首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The development of high resolution LiDAR digital terrain models (DTMs) has enabled the exploration of the statistical signature of morphology on curvature distributions. This work analyzes Minimum Curvature distributions to identify the statistical signature of two types of LiDAR‐DTM errors (outliers and striping artifacts) in the derived estimates, rather than morphology itself. The analysis shows the importance of modeling these errors correctly, in relation to the scale of analysis and DTM resolution, in order to have reliable curvature estimates. Nine DTMs of different morphological areas are considered, and grouped into a training dataset (without errors) and a test dataset (with errors). In the training dataset, the original DTMs are considered as true values; errors are then applied to these data. Minimum Curvature is computed at multiple scales from each DTM: changes in curvature distributions due only to morphology and scale are characterized from the original data; error effects are then identified from the datasets with simulated errors, and validated against the test dataset. The analysis shows that outliers and striping artifacts can be realistically simulated by heavily left tailed distributions. For DTMs without errors, the scale‐dependent change in curvature distribution is primarily controlled by real morphology. When DTMs include errors, curvature distributions become controlled by these errors, whose propagation depends on error distribution, error spatial correlation, and the scale of analysis. This study shows that the curvature distributions are impacted upon differently by striping artifacts and outliers, and that these are clearly distinguishable from the signal of morphological features: a scale‐dependent change in curvature distribution can therefore be interpreted as the signature of these specific errors, rather than morphology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, digital surface models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub‐metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. This paper describes the development of a LiDAR post‐processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post‐processing produces a digital terrain model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR‐derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1 m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a two‐dimensional finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features (such as buildings and roads) and taller vegetation features (such as trees and hedges). This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Digital terrain models (DTMs) are a standard data source for a variety of applications. DTM differencing is also widely used for detection and quantification of topographic changes. While several investigations have been made on the accuracy of DTMs, calculated from different kinds of input data, little has been published on the error of DTM differencing, specifically for the quantification of geomorphological processes. In this study, an extensive, multi‐temporal set of airborne laser scanning (ALS) data is used to investigate the accuracy of topographic change calculations in a high alpine environment, caused by different geomorphic processes. Differences from DTMs with cell sizes ranging from 0.25 m to 10 m were calculated and compared to very accurate point‐to‐point calculations for a variety of processes and in nearby stable areas which show no significant surface changes. The representativeness of the DTM differences is then compared to the terrain slope and surface roughness of the investigated areas to show the influence of these parameters on the errors in the differences. Those errors are then taken into account for analyses of the applicability of different cell sizes for the investigation of geomorphic processes with different magnitudes and over different time periods. The analyses show that the error of DTM differences increases with lower point densities and higher roughness and slope values. The higher the error, the greater the differences between two elevation datasets have to be in order to quantify certain morphodynamic processes. Lower point densities and higher roughness and slope values require greater process rates or longer time intervals in order to obtain valid results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Sediments produced by landslides are crucial in the sediment yield of a catchment, debris flow forecasting, and related hazard assessment. On a regional scale, however, it is difficult and time consuming to measure the volumes of such sediment. This paper uses a LiDAR‐derived digital terrain model (DTM) taken in 2005 and 2010 (at 2 m resolution) to accurately obtain landslide‐induced sediment volumes that resulted from a single catastrophic typhoon event in a heavily forested mountainous area of Taiwan. The landslides induced by Typhoon Morakot are mapped by comparison of 25 cm resolution aerial photographs taken before and after the typhoon in an 83.6 km2 study area. Each landslide volume is calculated by subtraction of the 2005 DTM from the 2010 DTM, and the scaling relationship between landslide area and its volume are further regressed. The relationship between volume and area are also determined for all the disturbed areas (VL = 0.452AL1.242) and for the crown areas of the landslides (VL = 2.510AL1.206). The uncertainty in estimated volume caused by