首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
The peer‐to‐peer (P2P) Internet online hybrid test system has been developed for the seismic simulation of a structure. In this study, the stability and accuracy of the system are investigated analytically by studying the spectral radius of the recursive matrix of the test scheme featuring a two‐round quasi‐Newton test scheme. The applicability of the system is further examined by exploring the seismic responses of a complex structure, a steel‐encased reinforced concrete (SRC) structure with a steel tower on the top. The structure is divided into two numerical substructures and one tested part for hybrid test. The numerical substructures are simulated by sophisticated finite element method (FEM) models with material nonlinearities to capture local plastifications. Two types of FEM programs, namely OpenSEES and ABAQUS, which are suitable for the SRC part and the steel tower, respectively, are employed. The results demonstrate that the P2P system is able to simulate complex structures with significant nonlinearities. As compared with the previous study in which two elastic numerical substructures were considered, increase in the number of iterations in this study is not significant, because the associated nonlinearities are limited due to the small time interval adopted in the test. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Online hybrid tests (called the online tests), particularly when combined with substructuring techniques, are able to conduct large‐scale tests. An extension of this technique is to combine multiple loading tests conducted in remote locations and to integrate the tests with large numerical analysis codes. In this study, a new Internet online test system is developed in which a physical test is conducted in one place, the associated numerical analysis is performed in a remote location, and the two locations communicate over the Internet. To implement the system, a technique that links test and analysis domains located at different places is proposed, and an Internet data exchange interface is devised to allow data communication across Internet. A practical method that utilizes standard protocols implemented by operating systems for sharing files and folders is adopted to ensure stable and robust communication between remotely located servers that commonly protect themselves by strict firewalls. To combine the online test with a finite element program formulated in an incremental form and adopting an implicit integration scheme, a tangent stiffness prediction procedure is proposed. In this procedure, a tangent stiffness is estimated based on a few previous steps of experimental data. Using the system devised, tests on a base‐isolated structure were carried out. Here, the base‐isolation layer was taken as the tested part and tested in Kyoto University, Japan, and the superstructure was modelled by means of a finite element program and analysed in a computer located in Osaka University. A series of physical Internet online tests were carried out, with the integration time interval and the method of tangent stiffness prediction as the major parameters. The tests demonstrated that the Internet communication was very stable and robust, without malfunctions. The proposed method of stiffness prediction was effective even when the experimental hysteresis curves exhibited complex behaviour, thereby ensuring accurate simulation for the earthquake response of the entire structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A new on‐line hybrid test system incorporated with the substructuring technique is developed. In this system, a general‐purpose finite element software is employed to obtain the restoring forces of the numerical substructure accurately. The restart option is repeatedly used to accommodate the software with alternating loading and analysis characteristic of the on‐line test but without touching the source code. An eight‐storey base‐isolated structure is tested to evaluate the feasibility and effectiveness of the proposed test system. The overall structure is divided into two substructures, i.e. a superstructure to be analysed by the software and a base‐isolation layer to be tested physically. Collisions between the base‐isolation layer and the surrounding walls are considered in the test. The responses of the overall structure are reasonable, and smooth operation is achieved without any malfunction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The collapse of a one‐bay, four‐story steel moment frame is simulated in this study by the proposed peer‐to‐peer (P2P) Internet online hybrid test system. The typical beam hinging mechanism, which is ensured by a strong‐column, weak‐beam design, is reproduced. The plastic hinges at the column bases are taken as the experimental portions, while the superstructure is analyzed numerically by a general‐purpose finite element program. The implicit plastic rotations of the two column bases are treated as boundary displacements. In order to account for the complex behavior of the column bases, the P2P system is modified to use the secant stiffness during iterations, and the physical specimens are designed such that the plastic hinge behavior can be obtained. For this study, the three substructures are distributed to different locations. A large ground motion is repeatedly imposed until the column bases lose their capacity to sustain the gravity load. As a result, significant deterioration is observed at both column bases. The proposed P2P system is thus demonstrated to be able to accommodate multiple‐tested substructures involving unstable behavior. The results suggest that the P2P Internet online hybrid test system provides a reliable means of studying structures up to collapse. