomalies typical of back-arc magmas.New40K/40Ar isotopic ages obtained from the back-arc basin basalts (BABB - 29 Ma) and boninites (43 Ma) combined with the geochemical signatures of the rocks studied here, indicate that the Cyclops Mountains may have formed in a single suprasubduction environment. This implies southward plunging subduction of the Australian oceanic lithosphere beneath the northern part of the Australian margin. The ultramafic rocks and related lavas (boninites) likely formed during the Eocene in a forearc environment, before their southward obduction onto the island arc crustal welt during the early Miocene. The Pliocene back-thrusting event has led to the slicing of the backarc basin series onto the arc and fore-arc sequences.
Le massif des Cyclops (Irian Jaya- Ouest Indonésie montre tous les termes d'une séquence ophiolitique comprenant des péridotites résiduelles (harzburgites et dunites), des cumulats gabbroïques, des dolérites, des basaltes de type N-MORB et de rares boninites. Cette série, ophiolitique repose tectoniquement sur des roches mafiques métamorphisées à haute température au Miocene.
Résumé Les données pétrologiques et géochimiques montrent clairement que les péridotites ont un caractère fortement résiduel. Les fortes teneurs en Cr# [Cr#= 100*Cr/(Cr+Al)] du spinelle (> 60) associées aux très faibles concentrations en terres rares lourdes sur roche totale (<0.1 aux valeurs chondritiques) témoignent de fort taux de fusion (25 à 35%) que l'on rencontre habituellement dans les contextes de subduction. Les enrichissements importants en TiO2 des spinelles et clinopyroxènes secondaires des peridotites (> 1 % et 0.5%, respectivement) sent interprétés comme résultant de phénomènes d'imprégnations importants entre les péridotites et des liquides magmatiques. Les fortes concentrations en terres rares légères des péridotites (proches des valeurs chondritiques) associées aux fortes anomalies en Nb, Sr, Zr, et Hf suggerent que ces liquides étaient de nature boninitique. Les basaltes et les cumulats gabbroïques dérivent de la cristallisation de liquides tholéiitiques de type MORB. Leurs fortes anomalies en Nb, suggerènt cependant une origine dans un bassin arrière-arcDe nouvelles datations isotopiques40K40Ar obtenues sur les basaltes arrière-arch (29 Ma) et les boninites (43 Ma) montrent que le massif des Cyclops s' est probablement formé dans un contexte de zone de subduction impliquant une subduction vers le Sud de la lithosphere océanique australienne sous la marge nord australienne. Les péridotites et laves associées (boninites) se seraient formées à l'Eocène dans un bassin avant-arc, avant d'être obductées au Miocène sur l'are situé plus au sud. Les rétrochevauchements Pliocène ont conduit aux charriages tardifs du bassin arrière-arc sur l'arc et le bassin avant-arc.


With 9 Figures  相似文献   

17.
ABSTRACT

In order to investigate the thinning process of the northern continental margin of the South China Sea, petrographic and microstructural analysis were carried out on 20 greenschistfacies mylonite samples, which were obtained from Site U1504 of IODP Expedition 367/368 in the Outer Margin High of the region. The mineral assemblage of the greenschist-facies mylonite is chlorite + epidotite + albite (Ab = 94.7–99.9) + quartz, which contains 10-30% gravel components. Microstructural analysis indicates that the greenschist-facies mylonite experienced two episodes of deformation:early ductile deformation followed by a later stage of brittle deformatio. Both episodes of deformation suggest an extensional environment. The extensive development of bulging recrystallization (BLG) of quartz, microscopic fractures and fine granulation of albite suggest that the temperature of ductile deformation is about 300-400°C, compatiable with a ductile shearing at shallow crust levels (~5-10 km). Petrographic features suggest that the greenschist-facies mylonite might originate from volcanic sedimentary rocks or sedimentary rocks affected by the intrusion of mafic magma. Combined with seismic interpretation, we propose that the greenschist-facies mylonite might be formed by crustal exhumation after thick Mesozoic sediments were denuded by a major extension.  相似文献   

