首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We quantified how rates of stream channel migration in a montane meadow vary as a function of the riparian vegetation community. The South Fork of the Kern River at Monache Meadow, located in California's southern Sierra Nevada range, supports two distinct types of vegetation: a dry meadow community dominated by sagebrush and non‐native grasses (xeric scrub and meadow), and a wet meadow community dominated by rushes and sedges (hydric graminoids). We measured rates of lateral stream migration for dry versus wet meadow reaches from aerial photographs spanning a 40‐year period (1955–1995). While stream migration rates averaged only 0·24 ± 0·02 m a?1 in the wet meadow, the dry meadow channel migrated an average of 1·4 ± 0·3 m a?1. We used a linear model of meander migration to calculate coefficients that characterize bank migration potential, or bank erodibility, independent of channel curvature. These calculations demonstrate that, at Monache Meadow, banks without wet meadow vegetation are roughly ten times more susceptible to erosion than banks with wet meadow vegetation. Where stream bank heights consistently exceed 1 m, low water availability creates riparian habitats dominated by dry meadow vegetation. Thus, channel incision may reduce bank stability not only by increasing bank height, but also by converting banks from wet meadow to dry meadow vegetation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
This work addresses the temporal dynamics of riparian vegetation in large braided rivers, exploring the relationship between vegetation erosion and flood magnitude. In particular, it investigates the existence of a threshold discharge, or a range of discharges, above which erosion of vegetated patches within the channel occurs. The research was conducted on a 14 km long reach of the Tagliamento River, a braided river in north‐eastern Italy. Ten sets of aerial photographs were used to investigate vegetation dynamics in the period 1954–2011. By using different geographic information system (GIS) procedures, three aspects of geomorphic‐vegetation dynamics and interactions were addressed: (i) long‐term (1954–2011) channel evolution and vegetation dynamics; (ii) the relationship between vegetation erosion/establishment and flow regime; (iii) vegetation turnover, in the period 1986–2011. Results show that vegetation turnover is remarkably rapid in the study reach with 50% of in‐channel vegetation persisting for less than 5–6 years and only 10% of vegetation persisting for more than 18–19 years. The analysis shows that significant vegetation erosion is determined by relatively frequent floods, i.e. floods with a recurrence interval of c. 1–2.5 years, although some differences exist between sub‐reaches with different densities of vegetation cover. These findings suggest that the erosion of riparian vegetation in braided rivers may not be controlled solely by very large floods, as is the case for lower energy gravel‐bed rivers. Besides flow regime, other factors seem to play a significant role for in‐channel vegetation cover over long time spans. In particular, erosion of marginal vegetation, which supplies large wood elements to the channel, increased notably over the study period and was an important factor for in‐channel vegetation trends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Measurements from a fixed‐bed, Froude‐scaled hydraulic model of a stream in northeastern Vermont demonstrate the importance of forested riparian vegetation effects on near‐bank turbulence during overbank flows. Sections of the prototype stream, a tributary to Sleepers River, have increased in channel width within the last 40 years in response to passive reforestation of its riparian zone. Previous research found that reaches of small streams with forested riparian zones are commonly wider than adjacent reaches with non‐forested, or grassy, vegetation; however, driving mechanisms for this morphologic difference are not fully explained. Flume experiments were performed with a 1:5 scale, simplified model of half a channel and its floodplain, mimicking the typical non‐forested channel size. Two types of riparian vegetation were placed on the constructed floodplain: non‐forested, with synthetic grass carpeting; and forested, where rigid, randomly distributed, wooden dowels were added. