首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Quaternary Science Reviews》2007,26(17-18):2281-2300
We review Late Cenozoic climate and environment changes in the western interior of China with an emphasis on lacustrine records from Lake Qinghai. Widespread deposition of red clay in the marginal basins of the Tibetan Plateau indicates that the Asian monsoon system was initially established by ∼8 Ma, when the plateau reached a threshold altitude. Subsequent strengthening of the winter monsoon, along with the establishment of the Northern Hemisphere ice sheets, reflects a long-term trend of global cooling. The few cores from the Tibetan Plateau that reach back a million years suggest that they record the mid-Pleistocene transition from glacial cycles dominated by 41 ka cycles to those dominated by 100 ka cycles.During Terminations I and II, strengthening of the summer monsoon in China's interior was delayed compared with sea level and insolation records, and it did not reach the western Tibetan Plateau and the Tarim Basin. Lacustrine carbonate δ18O records reveal no climatic anomaly during MIS3, so that high terraces interpreted as evidence for extremely high lake levels during MIS3 remain an enigma. Following the Last Glacial Maximum (LSM), several lines of evidence from Lake Qinghai and elsewhere point to an initial warming of regional climate about 14 500 cal yr BP, which was followed by a brief cold reversal, possibly corresponding to the Younger Dryas event in the North Atlantic region. Maximum warming occurred about 10 000 cal yr BP, accompanied by increased monsoon precipitation in the eastern Tibetan Plateau. Superimposed on this general pattern are small-amplitude, centennial-scale oscillations during the Holocene. Warmer than present climate conditions terminated about 4000 cal yr BP. Progressive lowering of the water level in Lake Qinghai during the last half century is mainly a result of negative precipitation–evaporation balance within the context of global warming.  相似文献   

2.
《Quaternary Science Reviews》1999,18(10-11):1205-1212
A high-resolution East Asian winter monsoon proxy record reconstructed from the Baoji loess section in China shows two major shifts in climate modes over the past 2.5 Ma, one occurring at about 1.7–1.6 Ma BP and the other at about 0.8–0.5 Ma BP. The 1.7–1.6 Ma shift is characterized by a rather abrupt transition of winter monsoon variability from various periodicities to dominant 41-ka cycles, and accompanied by a substantial increase in intensity of winter monsoon winds as manifested by an increase in average loess grain size. The 0.8–0.5 Ma event shows a relatively gradual transition from constant 41-ka cycles to predominant 100-ka climatic oscillations with a significant increase in amplitude. The 0.8–0.5 Ma shift matches that registered in deep-sea δ18O records, whereas the 1.7–1.6 Ma shift is absent in global ice volume changes. This comparison suggests that at about 1.6 Ma BP, the ice sheets in the Northern Hemisphere may have reached a critical size, sufficient to modulate changes in the global climate system. The discrepancy of climate cyclicity between loess and deep-sea records over the 2.5–1.6 Ma interval suggests that the older Matuyama climate evolution cannot be understood simply by a regular 41 ka cycle model on a global scale. More long proxy records derived from continental deposits are needed.  相似文献   

3.
《Quaternary Research》2014,81(3):500-507
We analyzed climate proxies from loessic-soil sections of the southern Chinese Loess Plateau. The early Holocene paleosol, S0, is 3.2 m thick and contains six sub-soil units. Co-eval soils from the central Loess Plateau are thinner (~ 1 m). Consequently higher-resolution stratigraphic analyses can be made on our new sections and provide more insight into Holocene temporal variation of the East Asian monsoon. Both summer and winter monsoon evolution signals are recorded in the same sections, enabling the study of phase relationships between the signals. Our analyses consist of (i) measurements of magnetic properties sensitive to the production of fine-grained magnetic minerals which reflect precipitation intensity and summer monsoon strength; and (ii) grain-size analyses which reflect winter monsoon strength. Our results indicate that the Holocene precipitation maximum occurred in the mid-Holocene, ~ 7.8–3.5 cal ka BP, with an arid interval at 6.3–5.3 cal ka BP. The winter monsoon intensity declined to a minimum during 5.0–3.4 cal ka BP. These results suggest that the East Asian summer and winter monsoons were out of phase during the Holocene, possibly due to their different sensitivities to ice and snow coverage at high latitudes and to sea-surface temperature at low latitudes.  相似文献   