18.
Sulawesi with its peculiar K-shaped pattern is situated in an area where the Eurasian, Indian—Australian and Pacific plates interact and collide.Complex geological processess in this area resulted in the transformation of a normal island-arc structure into an inverted one, deformation of an already tectonized belt, sweeping of fragments against unrelated terrain, thrusting of oceanic and mantle material over the island arc, closing of deep-sea basins behind the arc, trapping of old oceanic crust caused by the rolling up of an island arc, formation of a marginal basin by the spreading of the sea floor behind the arc, development of small subduction zones with reverse polarities etc.Small deep-sea basins surrounding Sulawesi such as the Gulf of Bone and the Gulf of Gorontalo originally formed the arc—trench gap of the Sulawesi island arc.The Banda Sea is considered as an oceanic crust trapped by the bending of the east—west trending Banda arc due to the northward drift of Australia combined with the westward movement of the Pacific plate. Similarly the Sulawesi Sea consists of an old Pacific crust trapped by the westward bending of the Sulawesi island arc, caused by the spearheading westward thrust along the Sorong transform-fault system, in which later a minor spreading center became active in its central part. The Molucca Sea comprises tectonic mélange in which presumably a small spreading center developed between the two colliding arcs of northern Sulawesi and western Halmahera. While the Benioff zones dip under the northern Sulawesi and Halmahera arcs in normal fashion, the mélange thrusts over them. The Strait of Makassar is a marginal basin which was brought into existence by the spreading of the sea floor between Kalimantan and Sulawesi.The evolution of Sulawesi started in Miocene time or even earlier when 800 km east of Kalimantan a north—south trending east-facing island arc came into existence, originating from a spreading center located in the Pacific Ocean. Volcanism and plutonism accompanied this subduction process.Collision between Sulawesi and the Australian—New Guinea plate which occurred in early Pliocene time severely transformed Sulawesi into an island with its convex side turned towards the continent, at the same time causing obduction of ophiolite in the eastern arc of this island.The movement of the Pacific plate continued and gradually pushed Sulawesi towards the Asian continent, resulting in the closing of the sea between Kalimantan and Sulawesi islands separated by small straits and deep seas resembling the complicated pattern of the Philippine Archipelago, in which the original double island-arc structure can no longer be recognized.  相似文献   

19.
ABSTRACT

The formation of the Qilian mountains and the evolution of adjacent basins were controlled by the uplift and northeastward growth of the Tibetan Plateau. In a field survey conducted on the main Cenozoic basin sediments in the Qilian Mountains and adjacent areas, fission track age data of apatite obtained previously were analyzed. Cenozoic tectonics and landform evolution in the area where the Qilian Mountains now stand and its response to the uplift of the Tibetan Plateau were studied. In the Oligocene Epoch, the Tibetan Plateau was initially uplifted and extended northeastward, forming the Guide-Xining-Lanzhou-Linxia foreland basin on the northern margin of the western Qinling Mountains, and the foreland basin in the area where the Qilian Mountains now stand received widespread sediments. In the Miocene, influenced by the enhanced uplift and northeastward thrust of the Tibetan Plateau, a stage of intracontinental squeezing orogeny and foreland basin splitting began in the area where the Qilian Mountains now stand. In the Pliocene Epoch, the Qilian Mountains were continuously uplifted, the basins shrank, large lake basins disappeared gradually, and large-area red-clay-type aeolian sediments appeared. During the Quaternary Period, the uplift of the Tibetan Plateau accelerated, causing a rapid rise in the altitude of the Qilian Mountains. Global climate change occurred and mountain glaciers began to develop. Quaternary moraine deposits appeared for the first time in the area, and very thick loess sediments appeared in the Longzhong area, east of the area where the Qilian Mountains now stand, forming the famous Loess Plateau.  相似文献   

20.
东亚大陆边缘的构造格架及其中-新生代演化   总被引:10,自引:0,他引:10  
燕山运动在亚洲大陆雏形东缘形成2条北东向的剪切带:郯庐断裂带和长乐-南澳-中央构造线断裂带,晚侏罗世—古近纪早期沿之发生地体/地块的拼贴。系统叙述了各移置地体/地块的主要岩石记录和拼贴时代,据起源分为3类:异地的(包括源自冈瓦纳的和源自盘古大洋的)、半异地的和准原地的;据拼贴位置分为2组:拼贴后基本位于原地的(日本海张开以前) 和发生过向北东错移的。新生代内东亚大陆边缘发生解体,可以台湾岛以北的菲律宾海盆断裂为界将东亚大陆边缘弧分为2段,北段仍处于剪切-拉张中,南段已进入剪切挤压-造山阶段。强调该地区中—新生代演化经历了2个里丁旋回, 形成早白垩世的北东向和新近纪的北东东向2期新生构造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号