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 41 locations within the channel and floodplain at near‐bed and 0·6‐depth elevations. Observations of velocity components and calculations of turbulent kinetic energy (TKE), Reynolds shear stress and boundary shear stress showed significant differences between forested and non‐forested runs. Generally, forested runs exhibited a narrow band of high turbulence between the floodplain and main channel, where TKE was roughly two times greater than TKE in non‐forested runs. Compared to non‐forested runs, the hydraulic characteristics of forested runs appear to create an environment with higher erosion potential. Given that sediment entrainment and transport can be amplified in flows with high turbulence intensity and given that mature forested stream reaches are wider than comparable non‐forested reaches, our results demonstrated a possible driving mechanism for channel widening during overbank flow events in stream reaches with recently reforested riparian zones. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Flow diversions are widespread and numerous throughout the semi‐arid mountains of the western United States. Diversions vary greatly in their structure and ability to divert water, but can alter the magnitude and duration of base and peak flows, depending upon their size and management. Channel geometry and riparian plant communities have adapted to unique hydrologic and geomorphic conditions existing in the areas subject to fluvial processes. We use geomorphic and vegetation data from low‐gradient (≤3%) streams in the Rocky Mountains of north‐central Colorado to assess potential effects of diversion. Data were collected at 37 reaches, including 16 paired upstream and downstream reaches and five unpaired reaches. Channel geometry data were derived from surveys of bankfull channel dimensions and substrate. Vegetation was sampled using a line‐point intercept method along transects oriented perpendicular to the channel, with a total of 100 sampling points per reach. Elevation above and distance from the channel were measured at each vegetation sampling point to analyze differences in lateral and vertical zonation of plant communities between upstream and downstream reaches. Geomorphic data were analyzed using mixed effects models. Bankfull width, depth, and cross‐sectional area decreased downstream from diversions. Vegetation data were analyzed using biological diversity metrics, richness, evenness and diversity, as well as multivariate community analysis. Evenness increased downstream from diversions, through reduced frequency of wetland indicator species and increased frequency of upland indicator species. Probability of occurrence for upland species downstream of a diversion increases at a greater rate beginning around 0·5 m above active channel. The results suggest that channel morphology and riparian plant communities along low‐gradient reaches in montane environments in the Colorado Rocky Mountains are impacted by diversion‐induced flow alteration, with the net effect of simplifying and narrowing the channel and homogenizing and terrestrializing riparian plant communities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The influence of riparian woodland on stream temperature, micro‐climate and energy exchange was investigated over seven calendar years. Continuous data were collected from two reaches of the Girnock Burn (a tributary of the Aberdeenshire Dee, Scotland) with contrasting land use characteristics: (1) semi‐natural riparian forest and (2) open moorland. In the moorland reach, wind speed and energy fluxes (especially net radiation, latent heat and sensible heat) varied considerably between years because of variable riparian micro‐climate coupled strongly to prevailing meteorological conditions. In the forested reach, riparian vegetation sheltered the stream from meteorological conditions that produced a moderated micro‐climate and thus energy exchange conditions, which were relatively stable between years. Net energy gains (losses) in spring and summer (autumn and winter) were typically greater in the moorland than the forest. However, when particularly high latent heat loss or low net radiation gain occurred in the moorland, net energy gain (loss) was less than that in the forest during the spring and summer (autumn and winter) months. Spring and summer water temperature was typically cooler in the forest and characterised by less inter‐annual variability due to reduced, more inter‐annually stable energy gain in the forested reach. The effect of riparian vegetation on autumn and winter water temperature dynamics was less clear because of the confounding effects of reach‐scale inflows of thermally stable groundwater in the moorland reach, which strongly influenced the local heat budget. These findings provide new insights as to the hydrometeorological conditions under which semi‐natural riparian forest may be effective in mitigating river thermal variability, notably peaks, under present and future climates. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

6.