4.
《Quaternary Science Reviews》2007,26(19-21):2586-2597
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.  相似文献   

5.
《Quaternary Science Reviews》2007,26(1-2):142-154
We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 °C cooler, with a maximum inferred cooling of 3.7 °C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000–18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP).The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (<20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (<5 °C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.  相似文献   

6.
Proglacial lake sediments at Goting in the Higher Central Himalaya were analyzed to reconstruct the summer monsoon variability during the Last Glacial to early Holocene. Sedimentary structures, high resolution mineral magnetic and geochemical data suggest that the lacustrine environment experienced fluctuating monsoonal conditions. Optically stimulated luminescence (OSL) dating indicates that the lake sedimentation occurred before 25 ka and continued after 13 ka. During this period, Goting basin witnessed moderate to strengthened monsoon conditions around 25 ka, 23.5 ka–22.5 ka, 22 ka–18 ka, 17 ka–16.5 ka and after14.5–13 ka. The Last Glacial phase ended with the deposition of outwash gravel dated at ~11 ka indicating glacial retreat and the onset of Holocene condition. Additionally, centennial scale fluctuations between 16.5 ka and 12.7 ka in the magnetic and geochemical data are seen.A close correspondence at the millennial scale between our data and that of continental and marine records from the Indian sub-continent suggests that Goting basin responded to periods of strengthened monsoon during the Last Glacial to early Holocene. We attribute the millennial scale monsoon variability to climatic instability in higher northern latitudes. However, centennial scale abrupt changes are attributed to the result of albedo changes on the Himalaya and Tibetan plateau.  相似文献   

7.
A detailed understanding of long-term climatic and environmental change in southwestern China is hampered by a lack of long-term regional palaeorecords. Organic analysis (%TOC, %TN, C/N ratios and δ13C values) of a sediment sequence from Lake Shudu, Yunnan Province (ca. 22.6–10.5 cal ka BP) indicates generally low aquatic palaeoproductivity rates over millennial timescales in response to cold, dry climatic conditions. However, the record is punctuated by two marked phases of increased aquatic productivity from ca. 17.7 to 17.1 cal ka BP and from ca. 11.9 to 10.5 cal ka BP. We hypothesise that these shifts reflect a marked, stepwise lacustrine response to Asian summer monsoon strengthening during the last deglaciation.  相似文献   

8.
This paper reports the main sedimentary characteristics, soil micromorphology and optically-stimulated luminescence (OSL) ages, and details the pedosedimentary reconstruction, of the Hudson site situated in the northern Pampas of Buenos Aires province. It also provides the OSL chronology and a reinterpretation of previously reported micromorphological features for the nearby site of Gorina. Finally, the stratigraphic records of both sites are compared and the main environmental events discussed in a regional context.At Hudson, situated at a low altitude environment close to the coastal plain, the basal fine-grained paludal deposits were unconformably covered by coastal marine sediments with an OSL age of ca. 128 ka supporting its correlation with the high stand of sea level of marine isotope stage 5e. A paleosol developed on the marine deposits and the underlying paludal sediments. OSL ages suggest that soil development and its subsequent erosion occurred over some period between ca. 128 and 54 ka. Fine sediment accumulation in a paludal environment continued until prior to ca. 23 ka when the accumulation of the uppermost loess mantle started. It continued until the early Holocene when present soil development began. At Gorina, OSL ages suggest that the upper part of the pedocomplex formed at some stage between ca. 194 and 56 ka. Loess then accumulated followed by an erosional phase; loess deposition restarted by ca. 29 ka and continued until the beginning of the Holocene (ca. 9 ka) when the present land surface was established.The stratigraphic and paleoenvironmental differences exhibited by the Hudson and Gorina records result from their contrasting geomorphological settings. The OSL geochronology suggests that the last interglacial (MIS 5) at Hudson is marked by the accumulation of marine deposits (MIS 5e) and the subsequent development of a paleosol. The equivalent soil-forming interval at Gorina is represented by the upper part of the buried pedocomplex. Both at Gorina and Hudson, loess accumulation was dominant especially during MIS 2. Loess accumulation continued during MIS 1 until the early Holocene with apparently somewhat higher sedimentation rates in Hudson. Pedogenesis has been predominant during the rest of the Holocene, resulting in the formation of the surface soil profiles.  相似文献   

