首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Consideration of the mechanisms associated with the granular disintegration of rock has been limited by available data. In most instances, both the size of the transducer and the nature of the study have negated any applicability of the resulting data to the understanding of grain‐to‐grain separation within rock. The application of microthermocouples (≤0·15 mm diameter) and high‐frequency logging (20 s intervals) at a taffoni site on southern Alexander Island and from a rock outcrop on Adelaide Island (Antarctica) provide new data pertaining to the thermal conditions, at the grain scale, of the rock surface. The results show that thermal changes (ΔT/t) can be very high, with values of 22 °C min?1 being recorded. Although available data indicate that there can be differences in frequency and magnitude of ?uctuations as a function of aspect, all aspects experienced some large magnitude (≥2 °C min?1) ?uctuations. Further, in many instances, large thermal changes in more than one direction could occur within 1 min or in subsequent minutes. These data suggest that the surface grains experience rapidly changing stress ?elds that may, with time, effect fatigue at the grain boundaries; albedo differences between grains and the resulting thermal variations are thought to exacerbate this. The available data failed to show any indication of water freezing (an exotherm) and thus it is suggested that microgelivation may not play as large a role in granular breakdown as is often postulated for cold regions, and that in this dry, Antarctic region thermal stress may play a signi?cant role. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
In arid environments, thermal oscillations are an important source of rock weathering. Measurements of temperature have been made on the surface of rocks in a desert environment at a sampling interval of 0·375 s, with simultaneous measurements of wind speed, air temperature, and incoming shortwave radiation. Over timescales of hours, the temperature of the rock surface was determined primarily by shortwave radiation and air temperature, while rapid temperature variations, high dT/dt, at intervals of seconds or less, were determined by wind speed. The maximum values of temperature change and time spent above 2°C min?1 increased at high measurement rates and were much higher than previously reported. The maximum recorded value of dT/dt was 137°C min?1 and the average percentage time spent above 2°C min?1 was ~70 ± 13%. Maximum values of dT/dt did not correlate with the maximum values of time spent above 2°C min?1. Simultaneous measurements of two thermocouples 5·5 cm apart on a single rock surface had similar temperature and dT/dt values, but were not correlated at sampling intervals of less than 10 s. It is suggested that this is resulting from rapid fluctuations due to small spatial and timescale wind effects that are averaged out when data is taken at longer sampling intervals, ~10 s or greater. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

3.
Rock glaciers, a feature associated with at least discontinuous permafrost, provide important topoclimatic information. Active and inactive rock glaciers can be used to model current permafrost distribution. Relict rock glacier locations provide paleoclimatic information to infer past conditions. Future warmer climates could cause permafrost zones to shrink and initiate slope instability hazards such as debris flows or rockslides, thus modeling change remains imperative. This research examines potential past and future permafrost distribution in the Colorado Front Range by calibrating an existing permafrost model using a standard adiabatic rate for mountains (0·5 °C per 100 m) for a 4 °C range of cooler and warmer temperatures. According to the model, permafrost currently covers about 12 per cent (326·1 km2) of the entire study area (2721·5 km2). In a 4 °C cooler climate 73·7 per cent (2004·4 km2) of the study area could be covered by permafrost, whereas in a 4°C warmer climate almost no permafrost would be found. Permafrost would be reduced severely by 93·9 per cent (a loss of 306·2 km2) in a 2·0 °C warmer climate; however, permafrost will likely respond slowly to change. Relict rock glacier distribution indicates that mean annual air temperature (MAAT) was once at least some 3·0 to 4·0 °C cooler during the Pleistocene, with permafrost extending some 600–700 m lower than today. The model is effective at identifying temperature sensitive areas for future monitoring; however, other feedback mechanisms such as precipitation are neglected. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Thermal loading of rocks at high temperatures induces changes in their mechanical properties. In this study, a hard gabbro was tested in the laboratory. Specimens were slowly heated to a maximum temperature of 1,000°C. Subsequent to the thermal loading, specimens were subjected to uniaxial compression. A drastic decrease of both unconfined compressive strength and elastic moduli was observed. The thermal damage of the rock was also highlighted by measuring elastic wave velocities and by monitoring acoustic emissions during testing. The micromechanisms of rock degradation were investigated by analysis of thin sections after each stage of thermal loading. It was found that there is a critical temperature above which drastic changes in mechanical properties occur. Indeed, below a temperature of 600°C, microcracks start developing due to a difference in the thermal expansion coefficients of the crystals. At higher temperatures (above 600°C), oxidation of Fe2+ and Mg2+, as well as bursting of fluid inclusions, are the principal causes of damage. Such mechanical degradation may have dramatic consequences for many geoengineering structures.  相似文献   

