首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the impact of the observed correlation between a galaxy's shape and its surrounding density field on the measurement of third-order weak lensing shear statistics. Using numerical simulations, we estimate the systematic error contribution to a measurement of the third-order moment of the aperture mass statistic (GGG) from three-point intrinsic ellipticity correlations (III), and the three-point coupling between the weak lensing shear experienced by distant galaxies and the shape of foreground galaxies (GGI and GII). We find that third-order weak lensing statistics are typically more strongly contaminated by these physical systematics compared to second-order shear measurements, contaminating the measured three-point signal for moderately deep surveys with a median redshift   z m∼ 0.7  by ∼15 per cent. It has been shown that accurate photometric redshifts will be crucial to correct for this effect, once a model and the redshift dependence of the effect can be accurately constrained. To this end we provide redshift-dependent fitting functions to our results and propose a new tool for the observational study of intrinsic galaxy alignments. For a shallow survey with   z m∼ 0.4  we find III to be an order of magnitude larger than the expected cosmological GGG shear signal. Compared to the two-point intrinsic ellipticity correlation which is similar in amplitude to the two-point shear signal at these survey depths, third-order statistics therefore offer a promising new way to constrain models of intrinsic galaxy alignments. Early shallow data from the next generation of very wide weak lensing surveys will be optimal for this type of study.  相似文献   

2.
3.
Weak lensing by large-scale mass inhomogeneities in the Universe induces correlations in the observed ellipticities of distant sources. We first review the harmonic analysis and statistics required of these correlations and discuss calculations for the predicted signal. We consider the ellipticity correlation function, the mean-square ellipticity, the ellipticity power spectrum and a global maximum-likelihood analysis to isolate a weak-lensing signal from the data. Estimates for the sensitivity of a survey of a given area, surface density, and mean intrinsic source ellipticity are presented. We then apply our results to the FIRST radio-source survey. We predict an rms ellipticity of roughly 0.011 in 1 × 1 deg2 pixels and 0.018 in 20 × 20 arcmin2 pixels if the power spectrum is normalized to σ8 Ω0.53 = 0.6, as indicated by the cluster abundance. The signal is significantly larger in some models if the power spectrum is normalized instead to the COBE anisotropy. The uncertainty in the predictions from imprecise knowledge of the FIRST redshift distribution is about 25 per cent in the rms ellipticity. We show that FIRST should be able to make a statistically significant detection of a weak-lensing signal for cluster-abundance-normalized power spectra.  相似文献   

4.
Weak gravitational lensing surveys have the potential to probe mass density fluctuation in the Universe directly. Recent studies have shown that it is possible to model the statistics of the convergence field at small angular scales by modelling the statistics of the underlying density field in the highly non-linear regime. We propose a new method to model the complete probability distribution function of the convergence field as a function of smoothing angle and source redshift. The model relies on a hierarchical ansatz for the behaviour of higher order correlations of the density field. We compare our results with ray-tracing simulations and find very good agreement over a range of smoothing angles. Whereas the density probability distribution function is not sensitive to the cosmological model, the probability distribution function for the convergence can be used to constrain both the power spectrum and cosmological parameters.  相似文献   

5.
6.
With increasingly large data sets, weak lensing measurements are able to measure cosmological parameters with ever-greater precision. However, this increased accuracy also places greater demands on the statistical tools used to extract the available information. To date, the majority of lensing analyses use the two-point statistics of the cosmic shear field. These can be either studied directly using the two-point correlation function or in Fourier space, using the power spectrum. But analysing weak lensing data inevitably involves the masking out of regions, for example to remove bright stars from the field. Masking out the stars is common practice but the gaps in the data need proper handling. In this paper, we show how an inpainting technique allows us to properly fill in these gaps with only   N log  N   operations, leading to a new image from which we can compute straightforwardly and with a very good accuracy both the power spectrum and the bispectrum. We then propose a new method to compute the bispectrum with a polar fft algorithm, which has the main advantage of avoiding any interpolation in the Fourier domain. Finally, we propose a new method for dark matter mass map reconstruction from shear observations, which integrates this new inpainting concept. A range of examples based on 3D N -body simulations illustrates the results.  相似文献   

7.
8.
Analytical expressions for covariances of weak lensing statistics related to the aperture mass,   M ap  , are derived for realistic survey geometries such as the Supernova Acceleration Probe (SNAP) 1 for a range of smoothing angles and redshift bins. We incorporate the contributions to the noise due to the intrinsic ellipticity distribution and the effects of the finite catalogue size. Extending previous results to the most general case where the overlap of source populations is included in a complete analysis of error estimates, we study how various angular scales in various redshifts are correlated and how the estimation scatter changes with the survey parameters. Dependences on cosmological parameters and source redshift distributions are studied in detail. Numerical simulations are used to test the validity of various ingredients to our calculations. Correlation coefficients are defined in a way that makes them practically independent of cosmology. They can provide important tools to cross-correlate one or more different surveys, as well as various redshift bins within the same survey or various angular scales from the same or different surveys. The dependence of these coefficients on various models of underlying mass correlation hierarchy is also studied. Generalizations of these coefficients at the level of three-point statistics have the potential of probing the complete shape dependence of the underlying bi-spectrum of the matter distribution. A complete error analysis incorporating all sources of errors suggests encouraging results for studies using future space-based weak lensing surveys such as SNAP.  相似文献   