9.
Dust transported by sandstorms has been an important feedback in climate change in the past, and its environmental effects are predicted to have a great impact on future global climatic change. Investigating the grain-size classes and the standard deviations of the modern sandstorm samples, and the samples in the Shagou section (situated in the eastern Hexi Corridor), lead us to suggest that the sand fraction within the range of 275.4–550 μm in this section can be used as a sensitive indicator of severe sandstorms. We selected the size range in the L1 stratum of the Shagou loess section as indicative of temporal changes in sandstorm intensity in the eastern Hexi Corridor and found that during the Last Glacial period, severe sandstorms in the eastern Hexi Corridor occurred with high frequency during these periods: I (70–54 ka B.P.), II (51–48 ka B.P.), III (45–42 ka B.P.), IV (38–33 ka B.P.), V (31–28 ka B.P.) and VI (26–12 ka B.P.) In general, the frequency and intensity of dust storms in the early (MIS 4) and late (MIS 2) periods were both high but they were reduced in the middle period (MIS 3). The primary factors controlling severe sandstorms are hydrology and wind power, followed by the expansion of the source extent. Reduced precipitation caused the source region of sandstorms to expand; in addition, wind speeds also increased at this time. These factors may have directly contributed to the abundance of severe sandstorms. Based on the grain size from a loess section (the Shagou section) in the eastern Hexi Corridor, we propose an evolutionary sequence of the severe sandstorms during the Last Glacial period. This sequence is consistent with the dust records in the Arctic, the Antarctic and low-latitude (the central equatorial Pacific) areas. Thus globally synchronous periods of high dust activity occurred in the Last Glacial period. The strong winds proposed here provide a potential explanation for the global consistency of dust flux changes during the Last Glacial period.  相似文献   

10.
《Quaternary Research》2014,81(3):488-499
Paleoclimatic reconstruction based on aeolian sediments in the eastern Qaidam Basin (QB) has been hindered by the limited chronological data. Here we present 61 Optically Stimulated Luminescence (OSL) ages. On the basis of these OSL ages and the lithologic stratigraphy, we propose the ‘effective moisture index (EMI)’ for aeolian sediments to reconstruct the effective moisture change. Based on the EMI from twelve sections, the effective moisture change, moisture sources and relevant mechanisms for paleoclimatic change in the eastern QB are discussed. The results indicate that (1) aeolian deposition started at least before 12.4 ± 0.7 ka during the deglaciation, the paleosols developed at the early and mid-Holocene, and aeolian sand and loess accumulated at mid- and late Holocene; (2) effective moisture history was: hyper-arid at 12.8–11.6 ka, humid and variable at 11.6–8.3 ka, moderately humid and stable at 8.3–3.5 ka, and increasingly arid at 3.5–0 ka; (3) the effective moisture change was mainly controlled by the Asian summer monsoon (ASM), which mainly followed the change of Northern Hemispheric summer insolation, and the westerlies strengthened and increased the aridity in the QB when the ASM shrank.  相似文献   

11.
Hydrography of the Bay of Bengal is highly influenced by the river runoff and rainfall during the southwest monsoon. We have reconstructed δ18Osw, sea surface salinity and sea surface temperature (SST) changes in the Bay of Bengal by using paired measurements of δ18O and Mg/Ca in a planktonic foraminifera species Globigerinoides ruber from core SK218/1 in the western Bay of Bengal in order to understand the rainfall variability associated with southwest monsoon over the past 32 kyr. Our SST reconstructions reveal that Bay of Bengal was ~3.2 °C cooler during the LGM as compared to present day temperature and a ~3.5 °C rise in SST is documented from 17 to 10 ka. Both SST and δ18Osw exhibit greater amplitude fluctuations during MIS 2 which is attributable to the variability of NE monsoon rainfall and associated river discharge into the Bay of Bengal in association with strong seasonal temperature contrast. On set of strengthening phase of SW monsoon was started during Bølling/Allerød as evidenced by the low δ18Osw values ~14.7 ka. δ18Osw show consistently lower values during Holocene (with an exception around 5 ka), which suggests that the freshening of Bay of Bengal due to heavy precipitation and river discharge caused by strong SW monsoon. Results of this study signify that the maximum fluctuations of the NE monsoon rainfall during MIS 2 appear to be controlled by the strong seasonality and boundary conditions.  相似文献   