5.
Relationships between riverbed morphology, concavity, rock type and rock uplift rate are examined to independently unravel the contribution of along-strike variations in lithology and rates of vertical deformation to the topographic relief of the Oregon coastal mountains. Lithologic control on river profile form is reflected by convexities and knickpoints in a number of longitudinal profiles and by general trends of concavity as a function of lithology. Volcanic and sedimentary rocks are the principal rock types underlying the northern Oregon Coast Ranges (between 46°30′ and 45°N) where mixed bedrock–alluvial channels dominate. Average concavity, θ, is 0·57 in this region. In the alluviated central Oregon Coast Ranges (between 45° and 44°N) values of concavity are, on average, the highest (θ = 0·82). South of 44°N, however, bedrock channels are common and θ = 0·73. Mixed bedrock–alluvial channels characterize rivers in the Klamath Mountains (from 43°N south; θ = 0·64). Rock uplift rates of ≥0·5 mm a−1, mixed bedrock–alluvial channels, and concavities of 0·53–0·70 occur within the northernmost Coast Ranges and Klamath Mountains. For rivers flowing over volcanic rocks θ = 0·53, and θ = 0·72 for reaches crossing sedimentary rocks. Whereas channel type and concavity generally co-vary with lithology along much of the range, rivers between 44·5° and 43°N do not follow these trends. Concavities are generally greater than 0·70, alluvial channels are common, and river profiles lack knickpoints between 44·5° and 44°N, despite the fact that lithology is arguably invariant. Moreover, rock uplift rates in this region vary from low, ≤0·5 mm a−1, to subsidence (<0 mm a−1). These observations are consistent with models of transient river response to a decrease in uplift rate. Conversely, the rivers between 44° and 43°N have similar concavities and flow on the same mapped bedrock unit as the central region, but have bedrock channels and irregular longitudinal profiles, suggesting the river profiles reflect a transient response to an increase in uplift rate. If changes in rock uplift rate explain the differences in river profile form and morphology, it is unlikely that rock uplift and erosion are in steady state in the Oregon coastal mountains. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Spinifex-like textured metaperidotites from the Higo Metamorphic Rocks (HMR), west-central Kyushu, Japan, may be formed by high-pressure dehydration of antigorite, and may indicate deep subduction of serpentinite reaching a pressure–temperature condition of 1.6 GPa and 740–750 °C. Three rock types have been identified based on mineral assemblage and rock texture: Type I (L) consisting of medium-grained (1–5 cm long) olivine + enstatite + chromite ±tremolite with secondary talc and anthophyllite that occurs in low-grade metamorphic rocks of the biotite zone, Type I (H) of coarse-grained (up to 10 cm long) olivine + enstatite (with clinoenstatite lamella) + chromite ±tremolite with secondary talc that occurs in high-grade metamorphic rocks of the garnet-cordierite zone, and Type II composed of Al-spinel + chlorite + olivine + apatite + ilmenite with minor sodic gedrite in the garnet-cordierite zone together with Type I (H). Olivines in all rock types are mostly serpentinized during exhumation. The chromite-olivine thermometer gives 560–690 °C for Type I (L) rocks, and the spinel-olivine thermometer gives 610–740 °C for Type II rocks. The peak metamorphic pressure will be higher than 1.6 GPa based on the location of the experimentally determined invariant point (P = 1.6 GPa and T = 670 °C) of antigorite + forsterite + enstatite + talc + H2O. This estimate is consistent with the occurrence of chlorite in Type II rocks, which is stable up to 890 °C at 2.0 GPa. The spinifex-like textured metaperidotites occur as small bodies in the low P/T type gneisses, implying tectonic juxtaposition of them probably during exhumation of the HMR. Recent findings of medium pressure (0.9–1.2 GPa) granulites and gneisses from the HMR may indicate that the HMR has a deep root into the wedge mantle from which the spinifex-like textured metaperidotites have derived.  相似文献   

