首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The scaled boundary finite‐element method is extended to simulate time‐harmonic responses of non‐homogeneous unbounded domains with the elasticity modulus and mass density varying as power functions of spatial coordinates. The unbounded domains and the elasticity matrices are transformed to the scaled boundary coordinates. The scaled boundary finite‐element equation in displacement amplitudes are derived directly from the governing equations of elastodynamics. To enforce the radiation condition at infinity, an asymptotic expansion of the dynamic‐stiffness matrix for high frequency is developed. The dynamic‐stiffness matrix at lower frequency is obtained by numerical integration of ordinary differential equations. Only the boundary is discretized yielding a reduction of the spatial dimension by one. No fundamental solution is required. Material anisotropy is modelled without additional efforts. Examples of two‐ and three‐dimensional non‐homogeneous isotropic and transversely isotropic unbounded domains are presented. The results demonstrate the accuracy and simplicity of the scaled boundary finite‐element method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a time-dependent semi-analytical artificial boundary for numerically simulating elastic wave propagation problems in a two-dimensional homogeneous half space. A polygonal boundary is considered in the half space to truncate the semi-infinite domain, with an appropriate boundary condition imposed. Using the concept of the scaled boundary finite element method, the wave equation of the truncated semi-infinite domain is represented by the partial differential equation of non-constant coefficients. The resulting partial differential equation has only one spatial coordinate variable and time variable. Through introducing a few auxiliary functions at the truncated boundary, the resulting partial differential equations are further transformed into linear time-dependent equations. This allows an artificial boundary to be derived from the time-dependent equations. The proposed artificial boundary is local in time, global at the truncated boundary and semi-analytical in the finite element sense. Compared with the scaled boundary finite element method, the main advantage in using the proposed artificial boundary is that the requirement for solving a matrix form of Lyapunov equation to obtain the unit-impulse response matrix is avoided, so that computer efforts are significantly reduced. The related numerical results from some typical examples have demonstrated that the proposed artificial boundary is of high accuracy in dealing with time-dependent elastic wave propagation in two-dimensional homogeneous semi-infinite domains.  相似文献   