12.
We present chironomid and pollen records from the Huelmo site (~41°30′S), NW Patagonia, to examine in detail the timing and structure of climate changes during the Last Glacial Termination in the southern mid-latitudes. The chironomid record has the highest temporal and taxonomic resolution for this critical interval, and constitutes the first account of midge faunas at the culmination of the Last Glacial Maximum (LGM) for the region. The chironomid record suggests cold and wet conditions during the LGM, followed by deglacial warming between 17.6 and 16.8 cal kyr BP. Relatively warm conditions prevailed between ~15–14 cal kyr BP, followed by a reversal in trend with cooling pulses at ~14 and 13.5 cal kyr BP, and warming at the beginning of the Holocene. Cool-temperate conditions prevailed during the Huelmo Mascardi Cold Reversal (HMCR) which, according to chironomid data, exhibits a wet phase (13.5–12.8 cal kyr BP) followed by a conspicuous drier phase (12.8–11.5 cal kyr BP). The chironomid and pollen records from the Huelmo site indicate step-wise deglacial warming beginning at 17.6 cal kyr BP, in agreement with other paleoclimate records from NW Patagonia and isotopic signals from Antarctic ice cores. Peak warmth during the Last Glacial Termination was achieved by ~14.5 cal kyr BP, followed by a cooling trend that commenced during the Antarctic Cold Reversal, which later intensified and persisted during the HMCR (13.5–11.5 cal kyr BP). We observe a shift toward drier conditions at ~12.8 cal kyr BP superimposed upon the HMCR, coeval with intense fire activity and vegetation disturbance during Younger Dryas time.  相似文献   

13.
《Quaternary Science Reviews》2007,26(5-6):705-731
Sediment cores from two mountain lakes (Lake Grusha at 2413 m a.s.l. and Ak-Khol at 2204 m a.s.l.) situated in the Tuva Republic (southern Siberia, Russia), just north of Mongolia, were studied for chironomid fossils in order to infer post-glacial climatic changes and to investigate responses of the lake ecosystems to these changes. The results show that chironomids are responding both to temperature and to changing lake depth, which is regarded as a sensitive proxy of regional effective moisture. The post-glacial history of this mountain region in Central Asia can be divided into seven successive climatic phases: the progressive warming during the last glacial–interglacial transition (ca 15.8–14.6 cal kyr BP), the warm and moist Bølling-Allerød-like interval (ca 14.6–13.1 cal kyr BP), the cool and dry Younger Dryas-like event (ca 13.1–12.1 cal kyr BP), warmer and wetter conditions during ca 12.1–8.5 cal kyr BP, a warm and dry phase ca 8.5–5.9 cal kyr BP, cold and wet conditions during ca 5.9–1.8 cal kyr BP, as well as cold and dry climate within the last 1800 years. The chironomid records reveal patterns of climatic variability during the Late-glacial and Holocene, which can be correlated with abrupt climatic events in the North Atlantic and the Asian monsoon-dominated regimes. Apparently, the water balance of the studied lakes is controlled by the interrelation between the dominant westerly system and the changing influence of the summer monsoon, as well as the influence of alpine glacier meltwater supply. It is possible that monsoon tracks could have reached the southwest Tuva, resulting in an increase in precipitation at ca 14.6–13.1 and ca 12.1–8.5 cal kyr BP, whereas cyclonic westerlies from the North Atlantic were likely responsible for considerable moisture transport accompanying the global Neoglacial cooling at ca 5.9–1.8 cal kyr BP. These events suggest the changes of the regional pattern of atmospheric circulation, which could be in turn induced by the global climatic shifts. Some discrepancies compared with other reconstructions from Central Asia may be associated with regional (spatial) differences between the changing predominant circulation mechanisms and with local differences in uplift and descent of air masses within the complicated mountain landscape. In this paper, we also discuss the possibilities and perspectives for using chironomids in reconstructions of past temperatures and climate-induced changes in water depth of lakes in Central Asia.  相似文献   