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Real‐time hybrid testing is a very effective technique for evaluating the dynamic responses of rate‐dependent structural systems subjected to earthquake excitation. A smart base isolation system has been proposed by others using conventional low‐damping isolators and controllable damping devices such as magnetorheological (MR) dampers to achieve specified control target performance. In this paper, real‐time hybrid tests of a smart base isolation system are conducted. The simulation is for a base‐isolated two‐degrees‐of‐freedom building model where the superstructure and the low‐damping base isolator are numerically simulated, and the MR damper is physically tested. The target displacement obtained from the step‐by‐step integration of the numerical substructure is imposed on the MR damper, which is driven by three different control algorithms in real‐time. To compensate the actuator delay and improve the accuracy of the test, an adaptive phase‐lead compensator is implemented. The accuracy of each test is investigated by using the root mean square error and the tracking indicator. Experimental results demonstrate that the hybrid testing procedure using the proposed actuator compensation techniques is effective for investigating the control performance of the MR damper in a smart base isolation system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A test environment to evaluate the seismic performance of gusset plate connections intended for steel braced frames is proposed. The developed test method combines the substructuring techniques with finite element analysis methods in an on‐line hybrid scheme. Numerical substructure analysis is conducted on bracing members, while bracing connections are treated as experimental substructures. A force‐displacement combined control imposed with the aid of 2 jacks ensures physical continuity between the analysis and test. The rotational behavior of gusset plate connections subjected to large inelasticity and varying axial loading until fracture is investigated. Two gusset plate details were designed and tested to verify the efficiency of the proposed method. The test method is rational, and smooth operation is achieved. The test results revealed the advantage of the developed on‐line hybrid test method in exploring the ultimate capacity of bracing connections.  相似文献   

7.
This paper investigates the application of the sliding mode control (SMC) strategies for reducing the dynamic responses of the building structures with base‐isolation hybrid protective system. It focuses on the use of reaching law method, a most attractive controller design approach of the SMC theory, for the development of control algorithms. By using the constant plus proportional rate reaching law and the power rate reaching law, two kinds of hybrid control methods are presented. The compound equation of motion of the base‐isolation hybrid building structures, which is suitable for numerical analysis, has been constructed. The simulation results are obtained for an eight‐storey shear building equipped with base‐isolation hybrid protective system under seismic excitations. It is observed that both the constant plus proportional rate reaching law and the power rate reaching law hybrid control method presented in this paper are quite effective. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Vibration mitigation using smart, reliable and cost‐effective mechanisms that requires small activation power is the primary objective of this paper. A semi‐active controller‐based neural network for base‐isolation structure equipped with a magnetorheological (MR) damper is presented and evaluated. An inverse neural network model (INV‐MR) is constructed to replicate the inverse dynamics of the MR damper. Next, linear quadratic Gaussian (LQG) controller is designed to produce the optimal control force. Thereafter, the LQG controller and the INV‐MR models are linked to control the structure. The coupled LQG and INV‐MR system was used to train a semi‐active neuro‐controller, designated as SA‐NC, which produces the necessary control voltage that actuates the MR damper. To evaluate the proposed method, the SA‐NC is compared to passive lead–rubber bearing isolation systems (LRBs). Results revealed that the SA‐NC was quite effective in seismic response reduction for wide range of motions from moderate to severe seismic events compared to the passive systems. In addition, the semi‐active MR damper enjoys many desirable features, such as its inherent stability, practicality and small power requirements. The effectiveness of the SA‐NC is illustrated and verified using simulated response of a six‐degree‐of‐freedom model of a base‐isolated building excited by several historical earthquake records. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

10.