8.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

9.
Graeme L. Scott 《Island Arc》2004,13(2):370-386
Abstract The influence of major active faults on rock alteration and stable isotope geochemistry is described for the Tongonan geothermal field, Leyte, the Philippines. In the Pliocene, acid alteration with characteristic iron enrichment (3 g/100 g) and calcium depletion (2 g/100 g) occurred along a Riedel shear fault in the Malitbog sector, and initial minor acid alteration also occurred along a similar shear in the Mahiao sector. Later, sodium metasomatism (5 g/100 g) coincided with the highest aquifer chloride (10 000 mg/kg) as a result of dissociation of saline magmatic fluids discharging through the reservoir rocks in the Upper Mahiao. The incursion of magmatic fluids (possibly δD 35‰, δ18O +7‰) set up a vigorous convection cell of meteoric water, which focused around low‐angle (L) shears centered in the Sambaloran sector. Meteoric water (δD ?35 to ?40‰, δ18O ?6 ± 1‰) depleted the reservoir in silica (6 g/100 g) and potassium (1–2 g/100 g). It also completely exchanged oxygen isotopes rapidly (within months) at high temperatures (300–400°C), and now does so continuously with fractured isotopically fresh or incompletely altered rock at small scales (centimeters or less) exposed by a 2 cm/year creep around the L shears to form a new component called geothermal water. Geothermal water mixes with meteoric water at lower temperatures (<300°C) to create the characteristic shift in δ18O of 6‰ at near constant δD (?35 ± 5‰). The 10‰ variation in δD is due to groundwater recharge derived from rain falling on steep terrain (5‰) and to enrichment of deuterium in boiling saline solutions (5‰); it is not due to two‐component mixing of meteoric with magmatic water. The low (~1) isotopic water/rock (W/R) ratios calculated from oxygen isotopes in previously published reports are meaningless, because the water contains four components (predominantly geothermal and meteoric water; <10% magmatic and rock water). W/R ratios of up to 1500 calculated from spring and rock chemistry are more realistic and, with a flow rate of approximately 50 L/s through a 30 km3 reservoir, can account for the estimated 3 My age of the system.  相似文献   

10.
Activated carbons prepared from sunflower seed hull have been used as adsorbents for the removal of acid blue 15 (AB‐15) from aqueous solution. Batch adsorption techniques were performed to evaluate the influences of various experimental parameters, e. g., temperature, adsorbent dosage, pH, initial dye concentration and contact time on the adsorption process. The optimum conditions for AB‐15 removal were found to be pH = 3, adsorbent dosage = 3 g/L and equilibrium time = 4 h at 30°C. The adsorption of AB‐15 onto the adsorbent was found to increase with increasing dosage. It was found from experimental results that the Langmuir isotherm fits the data better than the Freundlich and Temkin isotherms. The maximum adsorption capacity, Qm (at 30°C) was calculated for SF1, SF2, and SF3 as 75, 125 and 110 mg g–1 of adsorbent, respectively. It was found that the adsorption follows pseudo‐second order kinetics. The thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated. The activated carbons prepared were characterized by FT‐IR, SEM and BET analysis.  相似文献   