Riparian vegetation responds to hydrogeomorphic disturbances and environmental changes and also controls these changes. Here, we propose that the control of sediment erosion and deposition by riparian vegetation is a key geomorphological and ecological (i.e. biogeomorphic) function within fluvial corridors. In a 3 year study, we investigated the correlations between riparian vegetation and hydrogeomorphic dynamics along a transverse gradient from the main channel to the floodplain of the River Tech, France. Sediment erosion and deposition rates varied significantly along the transverse gradient as a function of the vegetation biovolume intercepting water flow. These effects, combined with the extremely strong mechanical resistance of pioneer woody structures and strong resilience of pioneer labile herbaceous communities, Populus nigra and Salix spp., explain the propensity of biogeomorphic succession (i.e. the synergy between vegetation succession and landform construction) to progress between destructive floods. This geomorphological function newly identified as an ‘ecosystem function’ per se encompasses the coupling of habitat and landform creation, maintenance and change with fundamental ecosystem structural changes in space and in time. Three different biogeomorphic functions, all related to the concept of ecosystem engineering, were identified: (i) the function of pioneer herbaceous communities to retain fine sediment and diaspores in the exposed zones of the active tract near the water resource, facilitating recruitment of further herbaceous and Salicacea species; (ii) the function of woody vegetation to drive the construction of forested islands and floodplains; and (iii) the function of stabilised riparian forests to act as ‘diversity reservoirs’ which can support regeneration after destructive floods. Overall, this study based on empirical data points to the fundamental importance of sediment flow control by pioneer riparian vegetation in defining fluvial ecosystem and landform organisation in time and in space. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Channel instability has occurred in the Bell River in the form of meander cutoffs, a number of which have occurred since 1952. Increased sediment loading from widespread gully erosion in the catchment has been proposed as the trigger for this instability. Willow species of the Salix family, in particular S. caprea, have been planted along the banks in an effort to prevent further channel shifting. This study reports the results of an investigation into the effect of vegetation on channel form and stability over a 17 km stretch of channel. Results indicate that riparian vegetation has significant effects on channel form which have implications for channel stability. Riparian vegetation increases bank stability and reduces channel cross-sectional area, thereby inducing stability at flows less than bankfull. Evidence indicates that narrow stable stretches are associated with relatively high levels of riparian vegetation. Wider, unstable channels are associated with relatively less riparian vegetation. The effectiveness of riparian vegetation relative to bank sediments was investigated. A dense growth of willows was found to have an equivalent effect to banks with a silt-clay ratio of about 70 per cent. The channel narrowing induced by vegetation may contribute to channel shifting at high flows. The reduced channel capacity is thought to result in more frequent overbank flooding which may ultimately lead to channel avulsion. Thus where increased sediment loading is pushing the channel towards instability, vegetation may be effective in imparting local stability, but it is unable to prevent long-term channel shifts, and may rather help to push the system towards more frequent avulsions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Catchment sediment budget models are used to predict the location and rates of bank erosion in tropical catchments draining to the Great Barrier Reef lagoon, yet the reliability of these predictions has not been tested due to a lack of measured bank erosion data. This paper presents the results of a 3 year field study examining bank erosion and channel change on the Daintree River, Australia. Three different methods were employed: (1) erosion pins were used to assess the influence of riparian vegetation on bank erosion, (2) bench‐marked cross‐sections were used to evaluate annual changes in channel width and (3) historical aerial photos were used to place the short term data into a longer temporal perspective of channel change (1972–2000). The erosion pin data suggest that the mean erosion rate of banks with riparian vegetation is 6·5 times (or 85%) lower than that of banks without riparian vegetation. The changes measured from cross‐section surveys suggest that channel width has increased by an average of 0·74 (±0·47) m a?1 over the study period (or ~0·8% yr?1). The aerial photo results suggest that over the last 30 years the Daintree River has undergone channel contraction of the order of 0·25 m a?1. The cross‐section data were compared against modelled SedNet bank erosion rates, and it was found that the model underestimated bank erosion and was unable to represent the variable erosion and accretion processes that were observed in the field data. The reach averaged bank erosion rates were improved by the inclusion of locally derived bed slope and discharge estimates; however, the results suggest that it will be difficult for catchment scale sediment budget models to ever accurately