首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kazushige Obara   《Gondwana Research》2009,16(3-4):512-526
The spatial distribution of deep slow earthquake activity along the strike of the subducting Philippine Sea Plate in southwest Japan is investigated. These events usually occur simultaneously between the megathrust seismogenic zone and the deeper free-slip zone on the plate interface at depths of about 30 km. Deep low-frequency tremors are weak prolonged vibrations with dominant frequencies of 1.5–5 Hz, whereas low-frequency earthquakes correspond to isolated pulses included within the tremors. Deep very-low-frequency earthquakes have long-period (20 s) seismic signals, and short-term slow-slip events are crustal deformations lasting for several days. Slow earthquake activity is not spatially homogeneous but is separated into segments some of which are bounded by gaps in activity. The spatial distribution of each phase of slow earthquake activity is usually coincident, although there are some inconsistencies. Very-low-frequency earthquakes occur mainly at edges of segments. Low-frequency earthquakes corresponding to tremors of relatively large amplitude are concentrated at spots where tremors are densely distributed within segments. The separation of segments by gaps suggests large differences in stick-slip and stable sliding caused by frictional properties of the plate interface. Within each segment, variations in the spatial distribution of slow earthquakes reflected inhomogeneities corresponding to the characteristic scales of events.  相似文献   

2.
The Philippine Sea Plate (PHS) simultaneously subducts northwestward and collides eastward with the Eurasian Plate (EU) in northeast Taiwan. These two tectonic events induce high seismic activity, which makes northeastern Taiwan one of the most seismically active zones in the world. To understand the mechanical processes at work, we used existing geophysical data and the aftershocks recorded following a recent large strike-slip event occurring within the PHS oceanic crust. During this event, a NW–SE trending left-lateral sub-parallel to the PHS/EU convergence vector was active. As a consequence of the collision/subduction plate geometry, we show that the lithosphere of the northwestern corner of the PHS has been torn in a NW–SE orientation. This tectonic feature is associated with an abrupt tectonic stress boundary and could generate large intra-plate earthquakes.  相似文献   

3.
The Pacific plate and the Philippine Sea plate overlap and subduct underneath the Kanto region, central Japan, causing complex seismic activities in the upper mantle. In this research, we used a map selection tool with a graphic display to create a data set for earthquakes caused by the subducting motion of the Philippine Sea plate that are easily determined. As a result, we determined that there are at least four earthquake groups present in the upper mantle above the Pacific plate. Major seismic activity (Group 1) has been observed throughout the Kanto region and is considered to originate in the uppermost part of mantle in the subducted Philippine Sea plate, judging from the formation of the focal region and comparison with the 3D structure of seismic velocity. The focal mechanism of these earthquakes is characterized by the down-dip compression. A second earthquake layer characterized by down-dip extension (Group 2), below the earthquakes in this group, is also noted. The focal region for those earthquakes is considered to be located at the lower part of the slab mantle, and the Pacific plate located directly below is considered to influence the activity. Earthquakes located at the shallowest part (Group 3) form a few clusters distributed directly above the Group 1 focal region. Judging from the characteristics of later phases in these earthquakes and comparing against the 3D structure of seismic velocity, the focal regions for the earthquakes are considered to be located near the upper surface of the slab. Another earthquake group (Group 4) originates further below Group 2; it is difficult to consider these earthquakes within a single slab. The seismic activities representing the upper area of the Philippine Sea plate are Group 3. This paper proposes a slab geometry model that is substantially different from conventional models by strictly differentiating the groups.  相似文献   

4.
A seismic experiment with six explosive sources and 391 seismic stations was conducted in August 2001 in the central Japan region. The crustal velocity structure for the central part of Japan and configuration of the subducting Philippine Sea plate were revealed. A large lateral variation of the thickness of the sedimentary layer was observed, and the P-wave velocity values below the sedimentary layer obtained were 5.3–5.8 km/s. P-wave velocity values for the lower part of upper crust and lower crust were estimated to be 6.0–6.4 and 6.6–6.8 km/s, respectively. The reflected wave from the upper boundary of the subducting Philippine Sea plate was observed on the record sections of several shots. The configuration of the subducting Philippine Sea slab was revealed for depths of 20–35 km. The dip angle of the Philippine Sea plate was estimated to be 26° for a depth range of about 20–26 km. Below this depth, the upper boundary of the subducting Philippine Sea plate is distorted over a depth range of 26–33 km. A large variation of the reflected-wave amplitude with depth along the subducting plate was observed. At a depth of about 20–26 km, the amplitude of the reflected wave is not large, and is explained by the reflected wave at the upper boundary of the subducting oceanic crust. However, the reflected wave from reflection points deeper than 26 km showed a large amplitude that cannot be explained by several reliable velocity models. Some unique seismic structures have to be considered to explain the observed data. Such unique structures will provide important information to know the mechanism of inter-plate earthquakes.  相似文献   