11.
The experimental studies done at high temperature and high pressure find that increased temperature can lead to dramatic velocity and strength reductions of most of rocks at high confining pressure[1,2]. What causes this phenomenon? Is it due to dehydrati…  相似文献   

12.
On the west side of the military road to Tibet in the Kunlun Shan, a major body of diamicton is moving slowly downslope from the ridge crest at 4800 m in a northerly and easterly direction. The material is derived from Middle Pleistocene till deposits and the underlying Pliocene alluvial gravels. More than 10 per cent of the material is composed of boulders longer than 2 m, 45 per cent has long axes between 0·5 and 2 m, while the matrix is a poorly sorted sandy loam. The mean annual air temperature is −7°C to −5°C and the mean annual precipitation is under 300 mm a−1. The diamicton lacks a vegetation cover, in contrast to meadow tundra on the surrounding slopes. The diamicton mantles the north slope of the ridge, but splits into at least 16 separate tongues which are moving down fluvially graded valleys. The average slope of the landform is about 19°, while the mean slope of the fronts of the tongues is 21°. With one exception, the slope of the fronts does not exceed 25°, unlike true rock glaciers. The diamicton is up to 40 m thick in valley 4. The active layer was 12 to 30 cm deep in July at 4780 m, increasing to 1·5 to 2 m at about 4650 m. Ice contents in the permafrost may reach 57 per cent but 30 per cent is more usual The larger boulders act as braking blocks on the upper slopes of the landform and are frozen into the permafrost. The lower parts of the landform move at under 3 cm a−1, whereas the fine-grained material in the active layer moves past the braking blocks on the upper slopes at up to 30 cm a −1. There is no direct evidence for flowage of the icy diamicton forming the deposit. It is therefore best referred to as a gelifluction slope deposit, and is the longest and most spectacular of such deposits described so far in the world. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Detrital microcline grains from sedimentary strata preserve a record of thermal evolution in the temperature range ~ 100° to 200°C which can be revealed by40Ar/39Ar age spectrum analysis. Microcline separates from deep drill hole intersections with Eocene to Miocene sediments in the Basin and Tejon Blocks of the southern San Joaquin Valley, California, analysed by the age spectrum approach show radiogenic40Ar (40Ar*) gradients that record both the slow cooling of the uplifting sediment source ~ 65 Ma ago, and a recent thermal event. This information, in conjunction with the observation of fission track annealing in the coexisting apatites, allows estimation of the temperature-time conditions of this thermal event at about 140°C for ~ 200 ka. Present and paleotemperature data is in accord with heating related to several kilometers of Pleistocene sediment deposition. Heat flow calculations suggest that this recent subsidence has depressed the thermal gradient from about 30°C km?1 to the present apparent gradient of 24°C km?1.40Ar/39Ar analysis of detrital microcline crystals yields thermochronological information in the temperature-time range of petroleum maturation and provides this technique with potential as both a useful exploration tool and as a means of probing the fundamental geodynamic processes of basin evolution.  相似文献   

14.
The toxicity of Na-pentachlorophenate to Viviparus bengalensis is investigated by batch tests with daily exchange of medium in the temperature range between 19 °C (February), 27 °C (April), 32 °C (June) and 30 °C (August) at times of exposure between 12 and 96 h. In the range of higher concentrations, pronounced abnormalities in behaviour by secreting mucus and discharging eggs and embryos occur. The LC50 are lowest for all times of exposure at 27 °C, whereas the times of survival with a given concentration are highest at 30 °C. From the LC50, 96h, 27°C = 66 μg/l results a safe concentration of only 47 μg/l Na-pentachlorophenate for Viviparus bengalensis.  相似文献   