predict the location and rate of bank erosion due to the variation in bank erosion rates in both space and time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Field, laboratory, and numerical modelling research are increasingly demonstrating the potential of riparian tree colonization and growth to influence fluvial dynamics and the evolution of fluvial landforms. This paper jointly analyses multi‐temporal, multispectral ASTER data, continuous river stage and discharge data, and field observations of the growth rates of the dominant riparian tree species (Populus nigra) along a 21 km reach of the Tagliamento River, Italy. Research focuses on the period 2004–2009, during which there was a bankfull flood on 24 October 2004, followed by 2 years with low water levels, nearly 2 years with only modest flow pulses, and then a final period from 15 August 2008 that included several intermediate to bankfull flow events. This study period of increasing flow disturbance allows the exploration of vegetation dynamics within the river's active corridor under changing flow conditions. The analysis demonstrates the utility of ASTER data for investigating vegetation dynamics along large fluvial corridors and reveals both spatial and temporal variations in the expansion, coalescence, and erosion of vegetated patches within the study reach. Changes in the extent of the vegetated area and its dynamics vary along the study reach. In sub‐reaches where riparian tree growth is vigorous, the vegetated area expands rapidly during time periods without channel‐shaping flows, and is subsequently able to resist erosion by bankfull floods. In contrast, in sub‐reaches where tree growth is less vigorous, the vegetated area expands at a slower rate and is more readily re‐set by bankfull flood events. This illustrates that the rate of growth of riparian trees is crucial to their ability to contribute actively to river corridor dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
We evaluated controls on locations of channel incision, variation in channel evolution pathways and the time required to reconnect incised channels to their historical floodplains in the Walla Walla and Tucannon River basins, northwestern USA. Controls on incision locations are hierarchically nested. A first‐order geological control defines locations of channels prone to incision, and a second‐order control determines which of these channels are incised. Channels prone to incision are reaches with silt‐dominated valley fills, which have sediment source areas dominated by loess deposits and channel slopes less than 0·1(area)?0·45. Among channels prone to incision, channels below a second slope–area threshold (slope = 0·15(area)?0·8) did not incise. Once incised, channels follow two different evolution models. Small, deeply incised channels follow Model I, which is characterized by the absence of a significant widening phase following incision. Widening is limited by accumulation of bank failure deposits at the base of banks, which reduces lateral channel migration. Larger channels follow Model II, in which widening is followed by development of an inset floodplain and aggradation. In contrast to patterns observed elsewhere, we found the widest incised channels upstream of narrower reaches, which reflects a downstream decrease in bed load supply. Based on literature values of floodplain aggradation rates, we estimate recovery times for incised channels (the time required to reconnect to the historical floodplain) between 60 and 275 years. Restoration actions such as allowing modest beaver recolonization can decrease recovery time by 17–33 per cent. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

11.
Photogrammetric monitoring of small streams under a riparian forest canopy   总被引:2,自引:0,他引:2  
The recent advent of digital photogrammetry has enabled the modeling and monitoring of river beds at relatively high spatial resolution (0·01 to 1 m) through the extraction of digital elevation models (DEMs). The traditional approach to image capture has been to mount a metric camera to an aircraft, although non‐metric cameras have been mounted to a variety of novel aerial platforms to acquire river‐based imagery (e.g. helicopters, radio‐controlled motorized vehicles, tethered blimps and balloons). However, most of these techniques are designed to acquire imagery at flying heights above the riparian tree canopy. In relatively narrow channels (e.g. <20 m bankfull width), streamside trees can obscure the channel and limit continuous photogrammetric data acquisition of both the channel bed and banks, while still providing useful information regarding the riparian canopy and even spot elevations of the channel. This paper presents a technique for the capture and analysis of close‐range photogrammetric data acquired from a vertically mounted non‐metric camera suspended 10 m above the channel bed by a unipod. The camera is positioned under the riparian forest canopy so that the channel bed can be imaged without obstruction. The system is portable and permits relatively rapid image acquisition over rough terrain and in dense forest. The platform was used to generate DEMs with a nominal ground resolution of 0·03 m. DEMs generated from this platform required post‐possessing to either adjust or eliminate erroneous cells introduced by the extraction process, overhanging branches, and by the effects of refraction at the air–water interface for submerged portions of the channel bed. The vertical precision in the post‐processed surface generally ranged from ± 0·01 to 0·1 m depending on the quality of triangulation and the characteristics of the surface being imaged. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This study examined if riparian land use (forested vs agricultural) affects hydraulic transport in headwater streams located in an agriculturally fragmented watershed. We identified paired 50‐m reaches (one reach in agricultural land use and the other in forested land use) along three headwater streams in the Upper Sugar Creek Watershed in northeast Ohio, USA (40° 51′42″N, 81° 50′29″W). Using breakthrough curves obtained by Rhodamine WT slug injections and the one‐dimensional transport with inflow and storage model (OTIS), hydraulic transport parameters were obtained for each reach on six different occasions (n = 36). Relative transient storage (AS:A) was similar between both reach types (As: A = 0·3 ± 0·1 for both agricultural and forested reaches). Comparing values of Fmed200 to those in the literature indicates that the effect of transient storage was moderately high in the study streams in the Upper Sugar Creek Watershed. Examining travel times revealed that overall residence time (HRT) and residence time in transient storage (TSTO) were both longer in forested reaches (forested HRT = 19·1 ± 11·5 min and TSTO = 4·0 ± 3·8 min; agricultural HRT = 9·3 ± 5·3 min and TSTO = 1·7 ± 1·4 min). We concluded that the effect of transient storage on solute transport was similar between the forested and agricultural reaches but the forested reaches had a greater potential to retain solutes as a result of longer travel times. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The structure and dynamics of vegetation in valley bottoms are both strongly associated with fluvial processes and landform dynamics. All of these associations are disrupted by the installation of engineering control works. We use survey and analysis methods developed previously to investigate the impact of the installation of check‐dams within the confined headwaters of steep seasonally‐flowing streams (fiumaras) in Calabria, southern Italy, on active channel form, sediment calibre, and the richness, cover and development of riparian vegetation. Based on detailed field measurements along transects across the active channel, estimates of indices of vegetation extent (GCC), development (WCH) and their cross‐sectional variability (coefficients of variation of both indices at each survey site CVGCC, CVWCH), the number of species present (Ns), channel shape (w/d – the width/depth ratio), cross‐sectional area (CSA), downstream gradient (slope), surface bed sediment calibre (D50) and subsurface fine sediment content (percentage less than 250 µm by weight) were obtained for 60 transects located immediately upstream (U), downstream (D) and at intermediate sites (I) around 20 check‐dams located in four different headwater catchments. Analysis of this data set suggests that statistically significant changes in channel form and sediment calibre upstream of check‐dams are associated with more consistent vegetation development across the active channel, including an increase in species richness relative to other transects, but notable increases in vegetation cover and development only arise where the physical characteristics of the channel are notably different from intermediate and downstream channels. Because of the naturally steep profile of the study torrents, intermediate sections between check‐dams tend to be more similar in form to channels located immediately downstream of check‐dams than those located upstream, leading to similar structural properties in the riparian vegetation. The intermediate transects support considerably more species than downstream reaches, but the conditions upstream of the check‐dams appear to be so favourable for riparian vegetation development that species richness exceeds that found in intermediate reaches. Despite the confined headwater locations, these contrasts in form, sediment and vegetation development around check‐dams are strong and consistent across the study catchments, over‐riding more subtle contrasts in species richness and sediment calibre between catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Dryland rivers are recognized for limited research and high uncertainties with respect to understanding biogeomorphic processes. This study uses aerial photography, sediment analysis, palynology indicators and hydraulic modelling to investigate the role of riparian vegetation in influencing the response of systems to disturbance, the trajectory of channel evolution and the potential for management. The study focuses on cleared and uncleared sites in the Yerritup catchment, along the south coast of Western Australia, that occur along a transect with a consistent stream gradient and landscape topographic setting. Downstream reaches show no gross botanical change, but gradual sediment deposition across the floodplain of up to 40 cm based on palynological and sedimentary indicators. Channel response in the cleared section by incision, widening and floodplain degradation began rapidly after land clearing, but is driven by large flood events. Degradation of riparian vegetation has significantly increased the sensitivity of the system. The cleared reaches have transformed from a low‐capacity channel, under‐adjusted to the prevailing flow regime, to the large present channel that is now over‐adjusted to the predominantly low to moderate seasonal (occasional flood) flow regime. Modelling of pre‐settlement erosive potential reveals that the entire system was naturally sensitive to change, and was primed to erode once riparian vegetation was removed. The trajectory of channel evolution and the role of riparian vegetation is examined in relation to undisturbed reaches in the system and an appreciation of the historical range of variability in geomorphic response. Analysis of the patterns of contemporary vegetation growth identify the potential to re‐establish vegetation where it is elevated from saline baseflow. However, the system is assessed as being close to a threshold where restoration is no longer possible and remediation options become more limited as eco‐hydraulic and hydrochemical changes continue. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Rainfall takes many flowpaths to reach a stream, and the success of riparian buffers in water quality management is significantly influenced by riparian hydrology. This paper presents results from hydrometric monitoring of riparian buffer hydrology in a pasture catchment. Runoff processes and riparian flowpaths were investigated on two planar hillslopes with regenerating grass and E. globulus buffers. Surface runoff and subsurface flows (A‐ and B‐horizons) were measured for 3 years using surface runoff collectors, subsurface troughs and piezometers. Water volumes moving through the riparian buffers via the measured flowpaths were ranked B‐horizon ? surface runoff ≈ A‐horizon. Runoff volumes through the B‐horizon troughs were an order of magnitude greater than those recorded for the most productive surface runoff plots or the A‐horizon troughs. Subsurface runoff and saturation‐excess overland flow (SOF) were limited to the winter months, whereas infiltration‐excess overland flow (IEOF) can occur all year round during intense storms. Surface runoff was recorded on 33 occasions, mostly during winter (late May–early October), and total annual surface runoff volumes collected by the 20 unconfined (2 m wide) runoff plots varied between > 80 and < 20 m3. Subsurface flow only occurred in winter, and the 6 m wide B‐horizon subsurface troughs flowed above 1 l s?1 continuously, whereas the A‐horizon troughs flowed infrequently (<6 days per year). In summer, surface runoff occurred as IEOF during intense storms in the E. globulus buffer, but not in the grass buffer. Observations suggest that surface crusting reduced the soil's infiltration capacity in the E. globulus buffer. During winter, SOF and seepage were observed in both buffers, but subsurface flow through the B‐horizon was the dominant flowpath. Key hydrologic differences between the grass and tree buffers are the generation of IEOF in the E. globulus buffer during intense summer storms, and the smaller subsurface runoff volumes and fewer flow days in the E. globulus buffer. Low surface runoff volumes are likely to limit the potential of these buffers to filter pollutants from surface runoff. High subsurface flow volumes and saturated conductivities are also likely to limit the residence time of water in the subsurface domain. Based on their hydrologic performance, the key roles of riparian buffers in this landscape are likely to be displacing sediment and nutrient‐generating activities away from streams and stabilizing channel morphology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Urbanization negatively impacts water quality in streams by reducing stream-groundwater interactions, which can reduce a stream's capacity to naturally attenuate nitrate. Meadowbrook Creek, a first order urban stream in Syracuse, New York, has an inverse urbanization gradient, with heavily urbanized headwaters that are disconnected from the floodplain and downstream reaches that have intact riparian floodplains and connection to riparian aquifers. This system allows assessment of how stream-groundwater interactions in urban streams impact the net sources and sinks of nitrate at the reach scale. We used continuous (15-min) streamflow measurements and weekly grab samples at three gauging stations positioned longitudinally along the creek to develop continuous nitrate load estimates at the inlet and outlet of two contrasting reaches. Nitrate load estimates were determined using a USGS linear regression model, RLOADEST, and differences between loads at the inlet and outlet of contrasting reaches were used to quantify nitrate sink and source behaviour year-round. We observed a nitrate load of 1.4 × 104 kg NO3 per water year, on average, at the outlet of the urbanized reach while the nitrate load at the outlet of the downstream, connected reach was 1.0 × 104 kg NO3 per water year, on average. We found the more heavily urbanized, hydrologically-disconnected reach was a net source of nitrate regardless of season. In contrast, stream-groundwater exchange caused the hydrologically connected reach to be both a source and sink for nitrate, depending on time of year. Both reaches alter nitrate source and sink behaviour at various spatiotemporal scales. Groundwater connection in the downstream, connected reach reduces annual nitrate loads and provides more opportunities for sources and sinks of nitrate year-round than the hydrologically disconnected stream reach. Mechanisms include groundwater discharge into the stream with variable nitrate concentrations, surface-water groundwater interactions that foster denitrification, and stream load loss to surrounding near-stream aquifers. This study emphasizes how loads are important in understanding how stream-groundwater interactions impact reach scale nitrate export in urban streams.  相似文献   

17.