5.
论菲律宾海板块大地构造分区   总被引:10,自引:0,他引:10  
菲律宾海板块是毗邻中国大陆的一个独特的小型板块。除南端表现十分复杂外,它的构造边界多以海沟为界,比较清楚,然而次级大地构造单元划分则比较复杂。本文根据近年来的研究成果,按照块体构造理论注重统一的地球物理场、相似的地壳结构、有机的成因联系等3个基本原则,将菲律宾海板块划分为3个具有不同构造演化特征的单元,即西菲律宾海块体、四国—帕里西维拉块体和伊豆—博宁—马里亚纳块体。西菲律宾海块体包括两部分:一个是西菲律宾海盆,始新世以来受太平洋板块和印澳板块近南北向的相对俯冲作用影响,并顺时针旋转形成了现今的构造样式,于30 Ma左右停止扩张。另一个包括大东盆岭、花东盆地、帕劳海盆和吕宋岛弧蛇绿岩等洋壳在内的白垩纪洋盆。根据形成年代和形成时的扩张方向可将四国—帕里西维拉块体分为两部分:四国海盆和帕里西维拉海盆,两者以索夫干断裂为界。伊豆—博宁—马里亚纳块体沿博宁高原南缘分为南北两部分,两者表现出不同的地质特征。  相似文献   

6.
利用NGDC720地磁模型提供的磁异常数据, 分析了菲律宾海板块磁异常特征, 进而对磁异常进行多尺度分解, 给出了研究区岩石圈深部和浅部磁异常.结合热流分布特点和磁异常信息, 进一步分析了研究区引起磁异常成因.菲律宾海板块区域的磁异常既反映了该区域岩石圈浅部的构造特征, 也隐含深部构造信息.在西菲律宾海盆以及大东脊构造区, 浅部构造磁异常信息较好地继承了深部构造特征, 反映这些区域岩石圈的整体性特征.四国海盆与帕里西维拉海盆浅部磁异常信息显示了与近代(约10Ma)扩张轴一致的特征, 且磁异常与海底构造走向不一致; 而深部异常显示的帕里西维拉海盆磁异常走向与西菲律宾海盆一致的信息, 可能指示帕里西维拉海盆岩石圈曾与西菲律宾海盆有过类似的演化史.   相似文献   

7.
The Philippine Sea Plate is located at the convergence zone of the Eurasian Plate,the Pacific Plate,and the Indo-Australian Plate.This paper divides the Philippine Sea Plate into two second-order tectonic units and eight third-order tectonic units by summarizing the marine geological,geophysical,and submarine geomorphological data of the Philippine Sea Plate collected for years and referring to the seafloor spreading theory and the trench-arc-basin system.The two second-order tectonic units are the West Philippine Sea block and the Izu-Bonin-Mariana arc-basin system.The former includes the West Philippine Basin,the Huatung Basin,the Daito Basin,and the Palau Basin,while the latter consists of the Kyushu-Palau Ridge,the Shikoku-Parece Vela Basin,the Izu-Bonin Arc,and the Mariana Arc.Furthermore,this study concludes that the Philippine Sea Plate has undergone three stages of tectonic evolution,namely the early stage of the evolution of marginal basins with Cretaceous basement(Early Cretaceous),the middle stage of the spreading of the West Philippine Basin(Eocene),and the late stage of the subduction of the Izu-Bonin-Mariana arc-basin system(Oligocene-present).The Kyushu-Palau Ridge is a window to discover the tectonic evolution of the Philippine Sea Plate due to its unique geographical location.  相似文献   