use of the LiDAR DTMs is discussed, and the error in absolute volume estimation for landslides with an area >105 m2 is within 20%. The volume–area relationship obtained in this study is also validated in 11 small to medium‐sized catchments located outside the study area, and there is good agreement between the calculation from DTMs and the regression formula. By comparison of debris volumes estimated in this study with previous work, it is found that a wider volume variation exists that is directly proportional to the landslide area, especially under a higher scaling exponent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The resolution and accuracy of digital elevation models (DEMs) can affect the hydraulic simulation results for predicting the effects of glacial lake outburst floods (GLOFs). However, for the Tibetan Plateau, high‐quality DEM data are often not available, leaving researchers with near‐global, freely available DEMs, such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) and the Shuttle Radar Topography Mission data (SRTM) for hydraulic modelling. This study explores the suitability of these two freely available DEMs for hydraulic modelling of GLOFs. Our study focused on the flood plain of a potentially dangerous glacial lake in southeastern Tibet, to evaluate the elevation accuracy of ASTER GDEM and SRTM, and their suitability for hydraulic modelling of GLOFs. The elevation accuracies of ASTER GDEM and SRTM were first validated against field global position system (GPS) survey points, and then evaluated with reference to the relatively high precision of 1:50 000 scale DEM (DEM5) constructed from aerial photography. Moreover, the DEM5, ASTER GDEM and SRTM were used as basic topographic data to simulate peak discharge propagation, as well as flood inundation extent and depth in the Hydrologic Engineering Center's River Analysis System one‐dimensional hydraulic model. Results of the three DEM predictions were compared to evaluate the suitability of ASTER GDEM and SRTM for GLOF hydraulic modelling. Comparisons of ASTER GDEM and SRTM each with DEM5 in the flood plain area show root‐mean‐square errors between the former two as ± 15·4 m and between the latter two as ± 13·5 m. Although SRTM overestimates and ASTER GDEM underestimates valley floor elevations, both DEMs can be used to extract the elevations of required geometric data, i.e. stream centre lines, bank lines and cross sections, for flood modelling. However, small errors still exist in the cross sections that may influence the propagation of peak discharge. The flood inundation extent and mean water depths derived from ASTER GDEM predictions are only 2·2% larger and 2·3‐m deeper than that of the DEM5 predictions, whereas the SRTM yields a flood zone extent 6·8% larger than the DEM5 prediction and a mean water depth 2·4‐m shallower than the DEM5 prediction. The modelling shows that, in the absence of high‐precision DEM data, ASTER GDEM or SRTM DEM can be relied on for simulating extreme GLOFs in southeast Tibet. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Surface runoff plays an important role in contaminant transport, nutrient loss, soil erosion and peak discharges in streams and rivers. Because it is the result of a variety of complex hydrological processes, estimating surface runoff using physically based hydrological models is challenging. Upscaling of physical soil properties is necessary to cope with the limits of computational power in surface runoff modelling. In flat landscapes, the (micro)topographic surface controls the onset and progression of surface runoff on saturated soils during rain events. Therefore, its proper representation is crucial when attempting to model and predict surface runoff. In this study, the influence of microtopography (centimetre scale) on estimations of maximum depression storage (MDS), random roughness (RR) and the connectivity threshold (CT) is explored. These properties are selected because they often serve as surface runoff indicators in hydrological modelling. To characterize microtopography, a terrestrial laser scanner (TLS) is used to generate a digital terrain model (DTM) of the study site with a horizontal spatial resolution of 5 cm. MDS, RR and CT are then calculated and compared to the values generated from the publicly available Dutch national DTM dataset with a resolution of 50 cm. Our results show considerable differences in MDS, RR and CT when calculated for the different input resolution datasets. Using DTMs that do not sufficiently capture microtopography leads to underestimation of MDS and RR, and to overestimation of CT. Our findings indicate that surface runoff indicators, and thereby the surface runoff response of a saturated surface to rainfall events, are defined at scales smaller than the scales of typically available DTMs. Understanding surface runoff through modelling studies therefore requires a framework that accounts for this lack of information arising from using coarser resolution DTMs. We demonstrate a linear relationship between MDS values generated from the different resolution DTMs. This opens the possibility of using empirical scaling relationships between high- and lower-resolution DTMs to account for microtopography. Repetition of our measurements on similar surfaces would contribute to establishing such empirical scaling relationships. Our results should be seen as indicative of flat landscapes and surfaces where centimetre scale microtopography is relevant.  相似文献   

8.
