首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
In this paper, the efficiency of providing elastic‐gap devices (EGDs) to improve the performance of seismic‐isolated bridges (SIBs) in near‐fault (NF) zones is investigated. The device is primarily made of an assembly of circular rubber bearings and steel plates to provide additional elastic stiffness to the SIB upon closure of a gap. The EDG is intended to function at two performance levels under service and maximum considered design level (MCDL) NF earthquakes to reduce isolator displacements while keeping the substructure forces at reasonable levels. A parametric study, involving more than 500 nonlinear time history analyses of realistic and simplified structural models of typical SIBs, is conducted using simulated and actual NF ground motions to investigate the applicability of the proposed solution. It is found that providing EGD is beneficial for reducing the isolator displacements to manageable ranges for SIBs subjected to MCDL NF ground motions regardless of the distance from the fault and characteristics of the isolator. It is also found that providing EGD resulted in an improved performance of the isolators in terms of the reduction of heat generated by the isolators. Further analyses conducted using a realistic structural model of an existing bridge and five NF earthquakes confirmed that EGD may be used to reduce the displacement of the isolators while keeping the substructure base shear forces at reasonable ranges for SIBs located in NF zones. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Nonlinear finite element (FE) modeling has been widely used to investigate the effects of seismic isolation on the response of bridges to earthquakes. However, most FE models of seismic isolated bridges (SIB) have used seismic isolator models calibrated from component test data, while the prediction accuracy of nonlinear FE models of SIB is rarely addressed by using data recorded from instrumented bridges. In this paper, the accuracy of a state‐of‐the‐art FE model is studied through nonlinear FE model updating (FEMU) of an existing instrumented SIB, the Marga‐Marga Bridge located in Viña del Mar, Chile. The seismic isolator models are updated in 2 phases: component‐wise and system‐wise FEMU. The isolator model parameters obtained from 23 isolator component tests show large scatter, and poor goodness of fit of the FE‐predicted bridge response to the 2010 Mw 8.8 Maule, Chile Earthquake is obtained when most of those parameter sets are used for the isolator elements of the bridge model. In contrast, good agreement is obtained between the FE‐predicted and measured bridge response when the isolator model parameters are calibrated using the bridge response data recorded during the mega‐earthquake. Nonlinear FEMU is conducted by solving single‐ and multiobjective optimization problems using high‐throughput cloud computing. The updated FE model is then used to reconstruct response quantities not recorded during the earthquake, gaining more insight into the effects of seismic isolation on the response of the bridge during the strong earthquake.  相似文献   

3.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A Markov method of analysis is presented for obtaining the seismic response of cable‐stayed bridges to non‐stationary random ground motion. A uniformly modulated non‐stationary model of the random ground motion is assumed which is specified by the evolutionary r.m.s. ground acceleration. Both vertical and horizontal components of the motion are considered to act simultaneously at the bridge supports. The analysis duly takes into account the angle of incidence of the earthquake, the spatial correlation of ground motion and the quasi‐static excitation. A cable‐stayed bridge is analysed under a set of parametric variations in order to study the non‐stationary response of the bridge. The results of the numerical study indicate that (i) frequency domain spectral analysis with peak r.m.s. acceleration as input could provide more r.m.s. response than the peak r.m.s. response obtained by the non‐stationary analysis; (ii) the longitudinal component of the ground motion significantly influences the vertical vibration of the bridge; and (iii) the angle of incidence of the earthquake has considerable influence on the deck response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
2021年5月22日青海省玛多县发生M7.4地震,造成玛多县境内的野马滩大桥和野马滩2号桥发生落梁破坏.中国地震局公布的地震烈度表明野马滩大桥处的地震烈度为Ⅸ.然而野马滩大桥附近无强震台站,未能记录到大桥附近的加速度时程,这也阻碍了野马滩大桥在地震作用下破坏机理的研究.因此,本文尝试采用经验格林函数方法、并参考医学上自身异位皮肤移植的理念,尝试评估野马滩大桥处的地震动的主要特征[包括地震动峰值加速度(PGA)的可能的取值范围和加速度时程],并与已公布的玛多地震的地震烈度、中国地震烈度表(GB/T17742—2020)、第五代地震动区划图(GB18306—2015)中的设计反应谱进行对比.结果表明:(1)本文得到的PGA的取值范围(320~620 cm/s2)与中国地震烈度表(GB/T17742—2020)中地震烈度为Ⅸ区内的PGA的取值范围(402~830 cm/s2)匹配程度较好;(2)本文合成的地震动反应谱与第五代地震动区划图中,野马滩大桥处的极罕遇地震动的加速度设计反应谱整体匹配较好,表明本文合成的加速度时程可以造成野马滩大桥落梁破坏.研究表明本文给出的野马滩大桥附近的地震动强度特征具备一定的参考价值,可作为野马滩大桥处的加速度时程输入,为研究该桥的坍塌机理提供数据支持.  相似文献   