8.
We have made great efforts to collect and combine a large number of high-quality data from local earthquakes and teleseismic events recorded by the dense seismic networks in both South Korea and West Japan. This is the first time that a large number of Korean and Japanese seismic data sets are analyzed jointly. As a result, a high-resolution 3-D P-wave velocity model down to 700-km depth is determined, which clearly shows that the Philippine Sea (PHS) plate has subducted aseismically down to ∼460 km depth under the Japan Sea, Tsushima Strait and East China Sea. The aseismic PHS slab is visible in two areas: one is under the Japan Sea off western Honshu, and the other is under East China Sea off western Kyushu. However, the aseismic PHS slab is not visible between the two areas, where a slab window has formed. The slab window is located beneath the center of the present study region where many teleseismic rays crisscross. Detailed synthetic tests were conducted, which indicate that both the aseismic PHS slab and the slab window are robust features. Using the teleseismic data recorded by the Japanese stations alone, the aseismic PHS slab and the slab window were also revealed (Zhao et al., 2012), though the ray paths in the Japanese data set crisscross less well offshore. The slab window may be caused by the subducted Kyushu-Palau Ridge and Kinan Seamount Chain where the PHS slab may be segmented. Hot mantle upwelling is revealed in the big mantle wedge above the Pacific slab under the present study region, which may have facilitated the formation of the PHS slab window. These novel findings may shed new light on the subduction history of the PHS plate and the dynamic evolution of the Japan subduction zone.  相似文献   

9.
It is important to know the shape of a subducting slab in order to understand the mechanisms of inter-plate earthquakes and the process of subduction. Seismicity data and converted phases have been used to detect plate boundaries. The configuration of the Philippine Sea slab has been obtained at the western part of southwestern Japan. At the eastern part of southwestern Japan, however, the configuration of the Philippine Sea slab has not yet been confirmed. A spatially high-density seismic network makes it possible to detect the boundaries of the Philippine Sea slab. We used a spatially high-density temporal seismic array in the area. The configuration of the Philippine Sea plate is obtained at the eastern part of southwestern Japan using the temporal seismic array and permanent seismic network data and comparing the seismic structure obtained from the results of refraction surveys. The configuration of the Philippine Sea plate obtained by this study does not bend sharply compared to previous models obtained from receiver function analyses. We delineated the upper boundary of the slab to a depth of about 45 km. The weak image of the boundary, which corresponds to the upper mantle reflector beneath the source area of the 2000 Western Tottori earthquake, was detected using the spatially dense array.  相似文献   

10.
Recent structural, tephrochronologic and magnetostratigraphic studies conducted along the northernmost border of the Philippine Sea (PHS) plate enable us to reconstruct the precise tectonic evolution along the convergent boundary between the PHS plate and the Northeast Japan (NEJ) plate or the North American (NAM) plate since about 1 Ma. The authors of the present study split the tectonic evolution into five stages and present the characteristics of each stage. A plate tectonic interpretation is proposed, based upon the tectonic evolution, with special reference to the mode of convergent motion. In brief, our interpretations are as follows: the relative motion between the PHS and the NEJ plates was not recognized geologically within the area studied from about 1.0 to 0.9 Ma (Stage 1), suggesting either none or small influence from the coupling between the two plates during that period of time. Convergence between the PHS and the NEJ plates was possibly in N-S direction from 0.9 to 0.5 Ma (Stage II), and probably north-northwestward since 0.5 Ma (Stages III to V). The mode of the convergent motion was that of buoyant subduction in Stages II and III. The mode changed gradually from buoyant subduction during Stage IV to collision in Stage V (0.07 Ma to the present).  相似文献   

11.
We found a characteristic space–time pattern of the tidal triggering effect on earthquake occurrence in the subducting Philippine Sea plate beneath the locked zone of the plate interface in the Tokai region, central Japan, where a large interplate earthquake may be impending. We measured the correlation between the Earth tide and earthquake occurrence using microearthquakes that took place in the Philippine Sea plate for about two decades. For each event, we assigned the tidal phase angle at the origin time by theoretically calculating the tidal shear stress on the fault plane. Based on the distribution of the tidal phase angles, we statistically tested whether they concentrate near some particular angle or not by using Schuster's test. In this test, the result is evaluated by p-value, which represents the significance level to reject the null hypothesis that earthquakes occur randomly irrespective of the tidal phase angle. As a result of analysis, no correlation was found for the data set including all the earthquakes. However, we found a systematic pattern in the temporal variation of the tidal effect; the p-value significantly decreased preceding the occurrence of M ≥ 4.5 earthquakes, and it recovered a high level afterwards. We note that those M ≥ 4.5 earthquakes were considerably larger than the normal background seismicity in the study area. The frequency distribution of tidal phase angles in the pre-event period exhibited a peak at the phase angle where the tidal shear stress is at its maximum to accelerate the fault slip. This indicates that the observed small p-value is a physical consequence of the tidal effect. We also found a distinctive feature in the spatial distribution of p-values. The small p-values appeared just beneath the strongly coupled portion of the plate interface, as inferred from the seismicity rate change in the past few years.  相似文献   