15.
Biofiltration is a commonly practiced biological technique to remove volatile compounds from waste gas streams. From an industrial view‐point, biofilter (BF) operation should be flexible to handle temperatures and inlet load (IL) variations. A compost BF was operated at different temperatures (30–45°C) and at various inlet loading rates (ILR; 8–598 g m?3 h?1) under intermittent loading conditions. Complete removal of n‐hexane was observed at 30 and 35°C at ILRs up to 330 g m?3 h?1. Besides, 20–75% of the pollutant was removed at 40°C, corresponding to the different ILs applied to the BF. Increasing the temperature to 45°C decreased the removal efficiency (RE) significantly. A feed forward neural network was used to predict the RE of BF with temperature and ILR as the input variables. The experimental data was divided into training (2/3) and test datasets (1/3). The best structure of neural network was obtained by trial and error on the basis of the least differences between predicted and experimental values, as ascertained from their coefficient of regression (R2) values. The modeling results showed that a multilayer network with the topology 2?10?1 was able to predict BF performance effectively with R2‐value of 0.995 for the test data. The results from this study showed the predicting capability of ANNs which can be considered as an alternative for conventional knowledge‐based models.  相似文献   

16.
Hillslopes are thought to poorly record tectonic signals in threshold landscapes. Numerous previous studies of steep landscapes suggest that large changes in long‐term erosion rate lead to little change in mean hillslope angle, measured at coarse resolution. New LiDAR‐derived topography data enables a finer examination of threshold hillslopes. Here we quantify hillslope response to tectonic forcing in a threshold landscape. To do so, we use an extensive cosmogenic beryllium‐10 (10Be)‐based dataset of catchment‐averaged erosion rates combined with a 500 km2 LiDAR‐derived 1 m digital elevation model to exploit a gradient of tectonic forcing and topographic relief in the San Gabriel Mountains, California. We also calibrate a new method of quantifying rock exposure from LiDAR‐derived slope measurements using high‐resolution panoramic photographs. Two distinct trends in hillslope behavior emerge: below catchment‐mean slopes of 30°, modal slopes increase with mean slopes, slope distribution skewness decreases with increasing mean slope, and bedrock exposure is limited; above mean slopes of 30°, our rock exposure index increases strongly with mean slope, and the prevalence of angle‐of‐repose debris wedges keeps modal slopes near 37°, resulting in a positive relationship between slope distribution skewness and mean slope. We find that both mean slopes and rock exposure increase with erosion rate up to 1 mm/a, in contrast to previous work based on coarser topographic data. We also find that as erosion rates increase, the extent of the fluvial network decreases, while colluvial channels extend downstream, keeping the total drainage density similar across the range. Our results reveal important textural details lost in 10 or 30 m resolution digital elevation models of steep landscapes, and highlight the need for process‐based studies of threshold hillslopes and colluvial channels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Zusammenfassung In der vorliegenden Arbeit wird die Fermentation der organischen Stoffe des Kl?rschlammes vom kinetischen Standpunkt untersucht. Für die Faulgasproduktion ist die T?tigkeit der Methanbakterien entscheidend. Bei der ?batch?-Fermentation des Kl?rschlammes mit Trockensubstanzgehalt von 5% wurde die maximale Wachstumsrate der Methanbakterien für die folgenden Inkubationstemperaturen bestimmt: für 20°C 0,02 Tage−1, für 30°C 0,09 Tage−1, für 50°C 0,17 Tage. Im semikontinuierlichen Prozess wurde der spezifische Wirkungsgrad als Quotient der aus 1 Liter Faulraum produzierten Faulgasmenge (im ml) zum Inhalt der organischen Stoffe im Rohschlamm (in g/l) ausgedrückt. Die Abh?ngigkeit des spezifischen Wirkungsgrades von der Raumbelastung für Temperaturen von 20°C, 30°C und 50°C wurde graphisch dargestellt. Die Verdünnungsrate, bei der die maximalen Werte des spezifischen Wirkungsgrades erreicht wurden, sind für 20°C 0,12 Tage−1, für 30°C 0,21 Tage−1 und für 50°C 0,28 Tage−1. Entsprechende Werte des spezifischen Wirkungsgrades waren der Reihe nach: 20 ml/g pro Tag, 63 ml/g pro Tag und 100 ml/g pro Tag. Die minimale Generatinsdauer der Methanbakterin betr?gt für 20°C 3,1 Tage, für 30°C und 50°C weniger als 2,5 Tage. Aus dem Vergleich des ein- und zwistufigem Betriebs geht hervor, dass bei einer l?nger als 10 Tage w?hrenden Aufenthaltsdauer der spezifische Wirkungsgrad der beiden Systeme identisch ist, bei kürzerer Aufenthaltsdauer leistet jedoch der einstufige Betrieb mehr.
Summary The purpose of this study is to estimate the fermentation of the organic matter in sewage sludge from the point of view of kinetics. The activity of methane bacteria seems to be essential for the sludge gas production. In the batch fermentation of sludge containing about 5% of dry solids, the maximal growth rate for methane bacteria at given incubation temperatures was found to be: at 20°C 0,02 days−1, at 30°C 0,09 days−1, and at 50 °C 0,17 days−1. For the semi-continous process, the specific efficiency of the fermentation system was expressed as the relation between the quantity (in ml) of sludge gas produced daily in a one liter digestion area and the volatile solids content in raw sludge (in g/l). The dependence of the specific efficiency upon the volume load at temperatures of 20°C, 30°C, and 50°C was determined graphically. The dilution rate for maximal values of the unit efficiency attained was at 20°C 0,12 days−1, at 30°C 0,21 days−1, and at 50°C 0,28 days−1, corresponding maximal values of specific efficiency were 20 ml/g per day, 63 ml/g per day and 100 ml/g per day. Minimal generation time of methane bacteria is at 20°C 3,1 days, at 30°C and at 50°C less than 2,5 days. Comparison betwen single stage and two-stage operations, with detention periods of more than 10 days, shows that the specific efficiency is very much the same in both systems. However, at shorter detention periods and with the same digestion capacity, the single stage operation is more efficient.
  相似文献   