3.
A procedure which involves a non‐linear eigenvalue problem and is based on the substructure method is proposed for the free‐vibration analysis of a soil–structure system. In this procedure, the structure is modelled by the standard finite element method, while the unbounded soil is modelled by the scaled boundary finite element method. The fundamental frequency, and the corresponding radiation damping ratio as well as the modal shape are obtained by using inverse iteration. The free vibration of a dam–foundation system, a hemispherical cavity and a hemispherical deposit are analysed in detail. The numerical results are compared with available results and are also verified by the Fourier transform of the impulsive response calculated in the time domain by the three‐dimensional soil–structure–wave interaction analysis procedure proposed in our previous paper. The fundamental frequency obtained by the present procedure is very close to that obtained by Touhei and Ohmachi, but the damping ratio and the imaginary part of modal shape are significantly different due to the different definition of damping ratio. This study shows that although the classical mode‐superposition method is not applicable to a soil–structure system due to the frequency dependence of the radiation damping, it is still of interest in earthquake engineering to evaluate the fundamental frequency and the corresponding radiation damping ratio of the soil–structure system. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
The scaled boundary finite‐element method is a powerful semi‐analytical computational procedure to calculate the dynamic stiffness of the unbounded soil at the structure–soil interface. This permits the analysis of dynamic soil–structure interaction using the substructure method. The response in the neighbouring soil can also be determined analytically. The method is extended to calculate numerically the response throughout the unbounded soil including the far field. The three‐dimensional vector‐wave equation of elasto‐dynamics is addressed. The radiation condition at infinity is satisfied exactly. By solving an eigenvalue problem, the high‐frequency limit of the dynamic stiffness is constructed to be positive definite. However, a direct determination using impedances is also possible. Solving two first‐order ordinary differential equations numerically permits the radiation condition and the boundary condition of the structure–soil interface to be satisfied sequentially, leading to the displacements in the unbounded soil. A generalization to viscoelastic material using the correspondence principle is straightforward. Alternatively, the displacements can also be calculated analytically in the far field. Good agreement of displacements along the free surface and below a prism foundation embedded in a half‐space with the results of the boundary‐element method is observed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A direct finite element method is presented for nonlinear earthquake analysis of interacting dam–water–foundation rock systems. The analysis procedure applies viscous damper absorbing boundaries to truncate the semi‐unbounded fluid and foundation‐rock domains and specifies at these boundaries effective earthquake forces determined from the design ground motion defined at a control point on the free surface. The analysis procedure is validated numerically by computing the frequency response functions and transient response of an idealized dam–water–foundation rock system and comparing with results from the substructure method. Because the analysis procedure is applicable to nonlinear systems, it allows for modeling of concrete cracking, as well as sliding and separation at construction joints, lift joints, and at concrete–rock interfaces. Implementation of the procedure is facilitated by commercial finite element software with nonlinear material models that permit modeling of viscous damper boundaries and specification of effective earthquake forces at these boundaries. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
The dynamic response of a wind turbine on monopile is studied under horizontal and vertical earthquake excitations. The analyses are carried out using the finite element program SAP2000. The finite element model of the structure is verified against the results of shake table tests, and the earthquake response of the soil model is verified against analytical solutions of the steady‐state response of homogeneous strata. The focus of the analyses in this paper is the vertical earthquake response of wind turbines including the soil‐structure interaction effects. The analyses are carried out for both a non‐homogeneous stratum and a deep soil using the three‐step method. In addition, a procedure is implemented which allows one to perform coupled soil‐structure interaction analyses by properly tuning the damping in the tower structure. The analyses show amplification of the ground surface acceleration to the top of the tower by a factor of two. These accelerations are capable of causing damage in the turbine and the tower structure, or malfunctioning of the turbine after the earthquake; therefore, vertical earthquake excitation is considered a potential critical loading in design of wind turbines even in low‐to‐moderate seismic areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A half‐space finite element and a transmitting boundary are developed for a water‐saturated layered half‐space using a paraxial boundary condition. The exact dynamic stiffness of a half‐space in plane strain is derived and a second‐order paraxial approximation of the stiffness is obtained. A half‐space finite element and a transmitting boundary are then formulated. The development is verified by comparison of the dynamic stiffness of impermeable and permeable rigid strip foundations with other published results. The advantage of using the paraxial boundary condition in comparison with the rigid boundary condition is examined. It is shown that the paraxial boundary condition offers significant gain and the resulting half‐space finite element and transmitting boundary can represent the effects of a water‐saturated layered half‐space with good accuracy and efficiency. In addition, the numerical method described herein maintains the strengths and advantages of the finite element method and can be easily applied to demanding problems of soil–structure interaction in a water‐saturated layered half‐space. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
An efficient method for modelling the propagation of elastic waves in unbounded domains is developed. It is applicable to soil–structure interaction problems involving scalar and vector waves, unbounded domains of arbitrary geometry and anisotropic soil. The scaled boundary finite element method is employed to derive a novel equation for the displacement unit-impulse response matrix on the soil–structure interface. The proposed method is based on a piecewise linear approximation of the first derivative of the displacement unit-impulse response matrix and on the introduction of an extrapolation parameter in order to improve the numerical stability. In combination, these two ideas allow for the choice of significantly larger time steps compared to conventional methods, and thus lead to increased efficiency. As the displacement unit-impulse response approaches zero, the convolution integral representing the force–displacement relationship can be truncated. After the truncation the computational effort only increases linearly with time. Thus, a considerable reduction of computational effort is achieved in a time domain analysis. Numerical examples demonstrate the accuracy and high efficiency of the new method for two-dimensional soil–structure interaction problems.  相似文献   

9.
The conditions under which the Saint Venant equations system for unsteady open channel flow, as an initial–boundary value problem, becomes self‐similar are investigated by utilizing one‐parameter Lie group of point scaling transformations. One of the advantages of this methodology is that the self‐similarity conditions due to the initial and boundary conditions can also be investigated thoroughly in addition to the conditions due to the governing equation. The obtained self‐similarity conditions are compared with the scaling relationships that are derived through the Froude similitude. It is shown that the initial–boundary value problem of a one‐dimensional unsteady open channel flow process in a prototype domain can be self‐similar with that of several different scaled domains. However, the values of all the flow variables (at specified time and space) under different scaled domains can be upscaled to the same values in the prototype domain (at the corresponding time and space), as shown in this study. Distortion in scales of different space dimensions has been implemented extensively in physical hydraulic modelling, mainly because of cost, space and time limitations. Unlike the traditional approach, the distinction is made between the longitudinal–horizontal and transverse–horizontal length scales in this study. The scaled domain obtained by the proposed approach, when scaling ratios of channel width and water depth are equal, is particularly important for the similarity of flow characteristics in a cross‐section because the width‐to‐depth ratio and the inclination angles of the banks are conserved in a cross‐section. It is also shown that the scaling ratio of the roughness coefficient under distorted channel conditions depends on that of hydraulic radius and longitudinal length. The proposed scaling relations obtained by the Lie group scaling approach may provide additional spatial, temporal and economical flexibility in setting up physical hydraulic models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A direct finite element method for nonlinear earthquake analysis of 2‐dimensional dam–water–foundation rock systems has recently been presented. The analysis procedure uses standard viscous‐damper absorbing boundaries to model the semi‐unbounded foundation‐rock and fluid domains and specifies the seismic input as effective earthquake forces at these boundaries. Presented in this paper is a generalization of the direct finite element method with viscous‐damper boundaries to 3‐dimensional dam–water–foundation rock systems. Step‐by‐step procedures for determining the effective earthquake forces starting from a ground motion specified at a control point on the foundation‐rock surface is developed, and several numerical examples are computed and compared with independent benchmark solutions to demonstrate the effectiveness of the analysis procedure for modeling 3‐dimensional systems.  相似文献   