12.
《China Geology》2021,4(4):541-552
The intersection of the Kyushu-Palau Ridge (KPR) and the Central Basin Rift (CBR) of the West Philippine Basin (WPB) is a relic of a trench-trench-rift (TTR) type triple-junction, which preserves some pivotal information on the cessation of the seafloor spreading of the WPB, the emplacement and disintegration of the proto-Izu-Bonin-Mariana (IBM) Arc, and the transition from initial rifting to steady-state spreading of the Parece Vela Basin (PVB). However, the structural characteristics of this triple-junction have not been thoroughly understood. In this paper, using the newly acquired multi-beam bathymetric, gravity, and magnetic data obtained by the Qingdao Institute of Marine Geology, China Geological Survey, the authors depict the topographic, gravity, and magnetic characteristics of the triple-junction and adjacent region. Calculations including the upward continuations and total horizontal derivatives of gravity anomaly are also performed to highlight the major structural features and discontinuities. Based on these works, the morphological and structural features and their formation mechanisms are analyzed. The results show that the last episode amagmatic extension along the CBR led to the formation of a deep rift valley, which extends eastward and incised the KPR. The morphological and structural fabrics of the KPR near and to the south of the triple-junction are consistent with those of the western PVB, manifesting as a series of NNE-SSW- and N-S-trending ridges and troughs, which were produced by the extensional faults associated with the initial rifting of the PVB. The superposition of the above two reasons induced the prominent discontinuity of the KPR in deep and shallow crustal structures between 15°N–15°30′N and 13°30′N–14°N. Combined with previous authors’ results, we propose that the stress produced by the early spreading of the PVB transmitted westward and promoted the final stage amagmatic extension of the CBR. The eastward propagation of the CBR destroyed the KPR, of which the magmatism had decayed or ceased at that time. The destruction mechanism of the KPR associated with the rifting of the PVB varies along strike the KPR. Adjacent to the triple-junction, the KPR was destroyed mainly due to the oblique intersection of the PVB rifting center. Whereas south of the triple-junction, the KPR was destroyed by the E-W-directional extensional faulting on its whole width.©2021 China Geology Editorial Office.  相似文献   

13.
Recent studies in northwest New Guinea have shown the presence of at least two marginal basins of different age, both of which formed in back-arc settings. The older basin opened between the Middle Jurassic and Early Cretaceous, a remnant of which is now preserved as the New Guinea Ophiolite. Its obduction started at 40 Ma and it was finally emplaced on the Australian margin at 30 Ma. The younger basin was active during the Oligocene to Middle Miocene and was obducted in the Early Pliocene. Studies of the western edge of the Philippine Sea also reveal an important deformation of the Philippine arc in the Oligocene, which hitherto has remained unexplained. Using information from these systems, paleomagnetic results, kinematic reconstructions and geochemistry of the supra-subduction ophiolite, we present a plate model to explain the region's Eo–Oligocene development. We suggest that an extensive portion of oceanic crust extended the Australian Plate a considerable distance north of the Australian Craton. As Australia began its steady 7–8 cm/year northward drift in the Early Eocene, this lithosphere was subducted. Thus, the portion of the Philippine Sea Plate carrying the Taiwan–Philippine Arc to its present site may have actually been in contact with the ophiolite now in New Guinea and obduction led to deformation of the Philippine Sea Plate itself. Neogene Plate kinematics transported the deformed belt in contact with the Sunda block in the Late Miocene and Pliocene. This interpretation has implications for the origin for the Philippine Sea Plate and the potential incorporation of continental fragments against its boundaries.  相似文献   

14.
This paper analyses the data on the distribution of mercury in the surface layer of bottom sediments (0–5 cm) obtained in course of sampling trips within the mouth region of the Severnaya Dvina River and the White Sea area. A total of 170 analyses for mercury were performed. Such wide-scale determination of the mercury content in the bottom sediments was carried out for the first time in the study region. The patterns of mercury distribution in the Severnaya Dvina River-White Sea transect are revealed and described. It is shown that the marginal filter of the Severnaya Dvina River facilitates cosedimentation of the main portion of anthropogenic mercury with suspended matter. This drastically decreases the risk of penetration of mercury to the White Sea waters and partially (with the gravity current) to the Barents Sea waters. In general, the Severnaya Dvina River is characterized by mercury pollution of a local scale within the urban territories. No regional pollution of the White Sea off the marginal filter was revealed.  相似文献   