9.
10.
The statistics of multiple gravitational lensing in a locally inhomogeneous universe is taken into account, based on the expansion of the mean amplification into the summation of various lenses and the pointlike models for both background sources and lensing objects. By comparing the deviation of the effects of various lenses from mean amplification, the redshift ranges over which different lenses dominate are investigated. In particular, the accuracy of a single lensing approximation, which has been widely used in previous statistical lensing, is demonstrated. As the application of a single lensing approximation, the lowest correction to the Mattig's relation due to the inhomogeneities in universe and the lowest effect on the number counts of background sources due to amplification bias are reconsidered. It is emphasized the fact that the effect of statistical lensing, even in a single lensing approximation, is of significance for modern observational cosmology.  相似文献   

11.
We study the estimators of various second-order weak lensing statistics such as the shear correlation functions  ξ±  and the aperture mass dispersion  〈 M 2ap〉  which can directly be constructed from weak lensing shear maps. We compare the efficiency with which these estimators can be used to constrain cosmological parameters. To this end we introduce the Karhunen–Loève (KL) eigenmode analysis techniques for weak lensing surveys. These tools are shown to be very effective as a diagnostics for optimizing survey strategies. The usefulness of these tools to study the effect of angular binning, the depth and width of the survey and noise contributions due to intrinsic ellipticities and number density of source galaxies on the estimation of cosmological parameters is demonstrated. Results from independent analysis of various parameters and joint estimations are compared. We also study how degeneracies among various cosmological and survey parameters affect the eigenmodes associated with these parameters.  相似文献   

12.
13.
Using the ray-bundle method for calculating gravitational lens magnifications, we outline a method by which the magnification probability may be determined specifically in the weak lensing limit for cosmological models obtained from N -body simulations.
16 different models are investigated, which are variations on three broad classes of cold dark matter model: the standard model with  (Ω0, λ 0)=(1.0,0.0)  , the open model with  (Ω0, λ 0)=(0.3,0.0)  and the lambda model, which is a flat model with a cosmological constant  (Ω0, λ 0)=(0.3,0.7)  .
The effects of varying the Hubble parameter, H 0, the power spectrum shape parameter, Γ, and the cluster mass normalization, σ 8, are studied. It is shown that there is no signature of these parameters in the weak lensing magnification distributions. The magnification probability distributions are also shown to be independent of the numerical parameters such as the lens mass and simulation box size in the N -body simulations.  相似文献   

14.
15.
16.
We present a direct detection of the growth of large-scale structure, using weak gravitational lensing and photometric redshift data from the COMBO-17 survey. We use deep R -band imaging of two  0.5 × 0.5 deg2  fields, affording shear estimates for over 52 000 galaxies; we combine these with photometric redshift estimates from our 17-band survey, in order to obtain a 3D shear field. We find theoretical models for evolving matter power spectra and correlation functions, and fit the corresponding shear correlation functions to the data as a function of redshift. We detect the evolution of the power at the 4.7σ level given reasonable priors, and measure the rate of evolution for  0 < z < 1  . We also fit correlation functions to our 3D data as a function of cosmological parameters σ8 and  ΩΛ  . We find joint constraints on  ΩΛ  and σ8, demonstrating an improvement in accuracy by ≃40 per cent over that available from 2D weak lensing for the same area.  相似文献   

17.
Weak gravitational lensing is now established as a powerful method to measure mass fluctuations in the universe. It relies on the measurement of small coherent distortions of the images of background galaxies. Even low-level correlations in the intrinsic shapes of galaxies could however produce a significant spurious lensing signal. These correlations are also interesting in their own right, since their detection would constrain models of galaxy formation. Using     haloes found in N -body simulations, we compute the correlation functions of the intrinsic ellipticity of spiral galaxies assuming that the disc is perpendicular to the angular momentum of the dark matter halo. We also consider a simple model for elliptical galaxies, in which the shape of the dark matter halo is assumed to be the same as that of the light. For deep lensing surveys with median redshifts ∼1, we find that intrinsic correlations of ∼10−4 on angular scales     are generally below the expected lensing signal, and contribute only a small fraction of the excess signals reported on these scales. On larger scales we find limits to the intrinsic correlation function at a level ∼10−5, which gives a (model-dependent) range of separations for which the intrinsic signal is about an order of magnitude below the ellipticity correlation function expected from weak lensing. Intrinsic correlations are thus negligible on these scales for dedicated weak lensing surveys. For wider but shallower surveys such as SuperCOSMOS, APM and SDSS, we cannot exclude the possibility that intrinsic correlations could dominate the lensing signal. We discuss how such surveys could be used to calibrate the importance of this effect, as well as study spin–spin correlations of spiral galaxies.  相似文献   

18.
We detect a positive angular correlation between bright, high-redshift QSOs and foreground galaxies. The QSOs are taken from the optically selected LBQS Catalogue, while the galaxies are from the APM Survey. The correlation amplitude is about a few per cent on angular scales of over a degree. It is a function of QSO redshift and apparent magnitude, in a way expected from weak lensing, and inconsistent with QSO–galaxy correlations being caused by physical associations, or uneven obscuration by Galactic dust. The correlations are ascribed to the weak lensing effect of the foreground dark matter, which is traced by the APM galaxies. The amplitude of the effect found here is compared to the analytical predictions from the literature, and to the predictions of a phenomenological model, which is based on the observed counts-in-cells distribution of APM galaxies. While the latter agree reasonably well with the analytical predictions (namely those of Dolag &38; Bartelmann and Sanz et al.), both underpredict the observed correlation amplitude on degree angular scales. We consider the possible ways to reconcile these observations with theory, and discuss the implications that these observations have on some aspects of extragalactic astronomy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号