14.
We studied the mid-Holocene climate change in eastern Qinghai Province, China and its impact on the evolution of Majiayao (3980–2050 BC) and Qijia (2183–1635 BC) cultures, near the important Neolithic site of Changning. The investigation focused on analyses of grain size, magnetic susceptibility, ratios of elemental contents, and pollen assemblage from a loess–paleosol sequence. The results indicate that the climate was wet during 5830–4900 cal yr BP, which promoted the development of early-mid Majiayao culture in eastern Qinghai Province. However, 4900–4700 cal yr BP were drought years in the region, responsible for the decline and eastward movement of prehistoric culture during the period of transition from early-mid to late Majiayao culture. The climate turned wet again during 4700–3940 cal yr BP, which accelerated the spread of Qijia culture to the middle reaches of the Huangshui River, including the Changning site.  相似文献   

15.
The sediments of Lago Grande di Monticchio, southern Italy, extend continuously from the present back to the penultimate glacial stage and have an independent lamination-based chronology of high precision and accuracy. Results are presented here from a detailed palynological investigation of that part of the sediment sequence that extends from the last millennia of the penultimate glacial stage to the first stadial following the Last Interglacial (LI). Quantitative palaeovegetation and palaeoclimate reconstructions made from the palynological data are also presented. The onset of the LI is dated to 127.20 ka BP, a date that is consistent with other recent estimates; the duration of the LI is estimated to have been 17.70 ka. The palaeovegetation record indicates a transition period of 3.35 ka at the end of the penultimate glacial stage prior to the onset of the LI; no Younger Dryas-like oscillation is recorded, although the transition was interrupted by a brief event, lasting ca 250 years, during which pollen of woody taxa was reduced in abundance. Steppe vegetation dominated during the latter part of the penultimate full-glacial stage, but was replaced progressively by wooded steppe during the transition. Although the development of forest cover marked the onset of the LI, the forests were relatively open or discontinuous during the first 2.65 ka, closing progressively thereafter and generally dominating between 123.00 and 109.50 ka BP. The end of the LI is dated to 109.50 ka BP, after which date forest cover became discontinuous and wooded steppe or steppe dominated during the 1.90 ka of the subsequent stadial. As might be expected, given the location of the lake, the composition of the LI forests differs markedly from those recorded from northern Europe, as well as from those recorded at other localities in southern Europe. The palaeoclimate reconstructions reveal complex changes in seasonality, the maximum coldest month mean temperatures being between 125.70 ka BP and 123.00 ka BP, whereas maxima for both annual temperature sum and the ratio of actual to potential evapotranspiration were between 120.60 ka BP and 115.80 ka BP. Reconstructed zonal mean values for all three climatic variables in the zones in which they peak exceed values at the locality today. Comparison with other palaeovegetation records of the LI from Europe reveals that forest cover generally opened up north of the Alpine region probably ca 115 ka BP, coinciding with a marked decrease in sea surface temperatures in the Nordic Seas; this probably corresponds to a marked shift in forest composition at Lago Grande di Monticchio at 115.80 ka BP with an associated reconstructed decrease of ca 5 °C in coldest month mean temperature. Nonetheless, forest continued to dominate at Lago Grande di Monticchio until 109.50 ka BP. Such comparisons also reveal considerable complexity in the geographical and altitudinal patterns of change in palaeovegetation during the LI; such complexity is to be expected given the parallel complexity of Holocene changes. Systematic comparisons between reconstructions of palaeoclimate are hampered by a lack of consistency in approach and in the variables reconstructed. Further insight into this complexity of palaeoclimate development during the LI requires a synthesis of the available data and application of a consistent reconstruction approach that also provides robust estimates of the uncertainty in the reconstructed values.  相似文献   