19.
Here we characterize the nutrient content in the outflow of the Green Lake 5 rock glacier, located in the Green Lakes Valley of the Colorado Front Range. Dissolved organic carbon (DOC) was present in all samples with a mean concentration of 0·85 mg L?1 . A one‐way analysis of variance test shows no statistical difference in DOC amounts among surface waters (p = 0·42). Average nitrate concentrations were 69 µmoles L?1 in the outflow of the rock glacier, compared to 7 µmoles L?1 in snow and 25 µmoles L?1 in rain. Nitrate concentrations from the rock glacier generally increased with time, with maximum concentrations of 135 µmoles L?1 in October, among the highest nitrate concentrations reported for high‐elevation surface waters. These high nitrate concentrations appear to be characteristic of rock glacier outflow in the Rocky Mountains, as a paired‐difference t‐test shows that nitrate concentrations from the outflow of 7 additional rock glaciers were significantly greater compared to their reference streams (p = 0·003). End‐member mixing analysis suggest that snow was the dominant source of nitrate in June, ‘soil’ solution was the dominant nitrate source in July, and base flow was the dominant source in September. Fluoresence index values and PARAFAC analyses of dissolved organic matter (DOM) are also consistent with a switch from terrestrial DOM in the summer time period to an increasing aquatic‐like microbial source during the autumn months. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Southwest Tarim (hereafter SW Tarim) is one of afew areas that well developed Cretaceous marinesedimentary rocks in China [1]. The Cretaceous marinesediments are stretched in front area along the Tian-shan and Kunlun Mountains. Toward the center ofTarim Basin, the Cretaceous sediments are buried bygreat thickness of Tertiary and Quaternary sedimentswith little exposure. Compared with the Cretaceousterrestrial strata of north Tarim, the Cretaceous marinestrata of SW Tarim continue and d…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号