共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对BP神经网络自身收敛速度慢、容易陷入局部极小点的缺点,引入粒子群优化算法,建立地表下沉系数的PSO-BP选取模型。利用粒子群算法反复优化BP网络的权值和阈值,将其作为BP网络的初始值,并将上覆岩层岩性、开采深厚比、松散层厚度、覆岩中坚硬岩层所占比例、是否为重复采动和顶板管理方法等主要影响因素作为网络输入,进行BP算法,直至网络达到训练指标。利用实测资料数据,建立PSO-BP预计模型,并同普通BP神经网络预计结果对比。结果表明:PSO-BP神经网络不仅训练速度快,而且预测精度明显提高,该模型对地表下沉系数选取具有一定的应用价值。 相似文献
3.
刘占利 《测绘与空间地理信息》2021,44(11):151-154
跨海大桥在运行期间因受自身因素以及飓风、海浪等多种外界因素的影响,桥梁变形表现为非线性变形.针对这种现象,本文以跨海大桥观测数据为例,使用小波理论进行去噪处理,对去噪后的数据分别建立BP神经网络预测模型以及POS-BP神经网络预测模型,并对比分析预测结果.结果表明:POS-BP神经网络预测模型预测精度更高. 相似文献
4.
5.
针对现有Tm模型建模方法多为基于最小二乘线性回归方法以致于模型精度有待提高的问题,该文以中国西北地区2015—2017年的24个探空站的探空数据作为实验数据,在中国西北地区使用粒子群优化BP神经网络(PSO-BP)回归方法建立大气加权平均温度(Tm)模型:将地表温度、水气压、纬度、高程和时间变化等影响因素作为模型输入因子,将数值积分法所计算得到的Tm作为学习目标,利用神经网络模型进行迭代训练得到中国西北地区的Tm。以2018年探空站Tm数据为参考值,对PSO-BP模型精度进行验证,并与Bevis模型、GPT3模型和中国西部地区Tm模型进行比较。结果表明,PSO-BP模型的年均RMSE和年均bias分别为2.71 K和0.35 K,相比Bevis模型、GPT3模型和中国西部地区Tm模型年均RMSE分别降低了1.36 K(33.4%)、1.81 K(39.5%)和1.78 K(39.1%),年均bias分别下降了0.70 K(87.7%)... 相似文献
6.
7.
8.
9.
10.
快速近似主成分分析算法 总被引:2,自引:0,他引:2
通过分析现有主成分分析算法的不足,研究了如何利用小波包算法实现快速近似主成分分析算法的问题,并对两种算法的复杂度进行了比较。实验结果表明:提出的快速近似主成分分析算法在精度和速度两个方面都具有明显的优势。 相似文献
11.
基于主成分分析和BP神经网络的法国梧桐叶绿素含量高光谱反演研究 总被引:6,自引:0,他引:6
利用ASD便携式野外光谱仪和SPAD-502叶绿素计实测了落叶阔叶树法国梧桐叶片的高光谱反射率与叶片绿度,并对原始光谱反射率及一阶导数光谱与叶片绿度进行了相关分析;综合分析了10个常见光谱植被指数与法国梧桐叶绿素含量的相关性与预测性;最后利用主成分分析对光谱数据进行降维,将得到的主成分得分作为BP人工神经网络模型的输入变量进行了法国梧桐叶绿素含量的估算。结果表明:法国梧桐的叶片反射光谱数据与叶绿素含量的相关性在可见光区域显著,导数光谱数据在绿黄光区和红光区的部分波段与叶绿素含量的相关系数大于对应波段光谱反射率与叶绿素含量的相关关系。在所列举的10个常用植被指数中归一化植被指数与叶绿素含量的关系最密切,相关系数达到了0.7957。主成分分析的BP神经网络模型可以容纳更多的波段信息进行叶绿素含量的估算,预测值与实测值之间的线性回归的确定性系数R2为0.9883,是一种良好的植被叶绿素含量高光谱反演模式。 相似文献
12.
基于核主成分分析和粒子群优化支持向量机的滑坡位移预测 总被引:3,自引:0,他引:3
利用核主成分分析法对滑坡位移影响因子进行特征提取,以获得的主成分作为支持向量机的特征向量建立支持向量机模型,其中模型参数通过粒子群算法进行选择优化,构建出核主成分分析和粒子群优化支持向量机协同模型,对滑坡相对位移进行预测。预测结果的平均绝对误差和相对误差分别为0.760和7.563%,与其他预测模型相比,其拟合和泛化能力最优,表明核主成分分析和粒子群优化支持向量机协同模型的预测结果与实际监测值具有很好的一致性。 相似文献
13.
为有效确定概率积分法预计参数,提高预计值的精度。将粒子群优化(PSO)算法和BP神经网络进行融合,采用改进的混合粒子群优化算法优化神经网络的权值和阈值。在分析概率积分法参数与地质采矿条件之间关系的基础上,建立了基于PSO优化BP神经网络的概率积分法预计参数的优化选择模型。以我国典型的地表移动观测站资料为例,将计算结果与实际值进行了对比分析,并与文献[1]中改进BP算法进行了比较。结果表明,PSO-BP神经网络方法用于概率积分法预计参数的选取是可行的,收敛速度更快,计算精度更高。 相似文献
14.
在使用传统BP神经网络算法建模进行预测过程中,由于初始权值和阈值是随机给定的,易使网络陷入局部最优,从而导致预测精度较低。利用具有较强优化能力的粒子群算法( particle swarm optimization ,PSO)优化BP神经网络在训练过程中的初始权值和阈值,建立新的预测模型,以青岛地铁3号线保河区间隧道监测数据为例进行验证分析,研究结果表明,与传统BP神经网络预测算法相比,使用PSO算法优化的BP神经网络预测算法可以得到更优的预测结果。 相似文献
15.
基坑施工是各类大型地面及地下建筑的重要基础和前提,而随着基坑规模的不断扩大以及施工环境的日益复杂,对基坑各参数的监测和预测显得越来越重要。本文针对基坑变形预测的高精度要求,详细阐述了基坑变形的数据采集要求和预测机理,建立基于粒子群优化算法的改进BP神经网络预测模型,该模型与原始BP神经网络预测模型相比,在收敛速度和目标误差控制方面都实现了明显提升。同时,经过施工现场的实验检验,PSO-BP神经网络预测在预测精度方面,其相对误差和平均绝对百分比误差也明显降低,说明该优化模型有效提升了运算速度、预测精度,能够为安全施工提供有效支持,具备推广应用的价值。 相似文献
16.
17.
19.
隧道拱顶下沉监测数据中含有大量的随机误差,为了消除或者消弱随机误差的干扰,本文对实测数据进行小波去噪,使数据更真实性。针对传统BP神经网络预测精度差、收敛慢的问题,通过改进的BP神经网络对去噪的数据进行预测。实验结果表明,并与传统BP神经网络相对比,小波去噪的改进神经网络收敛速度加快,精度提高,预测效果显著提高,适用于拱顶下沉的预测研究。 相似文献
20.
本文首先针对标准粒子群优化算法容易陷入局部最优的缺点,采用动态自适应调节策略,使得粒子的惯性权重随群体聚集程度而适时变化,从而调整粒子群搜索的速度和方向以跳出局部最优;然后将粒子群算法的全局搜寻能力和RBF网络的局部优化能力相结合,利用改进的粒子群优化算法优化RBF神经网络的关键参数;并将其应用于地理信息的预测,得到满意的结果。 相似文献