6.
In this paper, the effect of lead core heating and associated strength deterioration on the seismic response of bridges isolated with lead rubber bearings (LRB) is investigated as a function of the characteristics of the isolator and near fault ground motions with forward rupture directivity effect. Furthermore, the ability of bounding analyses to provide a design envelope for maximum isolator force and maximum isolator displacement is verified. For this purpose, a series of nonlinear dynamic analyses are conducted for LRB isolated bridges where both deteriorating and non‐deteriorating force‐deformation relationship of LRB were employed. The analyses are performed for both simulated and recorded ground motions. It is found that while the temperature rise in the lead core generally increases with increasing magnitude and number of near fault ground motion velocity pulses, it decreases with larger distances from the fault. It is also found that bounding analysis method provides conservative (envelope) estimates of maximum isolator displacement and maximum isolator force for design purposes that fulfill its intended purpose. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
为研究强震区跨断层桥梁桩基非线性动力相互作用特性,依托海文大桥实体工程,利用MIDAS/GTS有限元软件,建立了桩-土-断层相互作用模型,分析0.20~0.60g地震动强度下断层上下盘桩基加速度响应、桩顶水平位移、桩身弯矩以及桩身剪力响应情况。结果表明:覆盖层土体对桩身加速度放大作用明显,且随着输入地震动强度的增大,放大作用逐渐减弱;覆盖层对地震波的滤波作用显著,随着输入地震动强度的增大,滤波作用逐渐减弱;上盘桩基达到桩顶峰值加速度的时刻滞后于下盘;随着输入地震动强度的增大,上、下盘桩的桩顶产生的永久位移和水平位移峰值逐渐变大,上盘桩顶产生的永久位移和桩顶峰值位移均大于下盘,产生显著的"上盘效应";不同强度地震动作用下,断层上、下盘桩基弯矩均在上部土层界面处达到峰值,剪力均在基岩面处达到峰值,下盘桩基弯矩和剪力峰值大于上盘桩基,呈现出显著的"下盘效应"。在桥梁桩基抗震设计时,应着重考虑断层上、下盘桩基的差异和不同强度地震作用对桩基承载特性的影响。  相似文献   