11.
To reduce the numerical errors arising from the improper enforcement of the artificial boundary conditions on the distant surface that encloses the underground part of the subsurface, we present a finite‐element–infinite‐element coupled method to significantly reduce the computation time and memory cost in the 2.5D direct‐current resistivity inversion. We first present the boundary value problem of the secondary potential. Then, a new type of infinite element is analysed and applied to replace the conventionally used mixed boundary condition on the distant boundary. In the internal domain, a standard finite‐element method is used to derive the final system of linear equations. With a novel shape function for infinite elements at the subsurface boundary, the final system matrix is sparse, symmetric, and independent of source electrodes. Through lower upper decomposition, the multi‐pole potentials can be swiftly obtained by simple back‐substitutions. We embed the newly developed forward solution to the inversion procedure. To compute the sensitivity matrix, we adopt the efficient adjoint equation approach to further reduce the computation cost. Finally, several synthetic examples are tested to show the efficiency of inversion.  相似文献   

12.
Scattering of incident plane harmonic pseudo P‐, SH‐, and SV‐waves by a two‐dimensional basin of arbitrary shape is investigated by using an indirect boundary integral equation approach. The basin and surrounding half‐space are assumed to be generally anisotropic, homogeneous, linearly elastic solids. No material symmetries are assumed. The unknown scattered waves are expressed as linear combinations of full‐space time‐harmonic two‐dimensional Green functions. Using the Radon transform, the Green functions are obtained in the form of finite integrals over a unit circle. An algorithm for the accurate and efficient numerical evaluation of the Green functions is discussed. A detailed convergence and parametric analysis of the problem is presented. Excellent agreement is obtained with isotropic results available in the literature. Steady‐state surface ground motion is presented for semi‐circular basins with generally anisotropic material properties. The results show that surface motion strongly depends upon the material properties of the basin as well as the angle of incidence and frequency of the incident wave. Significant mode conversion can be observed for general triclinic materials which are not present in isotropic models. Comparison with an isotropic basin response demonstrates that anisotropy is very important for assessing the nature of surface motion atop basins. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
薛冰寒      方宏远      王复明      胡志强  陈建国 《世界地震工程》2019,35(4):011-17
比例边界有限元方法是一种半解析的数值计算方法,具有降维、网格灵活、严格模拟无限域和无需基本解等特点。比例边界有限元方法的基本理论是在整体坐标与局部坐标的比例边界转换基础之上建立的,相似中心的选取是否合理对分析计算具有重要的影响,导致在模拟拱坝这种不规则的空间壳体结构时,具有一定的局限性。采用子结构方法,将坝体分为若干满足相似性要求的区域可解决上述问题,以某拱坝为例给出了合理的坝体子结构分区形式,验证了子结构方法的精确性,为建立基于比例边界有限元方法的坝体-库水-地基系统的计算模型奠定了基础。  相似文献   

14.
比例边界有限元法最初应用于土-结构的相互作用分析,经过近几年的完善和发展,如今已经能够应用到其他很多领域。但是因为比例边界有限元理论是基于相似性要求的,使得其在处理几何形状复杂的结构时,会有很大的局限性,从而在某些领域的应用仍旧受到限制。同时由于其全时空耦合,导致大量计算量和工作量,也是其应用受限的一个原因。采用子结构法,打破这些局限性,并且分别针对有限域、无限域的问题,对比例边界有限元子结构法进行了研究,得出了有利于比例边界有限元法在工程实践中应用的结论,为其在实际工程应用中提供了可靠的依据和规律。  相似文献   

15.
Subsurface rocks (e.g. shale) may induce seismic anisotropy, such as transverse isotropy. Traveltime computation is an essential component of depth imaging and tomography in transversely isotropic media. It is natural to compute the traveltime using the wavefront marching method. However, tracking the 3D wavefront is expensive, especially in anisotropic media. Besides, the wavefront marching method usually computes the traveltime using the eikonal equation. However, the anisotropic eikonal equation is highly non‐linear and it is challenging to solve. To address these issues, we present a layer‐by‐layer wavefront marching method to compute the P‐wave traveltime in 3D transversely isotropic media. To simplify the wavefront tracking, it uses the traveltime of the previous depth as the boundary condition to compute that of the next depth based on the wavefront marching. A strategy of traveltime computation is designed to guarantee the causality of wave propagation. To avoid solving the non‐linear eikonal equation, it updates traveltime along the expanding wavefront by Fermat's principle. To compute the traveltime using Fermat's principle, an approximate group velocity with high accuracy in transversely isotropic media is adopted to describe the ray propagation. Numerical examples on 3D vertical transverse isotropy and tilted transverse isotropy models show that the proposed method computes the traveltime with high accuracy. It can find applications in modelling and depth migration.  相似文献   