16.
《Quaternary Science Reviews》2007,26(5-6):759-772
Quantitative reconstruction of the climatic history of the Chinese Loess Plateau is important for understanding present and past environment and climate changes in the Northern Hemisphere. Here, we reconstructed mean annual temperature (MAT) and mean annual precipitation (MAP) trends during the last 136 ka based on the analysis of phytoliths from the Weinan loess section (34°24′N, 109°30′E) near the southern part of the Loess Plateau in northern China. The reconstructions have been carried out using a Chinese phytolith–climate calibration model based on weighted averaging partial least-squares regression. A series of cold and dry events, as indicated by the reconstructed MAT and MAP, are documented in the loess during the last glacial periods, which can be temporally correlated with the North Atlantic Heinrich events. Our MAT and MAP estimations show that the coldest and/or driest period occurred at the upper part of L2 unit (Late MIS 6), where MAT dropped to ca 4.4 °C and MAP to ca 100 mm. Two other prominent cold-dry periods occurred at lower Ll-5 (ca 77–62 ka) and L1-1 (ca 23–10.5 ka) where the MAT and MAP decreased to about 6.1–6.5 °C and 150–370 mm, respectively, ca 6.6–6.2 °C and 400–200 mm lower than today. However, the highest MAT (average 14.6 °C, max. 18.1 °C) and MAP (average 757 mm, max. 1000 mm) occurred at Sl interval (MIS 5). During the interstadial of L1-4–L1-2 (MIS 3) and during the Holocene warm-wet period, the MAT was about 1–2 °C and MAP 100–150 mm higher than today in the Weinan region. The well-dated MAT and MAP reconstructions from the Chinese Loess Plateau presented in this paper are the first quantitatively reconstructed proxy record of climatic changes at the glacial–interglacial timescale that is based on phytolith data. This study also reveals a causal link between climatic instability in the Atlantic Ocean and climate variability in the Chinese Loess Plateau.  相似文献   

17.
《Quaternary Science Reviews》2005,24(1-2):195-210
Low-field magnetic susceptibility has been widely used to determine the pedostratigraphy of the Chinese loess/paleosol sequences. However, uncertainties remain in correlating between the loess magnetic susceptibility and the marine oxygen isotope records because susceptibility variations are affected by both global and local paleoclimatic changes. To provide a more sound paleoclimatic interpretation of magnetic susceptibility variations, age models across Marine Oxygen Isotope Stage (MIS) 5 for the Jiuzhoutai (JZT) and Yuanbao (YB) sections, western Chinese Loess Plateau, were constructed through an integrated approach by linking the major pedostratigraphic boundaries of the loess profiles to the SPECMAP oxygen isotope curve, and by correlating relative magnetic paleointensity records with both the SINT800 global paleointensity stack from marine sediments and 36Cl records from the GRIP ice core. Results indicate good correlation of SIRM60 mT (a residual remanence of saturation isothermal remanent magnetization after a 60 mT alternating field demagnetization) variations between these two sites, which agree well with fluctuations in subtropical Atlantic sea surface temperatures. All cooling events recorded by ice-core and Atlantic marine sediments within MIS5 have counterparts in SIRM60 mT. SIRM60 mT is partially controlled by the degree of low-temperature oxidation, which is strongly temperature dependent. However, strong pedogenesis can decrease SIRM60 mT due to further oxidation of partially oxidized magnetites above some critical points. Therefore, we propose that SIRM60 mT is best suited to record paleotemperature changes in loess profiles from the western Chinese Loess Plateau, where pedogenesis is the weakest. Furthermore, by inter-profile correlation between the YB and JZT sections, we note that the seemingly uniform sub-paleosol unit with a broad susceptibility peak (previously assigned to MIS5c) between ∼34.4 and ∼37.4 m in the YB profile actually consists of two independent units (lower part of S1L1/MIS5b and S1S2/MIS5c). This indicates that susceptibility values can be strongly affected by local factors (e.g., mainly precipitation). Therefore, beside the simplistic traditional paleoclimatic interpretation of variations in loess susceptibility involving only cold/dry and warm/humid scenarios, cold/humid and warm/dry scenarios should also be considered.  相似文献   