In August 2009, the typhoon Morakot, characterized by a cumulative rainfall up to 2884 mm in about three days, triggered thousands of landslides in Taiwan. The availability of LiDAR surveys before (2005) and after (2010) this event offers a unique opportunity to investigate the topographic signatures of a major typhoon. The analysis considers the comparison of slope–area relationships derived by LiDAR digital terrain models (DTMs). This approach has been successfully used to distinguish hillslope from channelized processes, as a basis to develop landscape evolution models and theories, and understand the linkages between landscape morphology and tectonics, climate, and geology. We considered six catchments affected by a different degree of erosion: three affected by shallow and deep‐seated landslides, and three not affected by erosion. For each of these catchments, 2 m DTMs were derived from LiDAR data. The scaling regimes of local slope versus drainage area suggested that for the catchments affected by landslides: (i) the hillslope‐to‐valley transitions morphology, for a given value of drainage area, is shifted towards higher value of slopes, thus indicating a likely migration of the channelized processes and erosion toward the catchment boundary (the catchment head becomes steeper because of erosion); (ii) the topographic gradient along valley profiles tends to decrease progressively (the valley profile becomes gentler because of sediment deposition after the typhoon). The catchments without any landslides present a statistically indistinguishable slope–area scaling regime. These results are interesting since for the first time, using multi‐temporal high‐resolution topography derived by LiDAR, we demonstrated that a single climate event is able to cause significant major geomorphic changes on the landscape, detectable using slope–area scaling analysis. This provides new insights about landscape evolution under major climate forcing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The availability of high‐resolution, multi‐temporal, remotely sensed topographic data is revolutionizing geomorphic analysis. Three‐dimensional topographic point measurements acquired from structure‐from‐motion (SfM) photogrammetry have been shown to be highly accurate and cost‐effective compared to laser‐based alternatives in some environments. Use of consumer‐grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community despite the details of these instruments being largely overlooked in current SfM literature. A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimizing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of comparing morphological sediment budgets computed from SfM‐ and LiDAR‐derived DTMs. Case study results are compared to existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget. Greater information capacity of source imagery was found to increase pixel matching quality, which produced eight times greater point density and six times greater accuracy. When propagated through volumetric change analysis, individual DTM accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100 000 m3) on an unvegetated fluvial surface; change detection determined from repeat LiDAR and SfM surveys differed by about 10%. Simple camera selection criteria increased accuracy by 64%; configuration settings or image post‐processing techniques increased point density by 5–25% and decreased processing time by 10–30%. Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown to be a superior metric, explaining 68% of the variability in mean absolute vertical error. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

10.
FELIX T. PORTMANN 《水文研究》1997,11(10):1377-1392
In hydrological modelling of runoff processes, including water balance, various input data and parameters can be acquired or estimated by the use of remote sensing (RS) techniques.The acquisition and use of synoptic RS areal information rather than traditional point information is an important issue in hydrology. Hydrological models allow runoff/water balance in catchments to be calculated and flow routing within flow channels to be done. For runoff and water balance computations land use, soil moisture, detection of snow and ice, digital terrain models (DTM), as well as hydrometeorological information and discharge are important. For flow routing, water level information, geometric–topographic information such as cross-sections for normal and flood conditions, coefficient of roughness and velocity of flow and its cross-sectional distribution are required. In addition, water level information (lower and upper level) is needed for shipping and for design purposes. In the German part of the River Rhine catchment, several focus areas in the December 1993–January 1994 and January 1995 floods were covered with RS data [ERS-1 and airborne SAR, both C-band VV, passive microwave (18·7, 36·5, 89 GHz), TIR, UV, aerial photographs (b/w PAN, b/w NIR)], giving a good opportunity for a comparison of methods. Evaluation is still continuing. The importance of soil saturation for flood generation and, therefore, for flood monitoring, was shown on this occasion. The use of ERS SAR data for soil moisture estimation is currently being investigated by the Federal Institute of Hydrology. Also, the need for emergency schemes for data acquisition and easy, quick and affordable RS data dissemination was demonstrated. The assimilation of RS data with GIS information such as DTMs, including relevant topographic features like dams, which is omitted in currently available raster digital elevation models, is promising. RS altimetry techniques can be a step towards high resolution DTMs for hydrological purposes. Ground truth reference data are still needed. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The potential for geomorphological mapping and quantitative calculations of light detection and ranging (LiDAR) data within fluvial geomorphology was studied for two river catchments within Belgium (Dijle and Amblève), which differ in physical settings and floodplain morphology. Two commercial, of‐the‐shelf LiDAR datasets with different specifications (horizontal resolution and vertical accuracy) were available for parts of the floodplains of both catchments. Real‐time kinematic (RTK) Global Positioning System (GPS) data were used as ground truth for error calculations. Qualitative analysis of LiDAR data allowed the identification of former channel patterns, levees, colluvial hillslope and fan deposits. These results were confirmed by field data, topographic surveys and historical maps. The pixel resolution proved to be an important factor in the identification of small landforms: only features with a width equal to or larger than LiDAR resolution can be detected. This poses limits on the usability of regionally available LiDAR data, which often have a horizontal resolution of several metres. The LiDAR data were also used in a quantitative analysis of channel dynamics. In the study area, the width of the Dijle River channel increased 3 m on average between 1969 and 2003. A sediment budget of channel processes for the period 1969–2003 indicated a total river bank erosion of 16·1 103 m3 and a total within channel deposition of 7·1 103 m3, resulting in a net river erosion of 9·0 103 m3 or c. 0·4 Mg year?1 per metre river length. Sequential LiDAR data can in theory be used to calculate vertical sedimentation rates, as long as there is control on the error of the reference levels used. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

13.
In floodplains, anthropogenic features such as levees or road scarps, control and influence flows. An up‐to‐date and accurate digital data about these features are deeply needed for irrigation and flood mitigation purposes. Nowadays, LiDAR Digital Terrain Models (DTMs) covering large areas are available for public authorities, and there is a widespread interest in the application of such models for the automatic or semiautomatic recognition of features. The automatic recognition of levees and road scarps from these models can offer a quick and accurate method to improve topographic databases for large‐scale applications. In mountainous contexts, geomorphometric indicators derived from DTMs have been proven to be reliable for feasible applications, and the use of statistical operators as thresholds showed a high reliability to identify features. The goal of this research is to test if similar approaches can be feasible also in floodplains. Three different parameters are tested at different scales on LiDAR DTM. The boxplot is applied to identify an objective threshold for feature extraction, and a filtering procedure is proposed to improve the quality of the extractions. This analysis, in line with other works for different environments, underlined (1) how statistical parameters can offer an objective threshold to identify features with varying shapes, size and height; (2) that the effectiveness of topographic parameters to identify anthropogenic features is related to the dimension of the investigated areas. The analysis also showed that the shape of the investigated area has not much influence on the quality of the results. While the effectiveness of residual topography had already been proven, the proposed study underlined how the use of entropy can anyway provide good extractions, with an overall quality comparable to the one offered by residual topography, and with the only limitation that the extracted features are slightly wider than the investigated one. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrological modelling is an important tool for research, policy, and management, but uncertainty remains about parameters transferability from field observations made at small scale to models at the catchment scale and larger. This uncertainty compels the need to develop parameter relationships that are translatable across scale. In this study, we compare the changes to modelled processes as resolution is coarsened from 100‐m to 1‐km in a topographically complex, 255‐km2 Colorado River headwater catchment. We conducted a sensitivity analysis for hydraulic conductivity (K) and Manning's n parameters across four orders of magnitude. Results showed that K acts as a moderator between surface and subsurface contributions to streamflow, whereas n moderates the duration of high intensity, infiltration‐excess flow. The parametric sensitivity analysis informed development of a new method to scale effective hydraulic conductivity across modelling resolutions in order to compensate for the loss of topographic gradients as resolution is coarsened. A similar mathematical relationship between n and lateral resolution changes was not found, possibly because n is also sensitive to time discretization. This research provides an approach to translate hydraulic conductivity parameters from a calibrated coarse model to higher resolutions where the number of simulations are limited by computational demand.  相似文献   

15.