11.
The Friction Pendulum System (FPS) isolator is commonly used as a base isolation system in buildings. In this paper, a new tunable FPS (TFPS) isolator is proposed and developed to act as a semi‐active control system by combining the traditional FPS and semi‐active control concept. Theoretical analysis and physical tests were carried out to investigate the behavior of the proposed TFPS isolator. The experimental and theoretical results were in good agreement, both suggesting that the friction force of the TFPS isolator can be tuned to achieve seismic isolation of the structure. A series of numerical simulations of a base‐isolated structure equipped with the proposed TFPS isolator and subjected to earthquake ground motions were also conducted. In the analyses, the linear quadratic regulator (LQR) method was adopted to control the friction force of the proposed TFPS, and the applicability and effectiveness of the TFPS in controlling the structure's seismic responses were investigated. The simulation results showed that the TFPS can reduce the displacement of the isolation layer without significantly increasing the floor acceleration and inter‐story displacement of the superstructure, confirming that the TFPS can effectively control a base‐isolated structure under earthquake ground motions.  相似文献   

12.
This paper presents a detailed analysis of a real‐time pseudodynamic test system using a system transfer function. The analysis considers the actuator control scheme, the dynamics of the actuator, test structure, and actuator reaction frame, the influence of actuator time delay on response computation, and methods to compensate for the time‐lag errors. It has been observed that the system can achieve an excellent performance with optimum control gains. The two error‐compensation methods presented here are also proven to be effective. Further, it has been demonstrated that the adverse effect of the inertia force developed by the test structure can be corrected for during a real‐time test, and that the influence of the reaction frame flexibility is small when the frame is reasonably massive and stiff as compared to the test structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
A full‐scale 5‐story steel moment frame building was subjected to a series of earthquake excitations using the E‐Defense shake table in August, 2011. For one of the test configurations, the building was seismically isolated by a hybrid system of lead‐rubber bearings and low friction roller bearings known as cross‐linear bearings, and was designed for a very rare 100 000‐year return period earthquake at a Central and Eastern US soil site. The building was subject to 15 trials including sinusoidal input, recorded motions and simulated earthquakes, 2D and 3D input, and a range of intensities including some beyond the design basis level. The experimental program was one of the first system‐level full‐scale validations of seismic isolation and the first known full‐scale experiment of a hybrid isolation system incorporating lead‐rubber and low friction bearings. Stable response of the hybrid isolation system was demonstrated at displacement demands up to 550 mm and shear strain in excess of 200%. Torsional amplifications were within the new factor stipulated by the code provisions. Axial force was observed to transfer from the lead‐rubber bearings to the cross‐linear bearings at large displacements, and the force transfer at large displacements exceeded that predicted by basic calculations. The force transfer occurred primarily because of the flexural rigidity of the base diaphragm and the larger vertical stiffness of the cross‐linear bearings relative to the lead‐rubber bearings.  相似文献   

14.