Increased bank stability by riparian vegetation can have profound impacts on channel morphology and dynamics in low‐energy systems, but the effects are less clear in high‐energy environments. Here we investigate the role of vegetation in active, aggrading braided systems at Mount Pinatubo, Philippines, and compare results with numerical modeling results. Gradual reductions in post‐eruption sediment loads have reduced bed reworking rates, allowing vegetation to finally persist year‐round on the Pasig‐Potrero and Sacobia Rivers. From 2009–2011 we collected data detailing vegetation extent, type, density, and root strength. Incorporating these data into the RipRoot model and BSTEM (Bank Stability and Toe Erosion Model) shows cohesion due to roots increases from zero in unvegetated conditions to > 10·2 kPa in densely‐growing grasses. Field‐based parameters were incorporated into a cellular model comparing vegetation strength and sediment mobility effects on braided channel dynamics. The model shows both low sediment mobility and high vegetation strength lead to less active systems, reflecting trends observed in the field. The competing influence of vegetation strength versus channel dynamics is a concept encapsulated in a dimensionless ratio between timescales for vegetation growth and channel reworking known as T*. An estimated T* between 1·5 and 2·3 for the Pasig‐Potrero River suggests channels are still very mobile and likely to remain braided until aggradation rates decline further. Vegetation does have an important effect on channel dynamics, however, by focusing flow and thus aggradation into the unvegetated fraction of braidplain, leading to an aggradational imbalance and transition to a more avulsive state. The future trajectory of channel–vegetation interactions as sedimentation rates decline is complicated by strong seasonal variability in precipitation and sediment loads, driving incision and armoring in the dry season. By 2011, incision during the dry season was substantial enough to lower the water‐table, weaken existing vegetation, and allow for vegetation removal in future avulsions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Feedback between hydrogeomorphological processes and riparian plants drives landscape dynamics and vegetation succession in river corridors. We describe the consequences of biogeomorphological feedback on the formation and dynamics of vegetated fluvial landforms based on observations from the channelized Isère River in France. The channel was laterally confined with embankments and mostly straightened. From the beginning of the 1970s to the end of the 1990s, alternate bars were progressively but heavily colonized by vegetation. This context presented an exceptional opportunity to analyse temporal adjustments between fluvial landforms and vegetation succession from bare gravel bars to mature upland forest as the consequence of biogeomorphological interactions. Based on a GIS analysis of aerial photographs (between 1948 and 1996), we show that the spatiotemporal organization of vegetated bars within the river channel observed in 1996 resulted from a bioconstruction and biostabilization effect of vegetation and interactions between bars of varying age, size and mobility. Field measurements in 1996 reflected how a strong positive feedback between sedimentary dynamics and riparian vegetation succession resulted in the construction of the vegetated bars. A highly significant statistical association of geomorphological and vegetation variables (RV of co-inertia analysis = 0.41, p < 0.001) explained 95% of the variability in just one axis, supporting the existence of very strong feedback between geomorphological changes (i.e. the transformation of small bare alternate bars to fluvial landforms covered by mature upland forest, and vegetation succession). Such dynamics reflect the fluvial biogeomorphological successions model, as described by the authors earlier. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
Fluvial biomorphodynamics in actively meandering rivers entail interactions between hydromorphodynamics and pioneering tree species that have eco-engineering effects. Here we study spatiotemporal patterns of vegetation patches smaller than 150 m2 in a 4 km reach of the river Allier in France in order to unravel causes for tree persistence and mortality and identify spatial trends across the river valley. To this end we analysed aerial photographs by object-based image analysis over a period of 56 years and tracked individual patches through time. Furthermore the cover and surface age of the study reach were classified. The large-scale shifts of channels, bars and vegetation are consistent with the meandering process and chute cutoffs. However, the spatiotemporal patterns of the vegetation patches are surprising in that they are ubiquitous and have ages up to decades on the highly dynamic meander belt, but hardly expand into larger vegetation patches. Patches disappear exponentially as a function of their age, and faster so in the last decades. Causes are amalgamation into the riparian forest flanking the meander belt and mortality likely due to desiccation or erosion. Patches have a higher probability of survival when further away from the active channel and closer to high vegetation patches and valley boundary. The window of opportunity of vegetation settlement widens towards the valley boundaries and in floodplain lows of former channels and chutes. These results imply a gradual cross-valley gradient of riparian vegetation settling, survival and succession. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

20.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号