We test the acquisition of high‐resolution topographic and terrain data using hand‐held smartphone technology, where the acquired images can be processed using technology freely available to the research community. This is achieved by evaluating the quality of digital terrain models (DTM) of a river bank and an Alpine alluvial fan generated with a fully automated, free‐to‐use, structure‐from‐motion package and a smartphone integrated camera (5 megapixels) with terrestrial laser scanning (TLS) data used to provide a benchmark. To evaluate this approach a 16.2‐megapixel digital camera and an established, commercial, close‐range and semi‐automated software are also employed, and the product of the four combinations of the two types of cameras and software are compared. Results for the river bank survey demonstrate that centimetre‐precision DTMs can be achieved at close range (10 m or less), using a smartphone camera and a fully automated package. Results improve to sub‐centimetre precision with either higher‐resolution images or by applying specific post‐processing techniques to the smartphone DTMs. Application to an entire Alpine alluvial fan system shows the degradation of precision scales linearly with image scale, but that (i) the expected level of precision remains and (ii) difficulties in separating vegetation and sediment cover within the results are similar to those typically found when using other photo‐based techniques and laser scanning systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The Manning equation is one of the most widely used formulae for calculating the velocity of shallow overland flow in hydrological and erosion models. Precise estimation of the Manning's friction coefficient (n) is critical to determining overland flow and soil erosion processes. Few studies have been conducted to quantify the effects of sediment load on Manning's n on steep slopes. This study was conducted to investigate the potential effects of sediment load on Manning's n in a flume with a fixed bed, under wide ranges of hydraulics and sediment loads. Slope gradient varied from 8·7 to 34·2%, unit flow rate from 0·66 to 5·26 × 10?3 m2 s?1, and sediment load from 0 to 6·95 kg m?1 s?1. The Reynolds number ranged from 350 to 5899. Results showed that Manning's n varied in both sediment‐free and sediment‐laden flows ranging from 0·012 to 0·055. The apparent Manning's coefficients of sediment‐laden flow were much greater than those of sediment‐free flow. The mean Manning coefficient of sediment‐laden flow was 51·27% greater than the mean value of sediment‐free flow. For sediment‐laden flow, Manning's n could be estimated with a power function of unit flow discharge and sediment content. Further studies are needed to quantify the potential effects of sediment load on the Manning's n on erodible beds and in fields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The reduction of gravity-field related quantities (e.g., gravity anomalies, geoid heights) due to the topography plays a crucial role in both geodetic and geophysical applications, since in the former it is an intermediate step towards geoid prediction and in the latter it reveals lateral as well as radial density contrasts and infers the geology of the area under study. The computations are usually carried out by employing a DTM and/or a DBM, which describe the topography and bathymetry, respectively. Errors in these DTMs/DBMs will introduce errors in the computed topographic effects, while poor spatial resolution of the topography and bathymetry models will result in aliasing effects to both gravity anomalies and geoid heights, both influencing the accuracy of the estimated solutions. The scope of this work is twofold. First, a validation and accuracy assessment of the SRTM 3″ (90 m) DTM over Greece is performed through comparisons with existing global models as well as with the Greek 450 m national DTMs. Whenever a misrepresentation of the topography is identified in the SRTM data, it is “corrected” using the local 450 m DTM. This process resulted in an improved SRTM DTM called SRTMGr, which was then used to determine terrain effects to gravity field quantities. From the fine-resolution SRTMGr DTMs, coarser models of 15″, 30″, 1′, 2′ and 5′ have been determined in order to investigate aliasing effects on both gravity anomalies and geoid heights by computing terrain effects at variable spatial resolutions. From the results acquired in two test areas, it was concluded that SRTMGr provides similar results to the local DTM making the use of other older global DTMs obsolete. The study for terrain aliasing effects proved that when high-resolution and accuracy gravity and geoid models are needed, then the highest possible resolution DTM should be employed to compute the respective terrain effects. Based on the results acquired from two the test areas a corrected SRTMGr DTM has been compiled for the entire Greek territory towards the development of a new gravimetric geoid model. Results from that analysis are presented based on the well-known remove-compute-restore method, employing land and marine gravity data, EGM08 as a reference geopotential model and the SRTMGr DTM for the computation of the RTM effects.  相似文献   

18.