16.
A simple non‐linear control law is proposed for reducing structural responses against seismic excitations. This law defines control force dynamics by one differential equation involving a non‐linear term that restrains the control force amplitude. If non‐linearity is neglected, the control force becomes the force in a Maxwell element, so it is called the non‐linear‐Maxwell‐element‐type (NMW) control force. The NMW control force vs. deformation relation plots hysteretic curves. The basic performance of an SDOF model with the NMW control force is examined for various conditions by numerical analyses. Furthermore, the control law is extended to fit an MDOF structural model, and an application example is shown. The computational results show that the NMW control force efficiently reduces structural responses. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
The seismic response analysis of a base-isolated liquid storage tank on a half-space was examined using a coupling method that combines the finite elements and boundary elements. The coupled dynamic system that considers the base isolation system and soil–structure interaction effect is formulated in time domain to evaluate accurately the seismic response of a liquid storage tank. Finite elements for a structure and boundary elements for liquid are coupled using equilibrium and compatibility conditions. The base isolation system is modeled using the biaxial hysteretic element. The homogeneous half-space is idealized using the simple spring-dashpot model with frequency-independent coefficients. Some numerical examples are presented to demonstrate accuracy and applicability of the developed method.Consequently, a general numerical algorithm that can analyze the dynamic response of base-isolated liquid storage tanks on homogeneous half-space is developed in three-dimensional coordinates and dynamic response analysis is performed in time domain.  相似文献   

18.
Formulation of a matrix‐valued force–displacement relationship which can take radiation damping into account is of major importance when modelling unbounded domains. This can be done by means of fundamental solutions in space and time in connection with convolution integrals or by means of a frequency dependent boundary element representation, but for discrete frequencies Ω only. In this paper a method for interpolating discrete values of dynamic stiffness matrices by a continuous matrix valued rational function is proposed. The coupling between interface degrees of freedom is fully preserved. Another crucial point in soil–structure interaction analysis is how to implement an approximation in the spectral domain into a time‐domain analysis. Well‐known approaches for the scalar case are based on the partial‐fraction expansion of a scalar rational function. Here, a more general procedure, applicable to MDOF‐systems, for the transformation of spectral rational approximations into the time‐domain is introduced. Evaluation of the partial‐fraction expansion is avoided by using the so‐called mixed variables. Thus, unknowns in the time‐domain are displacements as well as forces. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
A three‐dimensional transmitting boundary is formulated in the Cartesian co‐ordinate system. It is developed for the dynamic soil–structure interaction problems of arbitrary shape foundations in laterally heterogeneous strata overlying rigid bedrock. Dynamics of a rectangular rigid surface foundation on a homogeneous stratum is analysed by a hybrid approach in which the finite region including foundation is modelled by the conventional finite element method and the surrounding infinite region by the newly developed transmitting boundary. To demonstrate its strength, the present method is applied to a rectangular foundation in a horizontally heterogeneous ground consisting of two distinct regions divided by and welded along a vertical plane. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
This is the first of a two‐part paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a simple low‐dimensional model based on hydraulic groundwater theory (also known as Dupuit or Boussinesq theory). Here, we examine the effect of lateral flow on the downward fluxes of water and solutes through perched groundwater at steady state. We derive analytical expressions describing the decline in the downward flux rate with depth. Using these, we obtain analytical expressions for water age in a number of cases. The results show that when the permeability field is homogeneous, the spatial structure of water age depends qualitatively on a single dimensionless number, Hi. This number captures the relative contributions to the lateral hydraulic potential gradient of the relief of the lower‐most impermeable boundary (which may be below the weathering front within permeable or incipiently weathered bedrock) and the water table. A “scaled lateral symmetry” exists when Hi is low: age varies primarily in the vertical dimension, and variations in the horizontal dimension x almost disappear when the vertical dimension z is expressed as a fraction z/H(x) of the laterally flowing system thickness H(x). Taking advantage of this symmetry, we show how the lateral dimension of the advection–diffusion‐reaction equation can be collapsed, yielding a 1‐D vertical equation in which the advective flux downward declines with depth. The equation holds even when the permeability field is not homogeneous, as long as the variations in permeability have the same scaled lateral symmetry structure. This new 1‐D approximation is used in the accompanying paper to extend chemical weathering models derived for 1‐D columns to hillslope domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号