8.
With the launch of the high‐speed train project in California, the seismic risk is a crucial concern to the stakeholders. To investigate the seismic behavior of future California High‐Speed Rail (CHSR) bridge structures, a 3D nonlinear finite‐element model of a CHSR prototype bridge is developed. Soil‐structure and track‐structure interactions are accounted for in this comprehensive numerical model used to simulate the seismic response of the bridge and track system. This paper focuses on examining potential benefits and possible drawbacks of the a priori promising application of seismic isolation in CHSR bridges. Nonlinear time history analyses are performed for this prototype bridge subjected to two bidirectional horizontal historical earthquake ground motions each scaled to two different seismic hazard levels. The effect of seismic isolation on the seismic performance of the bridge is investigated through a detailed comparison of the seismic response of the bridge with and without seismic isolation. It is found that seismic isolation significantly reduces the deck acceleration and the force demand in the bridge substructure (i.e., piers and foundations), especially for high‐intensity earthquakes. However, seismic isolation increases the deck displacement (relative to the pile cap) and the stresses in the rails. These findings imply that seismic isolation can be promisingly applied to CHSR bridges with due consideration of balancing its beneficial and detrimental effects through using appropriate isolators design. The optimum seismic isolator properties can be sought by solving a performance‐based optimum seismic design problem using the nonlinear finite‐element model presented herein. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The methodology for dealing with spatial variability of ground motion, site effects and soil–structure interaction phenomena in the context of inelastic dynamic analysis of bridge structures, and the associated analytical tools established and validated in a companion paper are used herein for a detailed parametric analysis, aiming to evaluate the importance of the above effects in seismic design. For a total of 20 bridge structures differing in terms of structural type (fundamental period, symmetry, regularity, abutment conditions, pier‐to‐deck connections), dimensions (span and overall length), and ground motion characteristics (earthquake frequency content and direction of excitation), the dynamic response corresponding to nine levels of increasing analysis complexity was calculated and compared with the ‘standard’ case of a fixed base, uniformly excited, elastic structure for which site effects were totally ignored. It is concluded that the dynamic response of RC bridges is indeed strongly affected by the coupling of the above phenomena that may adversely affect displacements and/or action effects under certain circumstances. Evidence is also presented that some bridge types are relatively more sensitive to the above phenomena, hence a more refined analysis approach should be considered in their case. Copyright @ 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The paper analyzes the influence of friction pendulum system (FPS) isolator properties on the seismic performance of base‐isolated building frames. The behavior of these systems is analyzed by employing a two‐degree‐of‐freedom model accounting for the superstructure flexibility, whereas the FPS isolator behavior is described by adopting a widespread model that considers the variation of the friction coefficient with the velocity. The uncertainty in the seismic input is taken into account by considering a set of natural records with different characteristics scaled to increasing intensity levels. The variation of the statistics of the response parameters relevant to the seismic performance is investigated through the nondimensionalization of the motion equation and an extensive parametric study carried out for different isolator and system properties. The proposed approach allows to explore a wide range of situations while limiting the required nonlinear response history analyses. Two case studies consisting of base‐isolated building frames described as shear‐type systems are finally investigated in order to demonstrate the capabilities of the proposed simplified model in unveiling the essential characteristics of the performance of buildings isolated with FPS bearings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
结合长联大跨连续梁桥的特点,以1座(65+123+156+123+10×90+55)m长联大跨摩擦摆支座隔震连续梁桥为背景,建立了全桥三维有限元模型,运用非线性时程分析法,分析了地震动输入模式、地震动强度、摩擦摆支座参数对该桥内力、位移和能量响应的影响。研究结果表明:(1)长联大跨连续梁桥布置摩擦摆支座,可有效延滞固定墩顶有效主梁质量效应,实现全桥协同抗震。大部分地震能量可通过支座滞回耗能散耗,大幅降低了该桥固定墩地震能量耗散需求。(2)长联大跨连续梁桥减隔震设计中,建议采用水平单向+竖向地震组合进行内力设计,采用三向地震组合进行位移设计。(3)强震作用下,支座摩擦因数取0.029~0.034时该桥隔震性能最优。  相似文献   

12.
The efficacy of various ground motion intensity measures (IMs) in the prediction of spatially distributed seismic demands (engineering demand parameters, (EDPs)) within a structure is investigated. This has direct implications to building‐specific seismic loss estimation, where the seismic demand on different components is dependent on the location of the component in the structure. Several common IMs are investigated in terms of their ability to predict the spatially distributed demands in a 10‐storey office building, which is measured in terms of maximum interstorey drift ratios and maximum floor accelerations. It is found that the ability of an IM to efficiently predict a specific EDP depends on the similarity between the frequency range of the ground motion that controls the IM and that of the EDP. An IMs predictability has a direct effect on the median response demands for ground motions scaled to a specified probability of exceedance from a ground motion hazard curve. All of the IMs investigated were found to be insufficient with respect to at least one of magnitude, source‐to‐site distance, or epsilon when predicting all peak interstorey drifts and peak floor accelerations in a 10‐storey reinforced concrete frame structure. Careful ground motion selection and/or seismic demand modification is therefore required to predict such a spatially distributed demands without significant bias. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
王德俊 《华南地震》2019,39(3):89-94
快速评估不规则公路桥梁的地震动参数为桥梁地震响应分析、桥梁安全性设计提供科学依据。研究一种快速、有效的不规则公路桥梁地震动参数评估技术,以C形不规则公路桥梁为原型设计振动台与公路桥梁模型,选取Imperial Valley波作为地震动输入,采用加速度传感器、位移传感器采集桥梁加速度与位移数据;结合已知地震动数据计算地震动持续时长参数,优化衰减模型获取精确的地表峰值加速度参数。分析地表峰值加速度与其他地震动参数关系可知,地表峰值加速度与损坏概率成正比,桥梁结构发生损坏的概率在50%以下;震级越大、震中距越小、地表峰值加速度越大。  相似文献   