The general nature of bulk flow within bedrock single‐channel reaches has been considered by several studies recently. However, the flow structure of a bedrock‐constrained, large river with a multiple channel network has not been investigated previously. The multiple channel network of the Siphandone wetlands in Laos, a section of the Mekong River, was modelled using a steady one‐dimensional hydraulic model. The river network is characterized by a spatially‐varying channel‐form leading to significant changes in the bulk flow properties between and along the channels. The challenge to model the bulk flow in such a remote region was the lack of ideal boundary conditions. The flow models considered both low flow, high inbank and overbank flows and were calibrated using SPOT satellite sensor imagery and limited field data concerning water levels. The application of the model highlighted flow characteristics of a large multi‐channel network and also further indicated the field data that would be required to properly characterize the flow field empirically. Important results included the observation that adjacent channels within the network had different water surface slopes for the same moments in time; thus calibration data for modelling similar systems needs to account for these significant local differences. Further, the in‐channel hydraulic roughness coefficient strongly varied from one cross‐section to the next (Manning's ‘n’ range: 0·01 to 0·10). These differences were amplified during low flow but persisted in muted form during high discharges. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Remote Sensing technologies are capable of providing high-resolution spatial data needed to set up advanced flood simulation models. Amongst them, aerial Light Detection and Ranging (LiDAR) surveys or Airborne Laser Scanner (ALS) systems have long been used to provide digital topographic maps. Nowadays, Remote Sensing data are commonly used to create Digital Terrain Models (DTMs) for detailed urban-flood modelling. However, the difficulty of relying on top-view LiDAR data only is that it cannot detect whether passages for floodwaters are hidden underneath vegetated areas or beneath overarching structures such as roads, railroads, and bridges. Such (hidden) small urban features can play an important role in urban flood propagation. In this paper, a complex urban area of Kuala Lumpur, Malaysia was chosen as a study area to simulate the extreme flooding event that occurred in 2003. Three different DTMs were generated and used as input for a two-dimensional (2D) urban flood model. A top-view LiDAR approach was used to create two DTMs: (i) a standard LiDAR-DTM and (ii) a Filtered LiDAR-DTM taking into account specific ground-view features. In addition, a Structure from Motion (SfM) approach was used to detect hidden urban features from a sequence of ground-view images; these ground-view SfM data were then combined with top-view Filtered LiDAR data to create (iii) a novel Multidimensional Fusion of Views-Digital Terrain Model (MFV-DTM). These DTMs were then used as a basis for the 2D urban flood model. The resulting dynamic flood maps are compared with observations at six measurement locations. It was found that when applying only top-view DTMs as input data, the flood simulation results appear to have mismatches in both floodwater depths and flood propagation patterns. In contrast, when employing the top-ground-view fusion approach (MFV-DTM), the results not only show a good agreement in floodwater depth, but also simulate more correctly the floodwater dynamics around small urban feature. Overall, the new multi-view approach of combining top-view LiDAR data with ground-view SfM observations shows a good potential for creating an accurate digital terrain map which can be then used as an input for a numerical urban flood model.  相似文献   

20.
Through laboratory experiments conducted in a grass‐lined flume, the hydraulic resistance of grass is measured and quantified. For the grass examined, it is found that Manning's n value is greater than those recommended in well‐established texts such as Chow (1959. Open Channel Flow. McGraw‐Hill: Singapore), relatively lower than those predicted by nUR methods, but corresponds well with the value found from calibration studies of two‐ and three‐dimensional numerical models. The assumption of a uniform Manning's n value with flow depth, which is often made in numerical modelling, may be invalid depending on the relative submergence of the vegetation. Drag coefficients are evaluated for a method applicable to three‐dimensional numerical models. Further detailed experimental investigation and application of these approaches within a numerical modelling framework is now recommended. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号