18.
《Quaternary Science Reviews》2003,22(5-7):673-689
Evidence is presented demonstrating intermediate water (∼500 m) temperature variability at ODP Hole 893A in Santa Barbara Basin during submillennial climate change (11–60 ka). Benthic δ18O oscillations are considered to result primarily from shifts in intermediate water temperature at the site. Detailed comparison of both benthic and planktonic records from the basin provide crucial evidence for differing surface and intermediate water mass temporal responses to rapid climate change. Gradual warming of intermediate water compared to abrupt cooling suggests mechanistic differences between processes controlling North Pacific Intermediate Water expansion and contraction relative to ‘southern component’ intermediate waters. Comparisons suggest intermediate water warming preceded (by 60–200 years) the most rapid interval of surface warming inferred to be associated with North Pacific atmospheric reorganization. Tropical forcing of sea level anomalies in the eastern Pacific via trade wind strength may control California Undercurrent flow (300–500 m) and be the cause of early intermediate water warming in Santa Barbara Basin.  相似文献   

19.
《Quaternary Science Reviews》2007,26(11-12):1610-1620
The primary objective of the present study is to identify major phases of alluviation in the Indian region since the abrupt Deglacial intensification of the monsoon (∼15 cal ka BP) on the basis of analysis of 68 radiocarbon dates from two major hydro-geomorphic regions of India: the Central Ganga Basin (CGB) and the Deccan Peninsula (DP). The recognition of main phases of alluviation and incision has been achieved by evaluating the temporal distribution and clustering of the radiocarbon dates from alluvial sequences. The clusters were detected on the basis of the interpretation of the summed probability distribution plots derived by using OxCal version 4.0.1 and CALPAL (version May 2006) software packages.The summed probability plots reveal that periods of alluviation in the CGB, represented by three clusters (13.9–12.3, 11.9–11.2 and 9.8–9.0 cal ka BP) occur roughly before the onset of Early Holocene monsoon optimum phase. Two other clusters occur in the intervals 3.6–2.8 and 1.1–0.9 cal ka BP. The peak monsoon period generally lacks clusters of radiocarbon dates implying fluvial erosion and channel incision. This period also shows clustering of radiocarbon dates of the abandoned channels. In comparison, 14C dates from DP alluvial units form clusters at 16.4–14, 12.8–11.2, 10.8–8.9, 8.1–6.7 and 5.1–3.9 cal ka BP, indicating an association with the Deglacial–Early Holocene humid phase. Alluviation in the DP appears to have continued, more or less, uninterrupted till the middle of the Holocene epoch. The beginning and end of the discernible gap in the radiocarbon dates of CGB (9.0–3.6 cal ka) broadly corresponds with the two well-established short-term events of the Holocene, 8.2 and 4.2 ka cal BP. In comparison, the prominent gap of DP radiocarbon dates (3.9–2.1 ka cal BP) approximately begins with the 4.2 ka cal BP short-term event (onset of aridity) and ends with the 2.0 ka cal BP enhanced monsoon event.Notwithstanding the inter-regional differences in the fluvio–sedimentary response in the India region, the clusters of radiocarbon dates indicate that the century to millennium scale variations in fluvial activity in the Indian subcontinent were intimately linked to long-term fluctuations in the monsoon strength during the Late Quaternary.  相似文献   

20.
Establishing firm radiocarbon chronologies for Quaternary permafrost sequences remains a challenge because of the persistence of old carbon in younger deposits. To investigate carbon dynamics and establish ice wedge formation ages in Interior Alaska, we dated a late Pleistocene ice wedge, formerly assigned to Marine Isotope Stage (MIS) 3, and host sediments near Fairbanks, Alaska, with 24 radiocarbon analyses on wood, particulate organic carbon (POC), air-bubble CO2, and dissolved organic carbon (DOC). Our new CO2 and DOC ages are up to 11,170 yr younger than ice wedge POC ages, indicating that POC is detrital in origin. We conclude an ice wedge formation age between 28 and 22 cal ka BP during cold stadial conditions of MIS 2 and solar insolation minimum, possibly associated with Heinrich event 2 or the last glacial maximum. A DOC age for an ice lens in a thaw unconformity above the ice wedge returned a maximum age of 21,470 ± 200 cal yr BP. Our variable 14C data indicate recycling of older carbon in ancient permafrost terrain, resulting in radiocarbon ages significantly older than the period of ice-wedge activity. Release of ancient carbon with climatic warming will therefore affect the global 14C budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号