14.
通过对分别采用板式支座和铅芯支座的2座3跨连续梁桥模型进行振动台试验,对比分析了这2类桥梁的动力特性、破坏过程及2种支座对连续梁桥地震反应的影响。研究结果表明:地震波特性对桥梁结构的地震反应有较大影响,在对桥梁结构进行抗震设计时,需选择合理的地震动输入;在地震强度较小时,板式支座的滑动能够起到一定的隔震效果,铅芯支座的隔震性能能得到较好的发挥;在地震强度较大时,铅芯支座的隔震性能不能得到很好的发挥,采用铅芯支座的桥梁地震反应不一定小于普通桥梁;通过合理的设计,2类桥梁都完全可以实现大震不倒的设防目标。  相似文献   

15.
2021年5月22日青海省玛多县发生了M7.4地震,造成玛多县境内的野马滩1、2号桥破坏,其主要表现为桥梁纵向位移过大导致多跨主梁落梁,桥墩也有不同程度的破损.经现场专家鉴定,地震影响烈度均突破桥梁抗震设计值,并且初步判断这种整齐划一的落梁震害的机理系近断层地震动方向性效应的强速度脉冲作用所致.野马滩大桥位置的地震影响烈度调查结果为Ⅸ,但是野马滩大桥附近无强震动观测台站,大桥附近没有获得地震动记录,这不利于野马滩大桥地震作用下地震响应和破坏机理的研究.另外,野马滩大桥的设计参数和折损情况也很难掌握,桥梁模型难以准确估计.为此,本文拟采用另一座同等抗震设防烈度的桥梁,通过有限元程序,使用反应谱法作为参考,同时使用拟合的地震动和脉冲记录进行桥梁结构反应时程分析,以便间接地揭示玛多地震桥梁地震反应特征和破坏机理.计算结果分析表明,所分析的桥梁结构地震响应位移和内力均超过罕遇地震设计值,其中一条地震动记录最大反应接近极罕遇设计值,导致桥梁结构出现破坏甚至损毁震害现象的出现.  相似文献   

16.
The seismic response of a benchmark highway bridge isolated with passive polynomial friction pendulum isolators (PFPIs) is investigated and subjected to six bidirectional ground motion records. The benchmark study is based on a lumped mass finite-element model of the 91/5 highway overcrossing located in Southern California. The PFPI system possesses two important parameters; one is horizontal flexibility and the other is energy absorbing capacity through friction. The evaluation criteria of the benchmark bridge are analyzed considering two parameters, time period of the isolator and coefficient of friction of the isolation surface. The results of the numerical study are compared with those obtained from the traditional friction pendulum system (FPS). Dual design performance of the PFPI system suppressed the displacement and acceleration response of the benchmark highway bridge. The dual design hysteresis loop of the PFPI system is the main advantage over the linear hysteresis loop of the FPS. The numerical result indicates that the seismic performance of the PFPI system is better than that of the traditional FPS isolated system. Further, it is observed that variations of the isolation time period and coefficient of friction of the FPS and PFPI systems have a significant effect on the peak responses of the benchmark highway bridge.  相似文献   

17.
软土具有高灵敏度、低强度等特性,在地震过程中极易产生震陷。基于OpenSees数值模拟方法对软土场地的震陷反应进行非线性动力有限元分析,通过改变地震动峰值加速度、频谱特性、输入方式来研究其对软土震陷的影响。结果表明,地震动峰值加速度对地基土的不均匀震陷有显著影响,地震动峰值加速度越大,震陷量显著增大,震陷影响深度更大,对水平地表造成的破坏范围也更大;地震动频谱特性对软土震陷有重要影响,当地震动卓越频率与场地自振频率相近时,其幅值越大,产生的震陷越严重;水平、竖向同时输入地震动的方式能更好地反映土体的振动及震陷响应。该研究成果对探索软土震陷的机理有一定的指导意义。  相似文献   