15.
The proto-Philippine Sea Plate(pPSP)has been proposed by several authors to account for the origin of the Mesozoic supra-subduction ophiolites along the Philippine archipelago.In this paper,a comprehensive review of the ophiolites in the eastern portion of the Philippines is undertaken.Available data on the geology,ages and geochemical signatures of the oceanic lithospheric fragments in Luzon(Isabela,Lagonoy in Camarines Norte,and Rapu-Rapu island),Central Philippines(Samar,Tacloban,Malitbog and Southeast Bohol),and eastern Mindanao(Dinagat and Pujada)are presented.Characteristics of the Halmahera Ophiolite to the south of the Philippines are also reviewed for comparison.Nearly all of the crust-mantle sequences preserved along the eastern Philippines share Early to Late Cretaceous ages.The geochemical signatures of mantle and crustal sections reflect both mid-oceanic ridge and suprasubduction signatures.Although paleomagnetic information is currently limited to the Samar Ophiolite,results indicate a near-equatorial Mesozoic supra-subduction zone origin.In general,correlation of the crust-mantle sequences along the eastern edge of the Philippines reveal that they likely are fragments of the Mesozoic pPSP.  相似文献   

16.
The northern part of the Dead Sea Fault Zone is one of the major active neotectonic structures of Turkey. The main trace of the fault zone (called Hacıpaşa fault) is mapped in detail in Turkey on the basis of morphological and geological evidence such as offset creeks, fault surfaces, shutter ridges and linear escarpments. Three trenches were opened on the investigated part of the fault zone. Trench studies provided evidence for 3 historical earthquakes and comparing trench data with historical earthquake records showed that these earthquakes occurred in 859 AD, 1408 and 1872. Field evidence, palaeoseismological studies and historical earthquake records indicate that the Hacıpaşa fault takes the significant amount of slip in the northern part of the Dead Sea Fault Zone in Turkey. On the basis of palaeoseismological evidence, it is suggested that the recurrence interval for surface faulting event is 506 ± 42 years on the Hacıpaşa fault.  相似文献   

17.
Kenshiro Otsuki 《Tectonophysics》1990,180(2-4):351-367
The essential elements in the understanding of the Cenozoic island arc tectonics of the Japanese Islands came from reconstructing the paleo-position of the plate boundaries and estimating the change in the Philippine Sea Plate motion. By using the 2nd law of the convergence rate of plates, it was estimated that the Izu-Bonin Trench wandered around 400 km east from its present position during the Paleogene and migrated westward thereafter. Island-arc tectonism is related to the convergence rate of plates (1st law of the convergence rate of plates), hence the changes in the Philippine Sea Plate motion was examined by compiling paleomagnetic data. As a result, the main events of the Cenozoic tectonics of Japan were well explained by the change in the position of the plate boundaries and the change in motion of the Philippine Sea Plate.  相似文献   

18.
为了解东菲律宾海新型铁锰结壳中元素的赋存状态, 采用化学提取方法对3个结壳样品进行了物相分析.不同类型结壳中成矿和稀土元素的赋存状态总体一致, 表明它们形成于相近的地质和海洋环境中.成矿元素中的Fe和Cu绝大部分赋存在残渣态中, Mn、Co和Ni则主要赋存在锰氧化物结合态、有机结合态和残渣态中, 并且埋藏型结壳样品锰氧化物结合态中赋存了相对更高比例的成矿元素.三价稀土元素主要集中在锰氧化物结合态中.两个沉积物表层结壳样品中的Ce主要集中在残渣态中.而埋藏型结壳样品中的Ce则主要赋存在锰氧化物结合态中, 这可能与该样品此相态中赋存了相对较多的Mn有关.呈碳酸盐结合态和有机结合态的稀土元素含量仅各占稀土总量的1%左右, 表明两者对结壳中稀土元素的富集作用很小.   相似文献   

19.
20.
The Kuril-Kamchatka seismofocal zone was thought to be a single plate approximately 90 km wide and dipping to a depth of 700 km at an angle of 40°–45°. This concept reflects primarily the physical differences (elastic wave velocities, density, temperature, etc.) between the seismofocal zone and the mantle hosting it. Detailed investigations show that the seismofocal zone proper is also heterogeneous with earthquake hypocenters variably concentrated and clustered within this zone, where both seismogenic and aseismic strata, as well as subvertical zones, can be identified. The latter are reflected in the structure and faults of the Earth’s crust and upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号