Backflow, the temporary reversal of discharge at the outlet of a lake, is an important mechanism controlling flow and transport in many connected river–lake systems. This study used statistical methods to examine long‐term variations and primary causal factors of backflow from the Yangtze River to a laterally connected, large floodplain lake (Poyang Lake, China). Additionally, the effects of backflow on the lake hydrology were explored using a physically based hydrodynamic model and a particle‐tracking model. Although backflow into Poyang Lake occurs frequently, with an average of 16 backflow events per year, and varies greatly in magnitude between years, statistical analysis indicates that both the frequency and magnitude of backflow reduced significantly during 2001–2010 relative to the previous period of 1960–2000. The ratio of Poyang Lake catchment inflows to Yangtze River discharge can be used as an indication of the daily occurrence of backflow, which is most likely to occur during periods when this ratio is lower than 5%. Statistical analysis also indicates that the Yangtze River discharge is the main controlling factor of backflow during July to October, rather than catchment inflows to the lake. Hydrodynamic modelling reveals that, in general, backflow disturbs the normal northward water flow direction in Poyang Lake and transports mass ~20 km southward into the lake. The effects of backflow on flow direction, water velocities and water levels propagate to virtually its upstream extremity. The current study represents a first attempt to explore backflow and causal factors for a highly dynamic floodplain lake system. An improved understanding of Poyang Lake backflow is critical for guiding future strategies to manage the lake, its water quality and ecosystem value, given proposals to modify the lake–river connectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Self‐centering reinforced concrete frames are developed as an alternative of traditional seismic force‐resisting systems with better seismic performance and re‐centering capability. This paper presents an experimental and computational study on the seismic performance of self‐centering reinforced concrete frames. A 1/2‐scale model of a two‐story self‐centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure. A structural analysis model, including detailed modeling of beam–column joints, column–base joints, and prestressed tendons, was constructed in the nonlinear dynamic modeling software OpenSEES. Agreements between test results and numerical solutions indicate that the designed reinforced concrete frame has satisfactory seismic performance and self‐centering capacity subjected to earthquakes; the self‐centering structures can undergo large rocking with minor residual displacement after the earthquake excitations; the proposed analysis procedure can be applied in simulating the seismic performance of self‐centering reinforced concrete frames. To achieve a more comprehensive evaluation on the performance of self‐centering structures, research on energy dissipation devices in the system is expected. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
It is important to evaluate bedload discharge and temporal changes of the bed surface, and bed deformation can be estimated during floods if the bedload discharge is properly evaluated in an arbitrary cross‐section. With the exception of grain size and its distribution within the bedload, bedload discharge has been measured using both direct and indirect methods. Bedload slot is a direct method but cannot be used to measure bedload during a flood because of volume limitations. Indirect methods require correlation between the signals and sediment volume measured using another method. In the present study, a small, automatically recording bedload sensor with an iron plate and a pair of load cells is developed in order to evaluate not only large particles but also sand particles as bedload. Bedload mass is calculated by integrating with respect to both the velocity of sediment particles and the averaged particle weight as measured by a pair of load cells, and, as an example, the velocity is estimated by the cross‐correlation function of weights measured by load cells. The applicability of the proposed sensor is discussed based on the results of flume tests in the laboratory (2014) and the observation flume of the Hodaka Sedimentation Observatory of Kyoto University in Japan (2015). The system was installed in the observation flume in November of 2012, and flume data were obtained using natural sediment particles. In particular, it was difficult to estimate the velocity of averaged bedload particles, and it was better to apply a cross‐correlation function in the laboratory tests. However, it appears that the previous estimation can estimate these velocities in the observation flume using a connecting tube and submerged load‐cell systems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
A collaborative structural analysis (CSA) system is developed, which is capable of performing highly sophisticated structural analyses utilizing beneficial features of existing individual structural analysis programs. In the system, the global equations of motion for the overall structural system are formulated in the host program. Some substructures, whose behaviors are relatively simple, are directly solved in the host program, whereas those having complex behavior are analyzed by the station programs. A time‐consuming static condensation procedure is needed for the substructures analyzed by the station programs if adopting an implicit integration scheme. The operator splitting (OS) method, which does not require tangential stiffness, can be used to improve the system efficiency. To this end, a hybrid formulation of the Newmark‐β and OS methods is proposed, and a CSA scheme based on the hybrid formulation is developed. In the CSA system adopting the hybrid formulation, the degrees of freedom whose tangential stiffness are unavailable are formulated by the OS method, whereas the rest are still formulated by the commonly used Newmark‐β method. Using the system, analyses of a three‐story‐braced steel moment‐resisting frame are conducted. In the analyses, the column bases are analyzed using the commercial finite element method software ABAQUS, and the remaining structural elements are analyzed using a frame analysis program called NETLYS. Results suggest that the hybrid formulation is very effective for the CSA system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号