18.
面向海域工程抗震设计及评估对海底地震动的需求,基于日本相模湾海域K-NET的ETMC海底强震动记录,根据震级、震中距选取面向工程输入的949组地震动记录数据库。在考虑震源类型差异的基础上,对地震动峰值、持时、频谱等参数进行分析,通过反应谱、Arias烈度等指标描述典型海底地震动特征。根据峰值加速度、显著持时等强度指标对海底地震动记录进行排序,给出基于不同地震动特征分类下的典型地震动记录。推荐的海底地震动可为考虑不同结构需求参数的典型海域工程结构时程分析提供输入地震动。  相似文献   

19.
基于有效的土-结相互作用有限元数值模拟方法,利用有限元软件ABAQUS对水平及竖向地震共同作用下双线盾构隧道的地震响应进行分析研究。地震动输入选取近场地震Loma、ChiChi、Mammoth和WoLong的基岩水平及竖向加速度时程记录。结果表明,不同近场地震记录对隧道结构的作用不同,隧道的地震反应与场地性质及地震动的频谱特性密切相关。对比隧道在水平及竖向地震动共同作用下的响应与单向水平地震动作用下的响应,发现隧道的最大地震附加内力及其分布均发生较大的变化,在隧道结构抗震设计中需引起重视。另外,分析中还考虑了在双向地震动共同作用下,隧道间距、土-结接触面的摩擦系数、土-结相对刚度、输入的地震记录和竖向地震动相对强度对隧道地震响应的影响等,研究结果对隧道工程的抗震设计具有一定的参考价值。  相似文献   

20.
Studies on the effect of near-surface overburden soil layers on seismic motion have shown that the overburden soil layers have a significant impact on the seismic effect of the site due to the formation age, genetic type, thickness difference, structure, and dynamic characteristics of the soil layers. In this paper, the one-dimensional seismic response analysis of a nuclear power plant site containing a thick hard interlayer was conducted to discuss the influence of the hard interlayer thickness on the site seismic response, so as to provide a basis for determining the seismic motion parameters for seismic design of similar sites. Based on the engineering geological data of a nuclear power plant site, five models of one-dimensional soil-layer seismic response analysis were built, and the equivalent linear method of the one-dimensional site seismic response was applied to analyze the effect of the interlayer thickness on the peak acceleration and the acceleration response spectra of the site seismic response. The seismic response characteristics of the site and influence rules of the hard interlayer thickness are summarized as follows:1)Under different input seismic motion levels, the peak acceleration at the top of the hard interlayer was less than the input peak acceleration, and the peak acceleration at the ground surface of site was greater than the input peak acceleration. 2)Under the same input seismic motion, the ratios of the peak accelerations at the top of hard interlayer to the input peak accelerations were smaller than the ratios of the peak accelerations at the ground surface to the input peak acceleration, and these ratios first decreased and then increased gradually with the increase of the hard interlayer thickness; while for the same hard interlayer thickness, these ratios gradually decreased as the input peak acceleration increasing. 3)For the same input seismic motion, the ratios of the peak accelerations at the ground surface of site to those at the top of the hard interlayer increased gradually as the hard interlayer thickness increased; however, corresponding to different hard interlayer thicknesses, the variation characteristics of ratios which are the peak accelerations at the ground surface of site to those at the top of the hard interlayer were inconsistent with the increase of the input peak acceleration. 4)The hard interlayer had a significant influence on the short-period acceleration response spectrum and the thicker the hard interlayer was, the wider the influence frequency band would be; while for a special hard interlayer thickness, the influence frequency band is certain, and the hard interlayer had little effect on the acceleration response spectrum coordinates outside this frequency band, the longer the period is, the less the influence of the hard interlayer on the acceleration response spectrum coordinates. The seismic response characteristics of the site and influence rules of the hard interlayer thickness indicate that the hard interlayer thickness has a significant impact on the peak acceleration and the acceleration response spectra of the site seismic response, and the hard interlayer has obvious isolation effect at the seismic motion, and the increase of its thickness reduces the nonlinear effect of the site and leads to the wider influence frequency band. Meanwhile, the higher the input peak acceleration is, the stronger the nonlinear effect of the site, and it's remarkable that the soft layer overlying the hard interlayer has a significant amplification effect on the seismic motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号